One-Step Synthesis of SnO2/Carbon Nanotube Nanonests Composites by Direct Current Arc-Discharge Plasma and Its Application in Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of SnO2/CNTs NNs Composites
2.2. Material Characterizations
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Microstructure and Morphology of SnO2/CNT NNs Composites
3.2. Electrochemical Performance of SnO2/CNT NNs as Anode Materials in LIBs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kang, K.; Meng, Y.S.; Bréger, J.; Grey, C.P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Zai, J.T.; Wang, K.X.; Su, Y.Z.; Qian, X.F.; Chen, J.S. High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. J. Power Sources 2011, 196, 3650–3654. [Google Scholar] [CrossRef]
- Wu, H.B.; Chen, J.S.; Hng, H.H.; Lou, X.W.D. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 2012, 4, 2526–2542. [Google Scholar] [CrossRef]
- Liu, C.J.; Huang, H.; Cao, G.Z.; Xue, F.H.; Camacho, R.A.P.; Dong, X.L. Enhanced electrochemical stability of Sn-carbon nanotube nanocapsules as lithium-ion battery anode. Electrochim. Acta 2014, 144, 376–382. [Google Scholar] [CrossRef]
- Deng, W.N.; Chen, X.H.; Liu, Z.; Hu, A.P.; Tang, Q.L.; Li, Z.; Xiong, Y.N. Three-dimensional structure-based tin disulfide/vertically aligned carbon nanotube arrays composites as high-performance anode materials for lithium ion batteries. J. Power Sources 2015, 277, 131–138. [Google Scholar] [CrossRef]
- Xu, Y.H.; Liu, Q.; Zhu, Y.J.; Liu, Y.H.; Langrock, A.; Zachariah, M.R.; Wang, C.S. Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 2013, 13, 470–474. [Google Scholar] [CrossRef]
- Zhen, S.; Yi, H.; Chen, Y.; Zhang, X.; Wang, K.; Chen, R. Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries. J. Power Sources 2015, 278, 660–667. [Google Scholar]
- Zhang, W.J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196, 13–24. [Google Scholar] [CrossRef]
- Ashuri, M.; He, Q.R.; Shaw, L. Silicon as a potential anode material for Li-ionbatteries: Where size, geometry and structure matter. Nanoscale 2016, 8, 74–103. [Google Scholar] [CrossRef]
- Shaw, L.; Ashuri, M. Coating—A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries. Adv. Mater. Lett. 2019, 10, 369–380. [Google Scholar] [CrossRef]
- Li, Y.; Yu, S.L.; Yuan, T.Z.; Yan, M.; Jiang, Y.Z. Rational design of metal oxide nanocomposite anodes for advanced lithium ion batteries. J. Power Sources 2015, 282, 1–8. [Google Scholar] [CrossRef]
- Liang, C.; Gao, M.X.; Pan, H.G.; Liu, Y.F.; Yan, M. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. J. Alloys Compd. 2013, 575, 246–256. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Z.; Cui, Y.; Niu, X.Y.; Chen, M.; Liang, P.; Liu, J.H.; Liu, R.J.; Li, J.C.; He, X. Dealloying-derived nanoporous Cu6Sn5 alloy as stable anode materials for lithium-ion batteries. Materials 2021, 14, 4348. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.B.; Li, J.; Yuan, X.M.; Li, Z.L.; Wei, X.; Wan, Y. Tin-based alloy anode materials for lithium ion batteries. Prog. Chem. 2012, 24, 1466–1476. [Google Scholar]
