Carbon Nano-Fiber/PDMS Composite Used as Corrosion-Resistant Coating for Copper Anodes in Microbial Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of CNF-PDMS Composite
2.2. Coating of Cu Electrodes with CNF-PDMS Composite
2.3. Electrode Characterization
2.4. Corrosion Tests
2.5. MFCs Setup and Operation
2.6. Polarization Curve Measurement
3. Results and Discussion
3.1. Characterization of CNF-PDMS-Copper Electrodes for Different Doping Levels
3.1.1. Electrical Characterization
3.1.2. Electrochemical Properties
3.1.3. Morphological Analysis
3.2. Anticorrosion Performance of CNF-PDMS Coated Copper Electrodes
3.3. Electricity Production Performance
3.4. Stability of CNF-PDMS Coated Copper Electrodes
3.5. Economic and Technologie Considerations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Paitier, A.; Godain, A.; Lyon, D.; Haddour, N.; Vogel, T.M.; Monier, J.M. Microbial fuel cell anodic microbial population dynamics during MFC start-up. Biosens. Bioelectron. 2017, 92, 357–363. [Google Scholar] [CrossRef]
- Dharmalingam, S.; Kugarajah, V.; Sugumar, M. Membranes for Microbial Fuel Cells; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780444640529. [Google Scholar]
- Rabaey, K.; Verstraete, W. Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol. 2005, 23, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Rahimnejad, M.; Adhami, A. Microbial fuel cell as new technology for bioelectricity generation: A review. Alex. Eng. J. 2015, 54, 745–756. [Google Scholar] [CrossRef] [Green Version]
- Kracke, F.; Vassilev, I.; Krömer, J.O. Microbial electron transport and energy conservation–The foundation for optimizing bioelectrochemical systems. Front. Microbiol. 2015, 6, 575. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Jia, J.; Miao, H.; Ruan, W.; Wang, X. Performance improvement and biofouling mitigation in osmotic microbial fuel cells via in situ formation of silver nanoparticles on forward osmosis membrane. Membranes 2020, 10, 122. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, Z.; Xu, Y.; Tan, X.; Yue, Z.; Ma, K.; Wang, Y. Reduced graphene oxide@polydopamine decorated carbon cloth as an anode for a high-performance microbial fuel cell in Congo red/saline wastewater removal. Bioelectrochemistry 2021, 137, 107675. [Google Scholar] [CrossRef]
- Trapero, J.R.; Horcajada, L.; Linares, J.J.; Lobato, J. Is microbial fuel cell technology ready? An economic answer towards industrial commercialization. Appl. Energy 2017, 185, 698–707. [Google Scholar] [CrossRef]
- Li, W.W.; Yu, H.Q.; He, Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ. Sci. 2014, 7, 911–924. [Google Scholar] [CrossRef] [Green Version]
- Malvankar, N.S.; Lau, J.; Nevin, K.P.; Franks, A.E.; Tuominen, M.T.; Lovley, D.R. Electrical conductivity in a mixed-species biofilm. Appl. Environ. Microbiol. 2012, 78, 5967–5971. [Google Scholar] [CrossRef] [Green Version]
- Roy, J.N.; Babanova, S.; Garcia, K.E.; Cornejo, J.; Ista, L.K.; Atanassov, P. Catalytic biofilm formation by Shewanella oneidensis MR-1 and anode characterization by expanded uncertainty. Electrochim. Acta 2014, 126, 3–10. [Google Scholar] [CrossRef]
- Dumitru, A.; Scott, K. Anode Materials for Microbial Fuel Cells; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9781782423751. [Google Scholar]
