The Halogenation Effects of Electron Acceptor ITIC for Organic Photovoltaic Nano-Heterojunctions
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. PBDB-T, ITIC and IT-2X (X = F, Cl, Br) Properties
3.2. PBDB-T:ITIC and PBDB-T:IT-2X (X = F, Cl, Br) Properties
3.3. Rate Constants of Charge Transfer, Exciton Dissociation and Charge Recombination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 2018, 12, 131–142. [Google Scholar] [CrossRef]
- Inganas, O. Organic photovoltaics over three decades. Adv. Mater. 2018, 30, 1800388–1800413. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zheng, T.; Wu, Q.; Schneider, A.M.; Zhao, D.; Yu, L. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 2015, 115, 12666–12731. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. 18% efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Nugraha, M.I.; Firdaus, Y.; Scaccabarozzi, A.D.; Aniés, F.; Emwas, A.H.; Yengel, E.; Zheng, X.; Liu, J.; Wahyudi, W.; et al. A simple n-dopant derived from diquat boosts the efficiency of organic solar cells to 18.3%. ACS Energy Lett. 2020, 5, 3663–3671. [Google Scholar] [CrossRef]
- Lin, Y.; Firdaus, Y.; Isikgor, F.H.; Nugraha, M.I.; Yengel, E.; Harrison, G.T.; Hallani, R.; El-Labban, A.; Faber, H.; Ma, C.; et al. Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 2020, 5, 2935–2944. [Google Scholar] [CrossRef]
- Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 2021, 41, 2102420. [Google Scholar] [CrossRef]
- Nam, M.; Cha, M.; Lee, H.H.; Hur, K.; Lee, K.T.; Yoo, J.; Han, I.K.; Kwon, S.J.; Ko, D.H. Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions. Nat. Commun. 2017, 8, 14068–14077. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Kelly, M.A.; You, W.; Yu, L. Status and prospects for ternary organic photovoltaics. Nat. Photonics 2015, 9, 491–500. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Qiu, N.; Feng, H.; Gao, H.; Kan, B.; Ma, Y.; Li, C.; Wan, X.; Chen, Y. A halogenation strategy for over 12% efficiency nonfullerene organic solar cells. Adv. Energy Mater. 2018, 8, 1702870–1702876. [Google Scholar] [CrossRef]
- Zhang, M.; Zeng, M.; Ye, L.; Tan, S.; Zhao, B.; Ryu, H.S.; Woo, H.Y.; Sun, Y. Effects of monohalogenated terminal units of non-fullerene acceptors on molecular aggregation and photovoltaic performance. Sol. Energy 2020, 208, 866–872. [Google Scholar] [CrossRef]
- Furukawa, S.; Yasuda, T. Strategic end-halogenation of π-conjugated small molecules enabling fine morphological control and enhanced performance of organic solar cells. J. Mater. Chem. A 2019, 7, 14806–14815. [Google Scholar] [CrossRef]
- Yao, H.; Wang, J.; Xu, Y.; Zhang, S.; Hou, J.H. Recent progress in chlorinated organic photovoltaic materials. Acc. Chem. Res. 2020, 53, 822–832. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, R.; Liu, T.; Xiao, Y.; Kim, H.K.; Zhang, J.; Ma, C.; Sun, H.; Bai, F.; Guo, X.; et al. Side-chain engineering on Y-series acceptors with chlorinated end groups enables high-performance organic solar cells. Adv. Energy Mater. 2021, 20, 2003777. [Google Scholar] [CrossRef]
- Zhao, Q.; Qu, J.; He, F. Chlorination: An effective strategy for high-performance organic solar cells. Adv. Sci. 2020, 7, 2000509. [Google Scholar] [CrossRef]
