EMI Shielding Nanocomposite Laminates with High Temperature Resistance, Hydrophobicity and Anticorrosion Properties
Abstract
:1. Introduction
2. Material and Methods
2.1. Fabrication of Composites
2.2. Characterization
3. Results and Discussion
3.1. Morphology and DSC Analysis
3.2. EMI Shielding Properties
3.3. Metamaterial Properties and Shielding Mechanism
3.4. Multifunctional Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schnorr, J.M.; Swager, T.M. Emerging Applications of Carbon Nanotubes. Chem. Mater. 2010, 23, 646–657. [Google Scholar] [CrossRef] [Green Version]
- Al-Saleh, M.H. Influence of Conductive Network Structure on the EMI Shielding and Electrical Percolation of Carbon Nanotube/Polymer Nanocomposites. Synth. Met. 2015, 205, 78–84. [Google Scholar] [CrossRef]
- Li, N.; Huang, Y.; Du, F.; He, X.; Lin, X.; Gao, H.; Ma, Y.; Li, F.; Chen, Y.; Eklund, P. Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites. Nano Lett. 2006, 6, 1141–1145. [Google Scholar] [CrossRef] [PubMed]
- Fugetsu, B.; Sano, E.; Sunada, M.; Sambongi, Y.; Shibuya, T.; Wang, X.; Hiraki, T. Electrical Conductivity and Electromagnetic Interference Shielding Efficiency of Carbon nanotube/cellulose Composite Paper. Carbon 2008, 46, 1256–1258. [Google Scholar] [CrossRef]
- Jia, L.C.; Li, M.Z.; Yan, D.X.; Cui, C.H.; Wu, H.Y.; Li, Z.M. A Strong and Tough Polymer-carbon Nanotube Film for Flexible and Efficient Electromagnetic Interference Shielding. J. Mater. Chem. C 2017, 5, 8944–8951. [Google Scholar] [CrossRef]
- Sachdev, V.K.; Bhattacharya, S.; Patel, K.; Sharma, S.K.; Mehra, N.C.; Tandon, R.P. Electrical and EMI Shielding Characterization of Multiwalled Carbon nanotube/polystyrene Composites. J. Appl. Polym. Sci. 2015, 131, 205–212. [Google Scholar] [CrossRef]
- Thomassin, J.M.; Jerome, C.; Pardoen, T.; Bailly, C.; Huynen, I.; Detrembleur, C. Polymer/Carbon Based Composites as Electromagnetic Interference (EMI) Shielding Materials. Mater. Sci. Eng. R. 2013, 74, 211–232. [Google Scholar] [CrossRef]
- Arjmand, M.; Mahmoodi, M.; Gelves, G.A.; Park, S.; Sundararaj, U. Electrical and Electromagnetic Interference Shielding Properties of Flow-induced oriented carbon nanotubes in Polycarbonate. Carbon 2011, 49, 3430–3440. [Google Scholar] [CrossRef]
- Chikyu, N.; Nakano, T.; Kletetschka, G.; Inoue, Y. Excellent Electromagnetic Interference Shielding Characteristics of a Unidirectionally Oriented Thin Multiwalled Carbon Nanotube/Polyethylene Film. Mater. Design. 2020, 19, 108918. [Google Scholar] [CrossRef]
- Wu, Z.P.; Cheng, D.M.; Ma, W.J.; Hu, J.W.; Yin, Y.H.; Hu, Y.Y.; Li, Y.S.; Yang, J.G.; Xu, Q.F. Electromagnetic Interference Shielding Effectiveness of Composite Carbon Nanotube Macro-Film at a High Frequency Range of 40 GHz to 60 GHz. AIP Adv. 2015, 5, 067130. [Google Scholar] [CrossRef]
- Jia, Z.; Lin, K.; Wu, G.; Xing, H.; Wu, H. Recent Progresses of High-Temperature Microwave-Absorbing Materials. Nano Brief Rep. Rev. 2018, 1, 1830005. [Google Scholar] [CrossRef]
- Hu, P.; Jing, L.; Fu, C.; Gong, W.; Liao, J.; Lu, W.; Chen, Y.; Zhang, X. Multi-Functional Aramid Nanofiber/Carbon Nanotube Hybrid Aerogel Films. ACS Nano 2020, 14, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Zhu, P.; Yu, S.; Sun, R.; Wong, C.P. Anticorrosive, Ultralight, and Flexible Carbon-Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding. Small 2018, 14, 1800534. [Google Scholar] [CrossRef]