- Wei, J.; Liang, P.; Huang, X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 2011, 102, 9335–9344. [Google Scholar] [CrossRef] [PubMed]
- Baudler, A.; Schmidt, I.; Langner, M.; Greiner, A.; Schröder, U. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ. Sci. 2015, 8, 2048–2055. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Cheng, S.; Huang, L.; Logan, B.E. Scale-up of membrane-free single-chamber microbial fuel cells. J. Power Sources 2008, 179, 274–279. [Google Scholar] [CrossRef]
- Zhu, X.; Logan, B.E. Copper anode corrosion affects power generation in microbial fuel cells. J. Chem. Technol. Biotechnol. 2014, 89, 471–474. [Google Scholar] [CrossRef]
- Mwale, S.; Munyati, M.O.; Nyirenda, J. Preparation, characterization, and optimization of a porous polyaniline-copper anode microbial fuel cell. J. Solid State Electrochem. 2021, 25, 639–650. [Google Scholar] [CrossRef]
- Slimane, A.B.; Chehimi, M.M.; Vaulay, M.J. Polypyrrole-coated poly(vinyl chloride) powder particles: Surface chemical and morphological characterisation by means of X-ray photoelectron spectroscopy and scanning electron microscopy. Colloid Polym. Sci. 2004, 282, 314–323. [Google Scholar] [CrossRef]
- Saadi, M.; Pézard, J.; Haddour, N.; Erouel, M.; Vogel, T.M.; Khirouni, K. Stainless steel coated with carbon nanofiber/PDMS composite as anodes in microbial fuel cells. Mater. Res. Express 2020, 7, 25504. [Google Scholar] [CrossRef]
- Hiltunen, J.; Liedert, C.; Hiltunen, M.; Huttunen, O.H.; Hiitola-Keinänen, J.; Aikio, S.; Harjanne, M.; Kurkinen, M.; Hakalahti, L.; Lee, L.P. Roll-to-roll fabrication of integrated PDMS-paper microfluidics for nucleic acid amplification. Lab. Chip 2018, 18, 1552–1559. [Google Scholar] [CrossRef] [Green Version]
- Chu, K.; Kim, D.; Sohn, Y.; Lee, S.; Moon, C.; Park, S. Electrical and thermal properties of carbon-nanotube composite for flexible electric heating-unit applications. IEEE Electron. Device Lett. 2013, 34, 668–670. [Google Scholar] [CrossRef]
- Niu, X.Z.; Peng, S.L.; Liu, L.Y.; Wen, W.J.; Sheng, P. Characterizing and Patterning of PDMS-Based Conducting Composites. Adv. Mater. 2007, 19, 2682–2686. [Google Scholar] [CrossRef]
- Bernabeu, P.; Caprani, A. Influence of surface charge on adsorption of fibrinogen and/or albumin on a rotating disc electrode of platinum and carbon. Biomaterials 1990, 11, 258–264. [Google Scholar] [CrossRef]
- Fradler, K.R.; Kim, J.R.; Boghani, H.C.; Dinsdale, R.M.; Guwy, A.J.; Premier, G.C. The effect of internal capacitance on power quality and energy efficiency in a tubular microbial fuel cell. Process Biochem. 2014, 49, 973–980. [Google Scholar] [CrossRef]
- Lu, Z.; Girguis, P.; Liang, P.; Shi, H.; Huang, G.; Cai, L.; Zhang, L. Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy. Bioprocess Biosyst. Eng. 2015, 38, 1325–1333. [Google Scholar] [CrossRef]
- Kubiak, W.W.; Strozik, M.M. Study of the flow dependence of microelectrode and semi-microelectrode voltammetric signals. J. Electroanal. Chem. 1996, 417, 95–103. [Google Scholar] [CrossRef]
- Peters, D.W. Corrosion and Passivation of Copper. Handb. Clean. Semicond. Manuf. Fundam. Appl. 2011, 395–428. [Google Scholar]