- Zheng, Y.Q.; Wang, Z.; Dou, J.H.; Zhang, S.D.; Luo, X.Y.; Yao, Z.F.; Wang, J.Y.; Pei, J. Effect of halogenation in isoindigo-based polymers on the phase separation and molecular orientation of bulk heterojunction solar cells. Macromolecules 2015, 48, 5570–5577. [Google Scholar] [CrossRef]
- Li, Y.; Lin, J.D.; Che, X.; Qu, Y.; Liu, F.; Liao, L.S.; Forrest, S.R. High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells. J. Am. Chem. Soc. 2017, 139, 17114–17119. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Hu, H.; Zhang, G.; Ade, H.; Yan, H. Chlorinated thiophene end groups for highly crystalline alkylated non-fullerene acceptors toward efficient organic solar cells. Chem. Mater. 2019, 31, 6672–6676. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10, 2515–2522. [Google Scholar] [CrossRef]
- Ma, S.; Wu, S.; Zhang, J.; Song, Y.; Tang, H.; Zhang, K.; Huang, F.; Cao, Y. Heptacyclic S, N-heteroacene-based near-infrared nonfullerene acceptor enables high-performance organic solar cells with small highest occupied molecular orbital offsets. ACS Appl. Mater. Inter. 2020, 12, 51776–51784. [Google Scholar] [CrossRef]
- Wang, Q.; Li, M.; Zhang, X.; Qin, Y.; Wang, J.; Zhang, J.; Hou, J.H.; Janssen, R.A.J.; Geng, Y. Carboxylate-substituted polythiophenes for efficient fullerene-free polymer solar cells: The effect of chlorination on their properties. Macromolecules 2019, 52, 4464–4474. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, L.; Jiao, X.; Peng, Z.; Liu, S.; Rech, J.J.; Klump, E.; Ade, H.; So, F.; You, W. Fluorinated thiophene units improve photovoltaic device performance of donor–acceptor copolymers. Chem. Mater. 2017, 29, 5990–6002. [Google Scholar] [CrossRef]
- Duan, C.; Zango, G.; Garcia Iglesias, M.; Colberts, F.J.; Wienk, M.M.; Martinez-Diaz, M.V.; Janssen, R.A.; Torres, T. The role of the axial substituent in subphthalocyanine acceptors for bulk-heterojunction solar cells. Angew. Chem. Int. Ed. Engl. 2017, 56, 148–152. [Google Scholar] [CrossRef]
- Chao, P.; Chen, H.; Pu, M.; Zhu, Y.; Han, L.; Zheng, N.; Zhou, J.; Chang, X.; Mo, D.; Xie, Z.; et al. Chlorinated benzo[1;2-b:4;5-c′]dithiophene-4;8-dione polymer donor: A small atom makes a big difference. Adv. Sci. 2021, 8, 2003641. [Google Scholar] [CrossRef]
- Ji, H.; Li, J.; Du, M.; Yang, J.; Tang, A.; Li, G.; Guo, Q.; Zhou, E. Fluorination of the quinoxaline-based p-type polymer and n-type small molecule for high VOC organic solar cells. J. Phys. Chem. C 2021, 125, 10876–10882. [Google Scholar] [CrossRef]
- Yu, H.; Qi, Z.; Yu, J.; Xiao, Y.; Sun, R.; Luo, Z.; Cheung, A.M.H.; Zhang, J.; Sun, H.; Zhou, W.; et al. Fluorinated end group enables high-performance all-polymer solar cells with near-infrared absorption and enhanced device efficiency over 14%. Adv. Energy Mater. 2020, 11, 2003171. [Google Scholar] [CrossRef]
- Ma, R.; Li, G.; Li, D.; Liu, T.; Luo, Z.; Zhang, G.; Zhang, M.; Wang, Z.; Luo, S.; Yang, T.; et al. Understanding the effect of end group halogenation in tuning miscibility and morphology of high-performance small molecular acceptors. Sol. RRL 2020, 4, 2000250. [Google Scholar] [CrossRef]