- Mouka, R.; Sedlaík, M.; Kasparyan, H.; Proke, J.; Kopeck, D. One-Dimensional Nanostructures of Polypyrrole for Shielding of Electromagnetic Interference in the Microwave Region. Int. J. Mol. Sci. 2020, 21, 8814. [Google Scholar] [CrossRef] [PubMed]
- Lapka, T.; Kopecký, D.; Mazúr, P.; Prokeš, J.; Ulbrich, P.; Dendisová, M.; Sedlačík, M.; Hassouna, F. Elaboration and Properties of Nanofibrillated Cellulose Composites with Polypyrrole nanotubes or Their Carbonized Analogs. Synth. Met. 2021, 278, 116806. [Google Scholar] [CrossRef]
- Lee, J.; Kessler, S.S.; Wardle, B.L. Void-Free Layered Polymeric Architectures via Capillary-Action of Nanoporous Films. Adv. Mater. Interfaces 2020, 7, 1901427. [Google Scholar] [CrossRef]
- Lee, J.; Stein, I.Y.; Kessler, S.S.; Wardle, B.L. Aligned Carbon Nanotube Film Enables Thermally Induced State Transformations in Layered Polymeric Materials. ACS Appl. Mater. Interfaces 2015, 7, 8900–8905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Chen, Y.; Zhan, H.; Wang, J.N. High-Strength Carbon Nanotube Film from Improving Alignment and Densification. Nano Lett. 2016, 16, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, F.; Lin, Z.; Sun, X.; Peng, Q.; Yuan, Y.; Wang, S.; Yang, Z.; He, X.; Li, Y. Electrically and Thermally conductive Underwater Acoustically Absorptive Graphene/Rubber nanocomposites for multifunctional applications. Nanoscale 2017, 9, 14476–14485. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Wang, X.; Li, X.; Liao, S.Y.; Lin, Z.Q.; Hu, Y.G.; Zhao, T.; Zeng, X.L.; Li, C.H.; Yu, S.H.; et al. Ultrathin Densified Carbon Nanotube Film with “Metal-like” Conductivity, Superior Mechanical Strength, and Ultrahigh Electromagnetic Interference Shielding Effectiveness. ACS Nano 2020, 14, 14134–14145. [Google Scholar] [CrossRef]
- Wan, Y.J.; Li, X.M.; Zhu, P.L.; Sun, R.; Liao, W.H. Lightweight, Flexible MXene/polymer Film with Simultaneously Excellent Mechanical Property and High-Performance Electromagnetic Interference Shielding. Compos. Part. A-Appl. S. 2020, 130, 105764. [Google Scholar] [CrossRef]
- Huang, H.; Liu, C.; Zhou, D.; Jiang, X.; Zhong, G.J.; Yana, D.X.; Li, Z.M. Cellulose Composite Aerogel for Highly Efficient Electromagnetic Interference Shielding. J. Mater. Chem. A 2015, 3, 4983–4991. [Google Scholar] [CrossRef]
- Duan, H.; Zhu, H.; Gao, J.; Yan, D.X.; Li, Z.M. Asymmetric Conductive Polymer Composite Foam for Absorption Dominated Ultra-Efficient Electromagnetic Interference Shielding with Extremely Low Reflection Characteristics. J. Mater. Chem. A 2020, 8, 9146–9159. [Google Scholar] [CrossRef]
- Rao, B.B.; Chengappa, M.; Kale, S.N. Lightweight, flexible and Thin Fe3O4-loaded, Functionalized Multi Walled Carbon Nanotube Buckypapers for Enhanced X-band Electromagnetic Interference Shielding. Mater. Res. Express 2017, 4, 045012. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. Electromagnetic Interference Shielding Mechanisms of CNT/polymer Composites. Carbon 2019, 47, 1738–1746. [Google Scholar] [CrossRef]
- Rizzo, A.; Luhrs, C.; Earp, B.; Grbovic, D. CNT Conductive Epoxy Composite Metamaterials: Design, Fabrication, and Characterization. Materials 2020, 13, 4749. [Google Scholar] [CrossRef]