- Guan, Y.F.; Zhang, F.; Huang, B.C.; Yu, H.Q. Enhancing electricity generation of microbial fuel cell for wastewater treatment using nitrogen-doped carbon dots-supported carbon paper anode. J. Clean. Prod. 2019, 229, 412–419. [Google Scholar] [CrossRef]
- Feng, C.; Ma, L.; Li, F.; Mai, H.; Lang, X.; Fan, S. A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosens. Bioelectron. 2010, 25, 1516–1520. [Google Scholar] [CrossRef] [PubMed]
- Santoro, C.; Guilizzoni, M.; Correa Baena, J.P.; Pasaogullari, U.; Casalegno, A.; Li, B.; Babanova, S.; Artyushkova, K.; Atanassov, P. The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon N. Y. 2014, 67, 128–139. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Cao, W.; Sang, S.; Wu, Q.; Liu, H.; Liu, K. Conductive and high anticorrosive rGO-modified copper foil prepared by electrocoagulation and chemical reduction. Ionics 2019, 25, 2935–2944. [Google Scholar] [CrossRef]
- Katuri, K.P.; Rengaraj, S.; Kavanagh, P. Charge Transport through Geobacter sulfurreducens Biofilms Grown on Graphite Rods. Langmuir 2012, 78, 7904–7913. [Google Scholar] [CrossRef]
- Pinto, D.; Coradin, T.; Laberty-robert, C. Bioelectrochemistry Effect of anode polarization on bio fi lm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells. Bioelectrochemistry 2018, 120, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, X.; Sun, J.; Meng, Y. Experimental insight into the chemical corrosion mechanism of copper with an oil-in-water emulsion solution. RSC Adv. 2018, 8, 9833–9840. [Google Scholar] [CrossRef] [Green Version]
CNF/PDMS Ratio (wt%) | Interfacial Capacitance (µF cm−2) | Electroactive Surface/Geometrical Area (%) |
---|---|---|
2 | 10 ± 6 | 50 ± 30 |
4 | 25 ± 17 | 125 ± 85 |
6 | 52 ± 20 | 260 ± 100 |
8 | 159 ± 21 | 795 ± 105 |
Anode Materials | Maximum Power Density (mW m−2) | References | Unite Price (EUR.m−2) | Price Per Watt (EUR k W−1) |
---|---|---|---|---|
Carbon felt | 100 | [30] | 300 a | 3 |
Carbon paper | 104 | [29] | 1700 b | 16.3 |
Carbon clothe | 50 | [28] | 500 b | 10 |
Stainless Steel (SS) plate | 4 | [19] | 300 c | 75 |
CNF-PDMS-SS plate | 19 | [19] | 550 d,e | 20 |
Cu foil | 8 | This work | 80 c | 10 |
CNF-PDMS-Cu foil | 70 | This work | 230 c,d,e | 3.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bensalah, F.; Pézard, J.; Haddour, N.; Erouel, M.; Buret, F.; Khirouni, K. Carbon Nano-Fiber/PDMS Composite Used as Corrosion-Resistant Coating for Copper Anodes in Microbial Fuel Cells. Nanomaterials 2021, 11, 3144. https://doi.org/10.3390/nano11113144
Bensalah F, Pézard J, Haddour N, Erouel M, Buret F, Khirouni K. Carbon Nano-Fiber/PDMS Composite Used as Corrosion-Resistant Coating for Copper Anodes in Microbial Fuel Cells. Nanomaterials. 2021; 11(11):3144. https://doi.org/10.3390/nano11113144
Chicago/Turabian StyleBensalah, Fatma, Julien Pézard, Naoufel Haddour, Mohsen Erouel, François Buret, and Kamel Khirouni. 2021. "Carbon Nano-Fiber/PDMS Composite Used as Corrosion-Resistant Coating for Copper Anodes in Microbial Fuel Cells" Nanomaterials 11, no. 11: 3144. https://doi.org/10.3390/nano11113144
APA StyleBensalah, F., Pézard, J., Haddour, N., Erouel, M., Buret, F., & Khirouni, K. (2021). Carbon Nano-Fiber/PDMS Composite Used as Corrosion-Resistant Coating for Copper Anodes in Microbial Fuel Cells. Nanomaterials, 11(11), 3144. https://doi.org/10.3390/nano11113144