- Qiu, W.; Zheng, S. Designing and screening high-performance non-fullerene acceptors: A theoretical exploration of modified Y6. Sol. RRL 2021, 5, 2100023. [Google Scholar] [CrossRef]
- Qiu, W.; Zheng, S. Effects of functionalization of Y6 end-groups with electron-withdrawing groups on the photovoltaic properties at the donor-acceptor interfaces of PM6/Y6 OSCs: A theoretical insight. Org. Electron. 2021, 96, 106235. [Google Scholar] [CrossRef]
- Ashokan, A.; Wang, T.; Ravva, M.K.; Brédas, J.-L. Impact of solution temperature-dependent aggregation on the solid-state packing and electronic properties of polymers for organic photovoltaics. J. Mater. Chem. C 2018, 6, 13162–13170. [Google Scholar] [CrossRef]
- Benatto, L.; Koehler, M. Effects of fluorination on exciton binding energy and charge transport of π-conjugated donor polymers and the ITIC molecular acceptor: A theoretical study. J. Phys. Chem. C 2019, 123, 6395–6406. [Google Scholar] [CrossRef]
- Liao, Q.; Kang, Q.; Yang, Y.; An, C.; Xu, B.; Hou, J.H. Tailoring and modifying an organic electron acceptor toward the cathode interlayer for highly efficient organic solar cells. Adv. Mater. 2020, 32, 1906557–1906565. [Google Scholar] [CrossRef]
- Bai, R.R.; Zhang, C.R.; Liu, Z.J.; Chen, X.K.; Wu, Y.Z.; Wang, W.; Chen, H.S. Electric field effects on organic photovoltaic heterojunction interfaces: The model case of pentacene/C60. Comput. Theor. Chem. 2020, 1186, 112914. [Google Scholar] [CrossRef]
- Mahmood, A.; Irfan, A. Effect of fluorination on exciton binding energy and electronic coupling in small molecule acceptors for organic solar cells. Comput. Theor. Chem. 2020, 1179, 112797. [Google Scholar] [CrossRef]
- Bai, R.R.; Zhang, C.R.; Wu, Y.Z.; Shen, Y.L.; Liu, Z.J.; Chen, H.S. Donor halogenation effects on electronic structures and electron process rates of donor/C60 heterojunction interface: A theoretical study on FnZnPc (n = 0, 4, 8, 16) and ClnSubPc (n = 0, 6). J. Phys. Chem. A 2019, 123, 4034–4047. [Google Scholar] [CrossRef]
- Doumon, N.Y.; Dryzhov, M.V.; Houard, F.V.; Le Corre, V.M.; Rahimi Chatri, A.; Christodoulis, P.; Koster, L.J.A. Photostability of fullerene and non-fullerene polymer solar cells: The role of the acceptor. ACS. Appl. Mater. Inter. 2019, 11, 8310–8318. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y. The original design principles of the Y-series nonfullerene acceptors, from Y1 to Y6. ACS Nano 2021. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, H.; Zhang, S.; Qin, Y.; Zhang, J.; Yang, L.; Li, W.; Wei, Z.; Gao, F.; Hou, J. Fluorination vs. chlorination: A case study on high performance organic photovoltaic materials. Sci. China Chem. 2018, 61, 1328–1337. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, H.; Hou, J.X.; Zhu, J.; Zhang, J.; Li, W.; Yu, R.; Gao, B.; Zhang, S.; Hou, J.H. Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors. Adv. Mater. 2018, 30, 1800613–1800619. [Google Scholar] [CrossRef]
- Lu, S.; Li, F.; Zhang, K.; Zhu, J.; Cui, W.; Yang, R.; Yu, L.; Sun, M. Halogenation on terminal groups of ITIC based electron acceptors as an effective strategy for efficient polymer solar cells. Sol. Energy 2020, 195, 429–435. [Google Scholar] [CrossRef]