- Yang, Y.; Gupta, M.C.; Dudley, K.L.; Lawrence, R.W. Novel Carbon Nanotube-Polystyrene Foam Composites for Electromagnetic Interference Shielding. Nano Lett. 2005, 5, 2131–2134. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, A.; Gupta, M.C.; Dudley, K.L.; Vedeler, E. Elastomer Foam Nanocomposites for Electromagnetic Dissipation and Shielding Applications. Compos. Sci. Technol. 2010, 70, 953–995. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Saadeh, W.H.; Sundararaj, U. EMI Shielding Effectiveness of Carbon Based Nanostructured Polymeric Materials: A Comparative Study. Carbon 2013, 60, 146–156. [Google Scholar] [CrossRef]
- Arjmand, M.; Apperley, T.; Okoniewski, M.; Sundararaj, U. Comparative Study of Electromagnetic Interference Shielding Properties of Injection Molded Versus Compression Molded Multi-Walled Carbon nanotube/polystyrene Composites. Carbon 2012, 50, 5126–5134. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, M.; Ji, H.; Li, W.; Xue, X. Thin and Flexible Multi-Walled Carbon Nanotube/Waterborne Polyurethane Composites with High-Performance Electromagnetic Interference Shielding. Carbon 2016, 96, 768–777. [Google Scholar] [CrossRef]
- Huang, Y.; Li, N.; Ma, Y.; Feng, D.; Li, F.; He, X.; Xiao, L.; Gao, H.; Chen, Y. The influence of Single-Walled Carbon Nanotube Structure on the Electromagnetic interference Shielding Efficiency of its Epoxy composites. Carbon 2007, 45, 1614–1621. [Google Scholar] [CrossRef]
- Liu, Z.; Bai, G.; Huang, Y.; Ma, Y.; Feng, D.; Li, F.; Guo, T.; Chen, Y. Reflection and Absorption Contributions to the Electromagnetic Interference Shielding of Single-Walled Carbon Nanotube/Polyurethane Composites. Carbon 2007, 45, 821–827. [Google Scholar] [CrossRef]
- Gupta, A.; Choudhary, V. Electrical Conductivity and Shielding Effectiveness of Poly(trimethylene terephthalate)/Multiwalled carbon nanotube Composites. J. Mater. Sci. 2011, 46, 6416–6423. [Google Scholar] [CrossRef]
- Hsiao, S.T.; Ma, C.C.; Tien, H.W.; Liao, W.H.; Wang, Y.S.; Li, S.M.; Huang, Y.C. Using a Noncovalent Modification to Prepare a High Electromagnetic Interference Shielding Performance Graphene Nanosheet/Water-borne Polyurethane Composite. Carbon 2013, 60, 57–66. [Google Scholar] [CrossRef]
- Shen, B.; Zhai, W.; Tao, M.; Ling, J.; Zheng, W. Lightweight, Multifunctional Polyetherimide/Graphene@Fe3O4 Composite Foams for Shielding of Electromagnetic Pollution. ACS Appl. Mater. Interfaces 2013, 5, 11383–11391. [Google Scholar] [CrossRef] [PubMed]
- Song, W.L.; Guan, X.T.; Fan, L.Z.; Cao, W.Q.; Wang, C.Y.; Zhao, Q.L.; Cao, M.S. Magnetic and Conductive Graphene Papers Toward Thin Layers of Effective Electromagnetic Shielding. J. Mater. Chem. A Mater. Energy. Sustain. 2015, 3, 2097–2107. [Google Scholar] [CrossRef]
- Zhang, H.B.; Yan, Q.; Zheng, W.G.; He, Z.; Yu, Z.Z. Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Chakrabarti, A. Conducting carbon black filled EDPM Vulcanizates: Assessment of Dependence of Physical and Mechanical Properties and Conducting Character on Variation of Filler Loading. Eur. Polym. J. 2000, 36, 1043–1054. [Google Scholar] [CrossRef]