- Price, S.C.; Stuart, A.C.; Yang, L.; Zhou, H.; You, W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. J. Am. Chem. Soc. 2011, 133, 4625–4631. [Google Scholar] [CrossRef]
- Chen, T.W.; Peng, K.L.; Lin, Y.W.; Su, Y.J.; Ma, K.J.; Hong, L.; Chang, C.C.; Hou, J.H.; Hsu, C.S. A chlorinated nonacyclic carbazole-based acceptor affords over 15% efficiency in organic solar cells. J. Mater. Chem. A 2020, 8, 1131–1137. [Google Scholar] [CrossRef]
- Luo, Z.H.; Sun, R.; Zhong, C.; Liu, T.; Zhang, G.Y.; Zou, Y.; Jiao, X.C.; Min, J.; Yang, C.L. Altering alkyl-chains branching positions for boosting the performance of small-molecule acceptors for highly efficient nonfullerene organic solar cells. Sci. China Chem. 2020, 63, 361–369. [Google Scholar] [CrossRef]
- Yu, H.; Pan, M.; Sun, R.; Agunawela, I.; Zhang, J.; Li, Y.; Qi, Z.; Han, H.; Zou, X.; Zhou, W.; et al. Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15.2% efficiency. Angew. Chem. Int. Ed. Engl. 2021, 60, 10137–10146. [Google Scholar] [CrossRef]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [Green Version]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J.A. A complete basis set model chemistry. Part 1. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys 1988, 89, 2193–2218. [Google Scholar] [CrossRef]
- Cao, Z.; Yang, S.; Wang, B.; Shen, X.; Han, G.; Yi, Y. Multi-channel exciton dissociation in D18/Y6 complexes for high-efficiency organic photovoltaics. J. Mater. Chem. A 2020, 8, 20408–20413. [Google Scholar] [CrossRef]
- Zheng, Y.; Huang, J.; Wang, G.; Kong, J.; Huang, D.; Mohadjer Beromi, M.; Hazari, N.; Taylor, A.D.; Yu, J. A highly efficient polymer non-fullerene organic solar cell enhanced by introducing a small molecule as a crystallizing-agent. Mater. Today 2018, 21, 79–87. [Google Scholar] [CrossRef]
- Gadisa, A.; Oosterbaan, W.D.; Vandewal, K.; Bolsée, J.C.; Bertho, S.; D’Haen, J.; Lutsen, L.; Vanderzande, D.; Manca, J.V. Effect of alkyl side-chain length on photovoltaic properties of poly(3-alkylthiophene)/PCBM bulk heterojunctions. Adv. Funct. Mater. 2009, 19, 3300–3306. [Google Scholar] [CrossRef]
- Fei, Z.; Boufflet, P.; Wood, S.; Wade, J.; Moriarty, J.; Gann, E.; Ratcliff, E.L.; McNeill, C.R.; Sirringhaus, H.; Kim, J.S.; et al. Influence of backbone fluorination in regioregular poly(3-alkyl-4-fluoro)thiophenes. J. Am. Chem. Soc. 2015, 137, 6866–6879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Few, S.; Frost, J.M.; Kirkpatrick, J.; Nelson, J. Influence of chemical structure on the charge transfer state spectrum of a polymer:fullerene complex. J. Phys. Chem. C 2014, 118, 8253–8261. [Google Scholar] [CrossRef]
- Scalmani, G.; Frisch, M.J. Continuous surface charge polarizable continuum models of solvation. I. general formalism. J. Chem. Phys. 2010, 132, 114110. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Egger, D.A.; Brédas, J.L.; Kronik, L.; Coropceanu, V. Effect of solid-state polarization on charge-transfer excitations and transport levels at organic interfaces from a screened range-separated hybrid functional. J. Phys. Chem. Lett. 2017, 8, 3277–3283. [Google Scholar] [CrossRef]
- Baer, R.; Livshits, E.; Salzner, U. Tuned range-separated hybrids in density functional theory. Annu. Rev. Phys. Chem. 2010, 61, 85–109. [Google Scholar] [CrossRef]
- Bai, R.R.; Zhang, C.R.; Wu, Y.Z.; Yuan, L.H.; Zhang, M.L.; Chen, Y.H.; Liu, Z.J.; Chen, H.S. Interface configuration effects on excitation, exciton dissociation, and charge recombination in organic photovoltaic heterojunction. Int. J. Quantum Chem. 2020, 120, e26103. [Google Scholar] [CrossRef]
- Lemaur, V.; Steel, M.; Beljonne, D.; Bredas, J.L.; Cornil, J. Photoinduced charge generation and recombination dynamics in model donor/acceptor pairs for organic solar cell applications: A full quantum-chemical treatment. J. Am. Chem. Soc. 2005, 127, 6077–6086. [Google Scholar] [CrossRef]
- Marcus, R.A. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 1993, 65, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Cave, R.J.; Newton, M.D. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements. Chem. Phys. Lett. 1996, 249, 15–19. [Google Scholar] [CrossRef]
- Voityuk, A.A. Estimation of electronic coupling in π-stacked donor-bridge-acceptor systems: Correction of the two-state model. J. Chem. Phys. 2006, 124, 064505–064510. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.P. The electronic couplings in electron transfer and excitation energy transfer. Acc. Chem. Res. 2009, 4, 509–518. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09 D. 01. Revision A. 1; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon 2020, 165, 461–467. [Google Scholar] [CrossRef]
- Lu, T.; Manzetti, S. Wavefunction and reactivity study of benzo[a]pyrene diol epoxide and its enantiomeric forms. Struct. Chem. 2014, 25, 1521–1533. [Google Scholar] [CrossRef]
- Sahu, H.; Ma, H. Unraveling correlations between molecular properties and device parameters of organic solar cells using machine learning. J. Phys. Chem. Let. 2019, 10, 7277–7284. [Google Scholar] [CrossRef]
- Fan, Q.; Su, W.; Zhang, M.; Wu, J.; Jiang, Y.; Guo, X.; Liu, F.; Russell, T.P.; Zhang, M.; Li, Y. Synergistic effects of side-chain engineering and fluorination on small molecule acceptors to simultaneously broaden spectral response and minimize voltage loss for 13.8% efficiency organic solar cells. Sol. RRL 2019, 3, 1900169–1900177. [Google Scholar] [CrossRef]
- Tang, M.L.; Oh, J.H.; Reichardt, A.D.; Bao, Z. Chlorination: A general route toward electron transport in organic semiconductors. J. Am. Chem. Soc. 2009, 131, 3733–3740. [Google Scholar] [CrossRef] [PubMed]
- Bauer, N.; Zhang, Q.; Rech, J.J.; Dai, S.; Peng, Z.; Ade, H.; Wang, J.; Zhan, X.; You, W. The impact of fluorination on both donor polymer and non-fullerene acceptor: The more fluorine, the merrier. Nano Res. 2019, 12, 2400–2405. [Google Scholar] [CrossRef]
- Xu, Y.; Yao, H.; Ma, L.; Wang, J.; Hou, J. Efficient charge generation at low energy losses in organic solar cells: A key issues review. Rep. Prog. Phys. 2020, 83, 082601–082632. [Google Scholar] [CrossRef]
- Xu, Y.; Yao, H.; Ma, L.; Hong, L.; Li, J.; Liao, Q.; Zu, Y.; Wang, J.; Gao, M.; Ye, L.; et al. Tuning the hybridization of local exciton and charge-transfer states in highly efficient organic photovoltaic cells. Angew. Chem. Int. Ed. Engl. 2020, 59, 9004–9010. [Google Scholar] [CrossRef]