- Shetty, H.D.; Patra, A.; Prasad, V. Polydimethylsiloxane-multiwalled carbon nanotube composite as a metamaterial. Mater. Lett. 2018, 210, 309–313. [Google Scholar] [CrossRef]
- Perumal Ramasamy, R.; Yang, K.; Rafailovich, M. Polypropylene/graphene a Nanocomposite that Can Be Converted Into a meta-Material at Desired Frequencies. RSC Adv. 2014, 4, 44888–44895. [Google Scholar] [CrossRef]
- Hong, G.; Guo, J.; He, Q.; Jiang, Y.; Huang, Y.; Haldolaarachige, N.; Luo, Z.; Young, D.; Wei, S. Magnetoresistive Polyaniline/Multi-Walled Carbon Nanotube Nanocomposites with Negative Permittivity. Nanoscale 2014, 6, 181–189. [Google Scholar] [CrossRef]
- Sun, H.; Che, R.; You, X.; Jiang, Y.; Yang, Z.; Deng, J.; Qiu, L.; Peng, H. Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities. Adv. Mater. 2014, 26, 8120–8125. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Qin, F.; Lu, Y. Multifunctional Electromagnetic Interference Shielding Ternary Alloy (Ni-W-P) Decorated Fabric with Wide-Operating-Range Joule Heating Performances. ACS Appl. Mater. Interfaces 2020, 12, 48016–48026. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Yang, Y.; Yang, J.; Duan, H.; Zhao, G.; Liu, Y. Multifunctional and corrosion resistant poly(phenylene sulfide)/Ag composites for electromagnetic interference shielding. Chem. Eng. J. 2021, 415, 129052. [Google Scholar] [CrossRef]
Areal Density of CNTF | Samples * | Name |
---|---|---|
6.8 g/m2 | (1CF-EP-CNTF/1CF-EP) oven/0° | sample 1 |
(1CF-EP-CNTF/1CF-EP) hot press/0° | sample 2 | |
(1CF-EP-CNTF/1CF-EP) e-heating/0° | sample 4 | |
(1CF-EP/1CF-EP) e-heating/0° | sample 3 | |
(1CF-EP-CNTF/1CF-EP-CNTF/1CF-EP) e-heating/0° | sample 5 | |
(1CF-EP/1CF-EP-CNTF/1CF-EP-CNTF/1CF-EP) e-heating/0° | sample 6 | |
(1CF-EP-CNTF/1CF-EP-CNTF) e-heating/0° | sample 7 | |
12.5 g/m2 | (1CF-EP-CNTF/1CF-EP) e-heating/0° | sample 8 |
5.48 g/m2 | (1CF-EP-CNTF/1CF-EP) e-heating/0° | sample 9 |
24.8 g/m2 | (1CF-EP-CNTF/1CF-EP) e-heating/0° | sample 10 |
(1CF-EP-CNTF/1CF-EP-CNTF/1CF-EP-CNTF/1CF-EP) e-heating/0° | sample 11 | |
(1CF-EP-CNTF/1CF-EP-CNTF/1CF-EP-CNTF/1CF-EP) e-heating/30° | sample 12 | |
(1CF-EP-CNTF/1CF-EP-CNTF/1CF-EP-CNTF/1CF-EP) e-heating/45° | sample 13 | |
(1CF-EP-CNTF/1CF-EP-CNTF/1CF-EP-CNTF/1CF-EP) e-heating/60° | sample 14 | |
(1CF-EP-CNTF/1CF-EP-CNTF/1CF-EP-CNTF/1CF-EP) e-heating/90° | sample 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Zhao, Z.; Hou, H.; Xue, X. EMI Shielding Nanocomposite Laminates with High Temperature Resistance, Hydrophobicity and Anticorrosion Properties. Nanomaterials 2021, 11, 3155. https://doi.org/10.3390/nano11113155
Wu S, Zhao Z, Hou H, Xue X. EMI Shielding Nanocomposite Laminates with High Temperature Resistance, Hydrophobicity and Anticorrosion Properties. Nanomaterials. 2021; 11(11):3155. https://doi.org/10.3390/nano11113155
Chicago/Turabian StyleWu, Shaojun, Zhiyong Zhao, Hongliang Hou, and Xiang Xue. 2021. "EMI Shielding Nanocomposite Laminates with High Temperature Resistance, Hydrophobicity and Anticorrosion Properties" Nanomaterials 11, no. 11: 3155. https://doi.org/10.3390/nano11113155
APA StyleWu, S., Zhao, Z., Hou, H., & Xue, X. (2021). EMI Shielding Nanocomposite Laminates with High Temperature Resistance, Hydrophobicity and Anticorrosion Properties. Nanomaterials, 11(11), 3155. https://doi.org/10.3390/nano11113155