- Yu, R.; Yao, H.; Xu, Y.; Li, J.; Hong, L.; Zhang, T.; Cui, Y.; Peng, Z.; Gao, M.; Ye, L.; et al. Quadrupole moment induced morphology control via a highly volatile small molecule in efficient organic solar cells. Adv. Funct. Mater. 2021, 31, 2010535. [Google Scholar] [CrossRef]
- Cha, H.; Wu, J.; Wadsworth, A.; Nagitta, J.; Limbu, S.; Pont, S.; Li, Z.; Searle, J.; Wyatt, M.F.; Baran, D.; et al. An efficient, “Burn in” free organic solar cell employing a nonfullerene electron acceptor. Adv. Mater. 2017, 29, 1701156–1701163. [Google Scholar] [CrossRef]
- Zhao, J.; Yao, C.; Ali, M.U.; Miao, J.; Meng, H. Recent advances in high-performance organic solar cells enabled by acceptor–donor–acceptor–donor–acceptor (A–DA′D–A) type acceptors. Mater. Chem. Front. 2020, 4, 3487–3504. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, J.; Guo, Y.; Yang, C.; Yi, Y.; Wei, Z. Small exciton binding energies enabling direct charge photogeneration towards low-driving-force organic solar cells. Angew. Chem. Int. Ed. Engl. 2021, 28, 15348–15353. [Google Scholar] [CrossRef]
- Jo, J.W.; Bae, S.; Liu, F.; Russell, T.P.; Jo, W.H. Comparison of two D−A type polymers with each being fluorinated on D and A unit for high performance solar cells. Adv. Funct. Mater. 2015, 25, 120–125. [Google Scholar] [CrossRef]
- Stuart, A.C.; Tumbleston, J.R.; Zhou, H.; Li, W.; Liu, S.; Ade, H.; You, W. Fluorine substituents reduce charge recombination and drive structure and morphology development in polymer solar cells. J. Am. Chem. Soc. 2013, 135, 1806–1815. [Google Scholar] [CrossRef] [PubMed]
- Vandewal, K.; Gadisa, A.; Oosterbaan, W.D.; Bertho, S.; Banishoeib, F.; Van Severen, I.; Lutsen, L.; Cleij, T.J.; Vanderzande, D.; Manca, J.V. The relation between open-circuit voltage and the onset of photocurrent generation by charge-transfer absorption in polymer : fullerene bulk heterojunction solar cells. Adv. Funct. Mater. 2008, 18, 2064–2070. [Google Scholar] [CrossRef] [Green Version]
- Han, G.; Yi, Y. Local excitation/charge-transfer hybridization simultaneously promotes charge generation and reduces nonradiative voltage loss in nonfullerene organic solar cells. J. Phys. Chem. Lett. 2019, 10, 2911–2918. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhang, C.R.; Wu, Y.Z.; Yuan, L.H.; Chen, Y.H.; Liu, Z.J.; Chen, H.S. Fusing thienyl with N-annulated perylene dyes and photovoltaic parameters for dye-sensitized solar cells. J. Phys. Chem. A 2020, 124, 3626–3635. [Google Scholar] [CrossRef]
Definition | Bond Length | Definition | Bond Angles | Definition | Dihedral Angles |
---|---|---|---|---|---|
ITIC | |||||
1–2 | 1.085 | 1-2-3 | 120.1 | 6-15-17-18 | 3.8 |
9–10 | 1.370 | 11-10-12 | 112.2 | 8-9-10-11 | 1.8 |
66–67 | 1.370 | 74-73-65 | 120.1 | 64-66-67-69 | −177.5 |
73–74 | 1.085 | 69-67-68 | 112.2 | 61-60-58-57 | 3.8 |
IT-2F | |||||
1–2 | 1.335 | 1-2-3 | 119.2 | 6-15-17-18 | −7.6 |
9–10 | 1.370 | 11-10-12 | 112.6 | 8-9-10-11 | −2.6 |
66–67 | 1.370 | 74-73-65 | 119.2 | 64-66-67-69 | 176.1 |
73–74 | 1.335 | 69-67-68 | 112.6 | 61-60-58-57 | −7.6 |
IT-2Cl | |||||
1–2 | 1.741 | 1-2-3 | 119.5 | 6-15-17-18 | −7.8 |
9–10 | 1.370 | 11-10-12 | 112.6 | 8-9-10-11 | −2.8 |
66–67 | 1.370 | 74-73-65 | 119.5 | 64-66-67-69 | 175.8 |
73–74 | 1.741 | 69-67-68 | 112.6 | 61-60-58-57 | −7.8 |
IT-2Br | |||||
1–2 | 1.888 | 1-2-3 | 119.6 | 6-15-17-18 | 3.2 |
9–10 | 1.370 | 11-10-12 | 112.4 | 8-9-10-11 | 1.7 |
66–67 | 1.370 | 74-73-65 | 119.6 | 64-66-67-69 | −177.6 |
73–74 | 1.888 | 69-67-68 | 112.4 | 61-60-58-57 | 3.2 |
PBDB-T | |||||
2–3 | 1.463 | 1-2-3 | 126.5 | 1-2-3-4 | 130.2 |
6–7 | 1.463 | 5-6-7 | 128.5 | 5-6-7-8 | −119.4 |
10–11 | 1.454 | 9-10-11 | 130.8 | 9-10-11-12 | 151.1 |
18–19 | 1.455 | 13-14-15 | 122.1 | 13-14-15-16 | −126.7 |
22–23 | 1.459 | 18-19-20 | 130.1 | 59-60-61-62 | 57.5 |
14–15 | 1.473 | 21-22-23 | 128.6 | 17-18-19-20 | −141.6 |
60–61 | 1.473 | 59-60-61 | 120.5 | 21-22-23-24 | 140.0 |
Molecule | HOMO−1 | HOMO | LUMO | LUMO+1 | H-Lgap |
---|---|---|---|---|---|
PBDB-T | −5.53 | −5.47 | −2.31 | −2.16 | 3.16 |
ITIC | −6.42 | −5.72 | −3.26 | −3.04 | 2.46 |
IT-2F | −6.46 | −5.75 | −3.28 | −3.04 | 2.48 |
IT-2Cl | −6.46 | −5.76 | −3.34 | −3.12 | 2.42 |
IT-2Br | −6.47 | −5.77 | −3.34 | −3.13 | 2.43 |
States | Main Transition Configurations | ESC | E (eV/nm) | f |
---|---|---|---|---|
PBDB-T (ω = 0.155) | ||||
S1 | H→L(83%) | CT&DLE | 2.57/482.92 | 0.9508 |
S3 | H-1→L + 2(27%); H→L + 2(29%); H→L + 3(13%) | CT | 2.78/446.13 | 0.1666 |
S5 | H-1→L + 2(11%); H→L + 1(11%) | CT | 2.92/424.74 | 0.1366 |
H→L + 2(23%); H→L + 3(32%) | ||||
S7 | H-2→L(62%) | CT&DLE | 3.07/404.48 | 0.4274 |
ITIC (ω = 0.155) | ||||
S1 | H→L(96%) | CT&DLE | 1.92/646.56 | 2.8141 |
S3 | H→L + 2(91%) | CT&DLE | 2.66/466.84 | 0.1901 |
S8 | H-4→L(78%) | CT&DLE | 2.92/424.18 | 0.3927 |
S9 | H-1→L + 1(87%) | CT&DLE | 2.95/420.57 | 0.1265 |
IT-2F (ω = 0.167) | ||||
S1 | H→L(96%) | CT&DLE | 1.93/644.02 | 2.8684 |
S3 | H→L + 2(90%) | CT&DLE | 2.62/472.71 | 0.1270 |
S8 | H-4→L(80%) | CT&DLE | 2.93/423.68 | 0.3566 |
S9 | H-1→L + 1(89%) | CT&DLE | 2.97/417.18 | 0.1644 |
IT-2Cl (ω = 0.144) | ||||
S1 | H→L(96%) | CT&DLE | 1.89/657.52 | 2.8394 |
S3 | H→L + 2(91%) | CT&DLE | 2.57/483.05 | 0.1742 |
S8 | H-4→L(82%) | CT&DLE | 2.87/432.15 | 0.3433 |
S9 | H-1→L + 1(90%) | CT&DLE | 2.91/426.22 | 0.1671 |
IT-2Br (ω = 0.155) | ||||
S1 | H→L(96%) | CT&DLE | 1.89/657.37 | 2.8730 |
S3 | H→L + 2(91%) | CT&DLE | 2.58/480.80 | 0.1798 |
S8 | H-4→L(79%) | CT&DLE | 2.88/430.87 | 0.3450 |
S9 | H-1→L + 1(90%) | CT&DLE | 2.91/425.85 | 0.1808 |
Dihedral Angles | PBDB-T:ITIC | PBDB-T:IT-2F | PBDB-T:IT-2Cl | PBDB-T:IT-2Br |
---|---|---|---|---|
1-2-3-4 a | 126.4 | 130.0 | 149.3 | 131.0 |
5-6-7-8 a | 157.6 | 177.0 | 142.6 | 0.0 |
9-10-11-12 a | −166.0 | 167.4 | −150.6 | 174.5 |
59-60-61-62 a | 126.3 | 123.2 | 136.3 | 123.8 |
13-14-15-16 a | −125.3 | −62.9 | −124.4 | −56.1 |
17-18-19-20 a | −136.5 | 131.2 | −123.4 | 132.7 |
21-22-23-24 a | 128.0 | −150.7 | 129.4 | −152.7 |
25-26-27-28 a | −159.9 | −157.4 | −163.4 | −152.8 |
29-30-31-32 a | 155.1 | 158.0 | −178.5 | −171.1 |
33-34-35-36 a | −116.0 | −117.2 | −115.5 | −111.7 |
37-38-39-40 a | −142.3 | −145.1 | −131.2 | −139.6 |
6-15-17-18 b | −1.1 | −19.0 | −2.5 | −11.9 |
37-21-30-31 b | 101.2 | 87.0 | −73.9 | −84.5 |
20-21-22-23 b | 93.6 | 103.4 | 91.3 | 105.9 |
42-41-50-51 b | −18.6 | −21.3 | −15.6 | −19.6 |
40-41-43-44 b | −4.1 | −4.3 | −8.6 | −4.6 |
61-60-58-57 b | −11.0 | −8.2 | 9.2 | 12.8 |
Complexes | HOMO | LUMO | H-Lgap | Eb | |
---|---|---|---|---|---|
PBDB-T:ITIC | 0.155 | −5.34 | −3.12 | 2.23 | 3.34 |
PBDB-T:IT-2F | 0.167 | −5.40 | −3.10 | 2.30 | 3.62 |
PBDB-T:IT-2Cl | 0.144 | −5.34 | −3.24 | 2.09 | 3.35 |
PBDB-T:IT-2Br | 0.155 | −5.37 | −3.16 | 2.21 | 3.80 |
States | Main Transitioncon Figurations | ESC | E (eV/nm) | f |
---|---|---|---|---|
PBDB-T:ITIC (ω = 0.155) | ||||
S1 | H→L(75%); H→L + 1(16%) | CT | 1.60/777.01 | 0.0522 |
S3 | H-2→L(75%); H→L + 1(13%) | ALE | 1.95/636.26 | 1.9895 |
S9 | H-2→L + 1(59%) | ALE | 2.30/539.93 | 0.1396 |
S11 | H→L + 3(47%); H→L + 4(22%) | CT&DLE | 2.38/521.46 | 1.4261 |
PBDB-T:IT-2F (ω = 0.167) | ||||
S1 | H-1→L(21%); H-1→L + 1(14%); H→L(60%) | CT | 1.71/723.8 | 0.0398 |
S3 | H-2→L(88%) | ALE | 1.91/647.97 | 2.1042 |
S11 | H-1→L + 5(12%); H→L + 3(10%); H→L + 4(46%) | DLE | 2.43/509.86 | 1.5504 |
PBDB-T:IT-2Cl (ω = 0.144) | ||||
S1 | H→L(79%); H→L + 1(16%) | CT | 1.47/844.09 | 0.0212 |
S3 | H-2→L(89%) | ALE | 1.89/654.39 | 2.1403 |
S12 | H→L + 4(23%); H→L + 5(62%) | DLE | 2.42/513.06 | 1.2822 |
PBDB-T:IT-2Br (ω = 0.155) | ||||
S1 | H→L(75%) | CT | 1.62/767.38 | 0.0266 |
S3 | H-2→L(90%) | ALE | 1.87/662.95 | 2.0919 |
S11 | H→L + 3(11%); H→L + 4(62%) | DLE | 2.39/518.12 | 1.4911 |
Acceptors | ETP | λi | λext | λ | ∆G | V | |∆G + λ| | K |
---|---|---|---|---|---|---|---|---|
ITIC | CT | 0.179 | 0.024 | 0.203 | −0.811 | 0.179 | 0.608 | 2.69 × 107 |
CR | 0.182 | 0.024 | 0.206 | −1.250 | 0.369 | 1.044 | 3.26 × 10−7 | |
ED | 0.157 | 0.024 | 0.181 | −0.545 | 0.038 | 0.364 | 4.81 × 1010 | |
IT-2F | CT | 0.182 | 0.023 | 0.205 | −0.772 | 0.153 | 0.567 | 2.29 × 108 |
CR | 0.186 | 0.023 | 0.209 | −1.258 | 0.329 | 1.049 | 2.73 × 10−7 | |
ED | 0.164 | 0.023 | 0.187 | −0.537 | 0.018 | 0.350 | 2.16 × 1010 | |
IT-2Cl | CT | 0.181 | 0.026 | 0.207 | −0.805 | 0.053 | 0.598 | 5.49 × 106 |
CR | 0.183 | 0.026 | 0.208 | −1.171 | 0.178 | 0.963 | 2.56 × 10−4 | |
ED | 0.165 | 0.026 | 0.190 | −0.603 | 0.060 | 0.413 | 2.38 × 1010 | |
IT-2Br | CT | 0.176 | 0.023 | 0.199 | −0.776 | 0.047 | 0.577 | 8.31 × 106 |
CR | 0.180 | 0.023 | 0.202 | −1.193 | 0.261 | 0.991 | 1.09 × 10−5 | |
ED | 0.164 | 0.023 | 0.187 | −0.484 | 0.026 | 0.297 | 2.70 × 1011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, C.; Yang, B.; Yuan, L.; Gong, J.; Liu, Z.; Wu, Y.; Chen, H. The Halogenation Effects of Electron Acceptor ITIC for Organic Photovoltaic Nano-Heterojunctions. Nanomaterials 2021, 11, 3417. https://doi.org/10.3390/nano11123417
Wang Y, Zhang C, Yang B, Yuan L, Gong J, Liu Z, Wu Y, Chen H. The Halogenation Effects of Electron Acceptor ITIC for Organic Photovoltaic Nano-Heterojunctions. Nanomaterials. 2021; 11(12):3417. https://doi.org/10.3390/nano11123417
Chicago/Turabian StyleWang, Yu, Cairong Zhang, Bing Yang, Lihua Yuan, Jijun Gong, Zijiang Liu, Youzhi Wu, and Hongshan Chen. 2021. "The Halogenation Effects of Electron Acceptor ITIC for Organic Photovoltaic Nano-Heterojunctions" Nanomaterials 11, no. 12: 3417. https://doi.org/10.3390/nano11123417
APA StyleWang, Y., Zhang, C., Yang, B., Yuan, L., Gong, J., Liu, Z., Wu, Y., & Chen, H. (2021). The Halogenation Effects of Electron Acceptor ITIC for Organic Photovoltaic Nano-Heterojunctions. Nanomaterials, 11(12), 3417. https://doi.org/10.3390/nano11123417