- Jhan, Y.R.; Duh, J.G.; Tsai, S.Y. Synthesis of confinement structure of Sn/C-C (MWCNTs) composite anode materials for lithium ion battery by carbothermal reduction. Diamond Relat. Mater. 2021, 20, 413–417. [Google Scholar] [CrossRef]
- Luo, Z.Y.; Peng, M.L.; Lei, W.X.; Pan, Y.; Zou, Y.L.; Ma, Z.S. Electroplating synthesis and electrochemical properties of CNTs/(Ni-P)/Sn as anodes for lithium-ion batteries. Mater. Lett. 2019, 250, 1–4. [Google Scholar] [CrossRef]
- Huang, L.; Huang, P.; Chen, P.; Ding, Y.L. Metal nanodots anchored on carbon nanotubes prepared by a facile solid-state redox strategy for superior lithium storage. Funct. Mater. Lett. 2020, 13, 2051039. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, X.F.; Zhang, Y.; Li, R.Y.; Cai, M.; Sun, X.L. Nanostructued core–shell Sn nanowires @ CNTs with controllable thickness of CNT shells for lithium ion battery. Appl. Surf. Sci. 2015, 332, 192–197. [Google Scholar] [CrossRef]
- Liu, H.D.; Huang, J.M.; Li, X.L.; Liu, J.; Zhang, Y.X. SnO2 nanorods grown on graphite as a high-capacity anode material for lithium ion batteries. Ceram. Int. 2012, 38, 5145–5149. [Google Scholar] [CrossRef]
- Wang, F.; Song, X.P.; Yao, G.; Zhao, M.S.; Liu, R.; Xu, M.W.; Sun, Z.B. Carbon-coated mesoporous SnO2 nanospheres as anode material for lithium ion batteries. Scripta Mater. 2012, 66, 562–565. [Google Scholar] [CrossRef]
- Kuriganova, A.B.; Vlaic, C.A.; Ivanov, S.; Leontyeva, D.V.; Bund, A.; Smirnova, N.V. Electrochemical dispersion method for the synthesis of SnO2 as anode material for lithium ion batteries. J. Appl. Electrochem. 2016, 46, 527–538. [Google Scholar] [CrossRef]
- Chen, T.Q.; Pan, L.K.; Liu, X.J.; Yu, K.; Sun, Z. One-step synthesis of SnO2–reduced graphene oxide–carbon nanotube composites via microwave assistance for lithium ion batteries. RSC Adv. 2012, 2, 11719–11724. [Google Scholar] [CrossRef]
- Sadakiyo, M.; Yoshimaru, S.; Kasai, H.; Kato, K.; Takata, M.; Yamauchi, M. A new approach for the facile preparation of metal-organic framework composites directly contacting with metal nanoparticles through arc plasma deposition. Chem. Commun. 2016, 52, 8385–8388. [Google Scholar] [CrossRef]
- Santhosh, N.; Filipič, G.; Tatarova, E.; Baranov, O.; Kondo, H.; Sekine, M.; Hori, M.; Ostrikov, K.; Cvelbar, U. Oriented carbon nanostructures by plasma processing: Recent advances and future challenges. Micromachines 2018, 9, 565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, M.; Kageyama, T.; Sone, H.; Yoshida, S.; Okamoto, D.; Watanabe, T. Synthesis of lithium metal oxide nanoparticles by induction thermal plasmas. Nanomaterials 2016, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Košiček, M.; Fu, J.C.; Qu, Y.Z.; Lin, G.H.; Baranov, O.; Zavašnik, J.; Cheng, Q.J.; Ostrikov, K.; Cvelbar, U. Single-crystalline metal oxide nanostructures synthesized by plasma-enhanced thermal oxidation. Nanomaterials 2019, 9, 1405. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Chen, J.Z. Atmospheric-pressure-plasma-jet sintered nanoporous SnO2. Ceram. Int. 2015, 41, 5478–5483. [Google Scholar] [CrossRef]
- Li, S.L.; He, Y.; Jing, C.G.; Gong, X.B.; Cui, L.L.; Cheng, Z.Y.; Zhang, C.Q.; Nan, F. A novel preparation and formation mechanism of carbon nanotubes aerogel. Carbon Lett. 2018, 28, 16–23. [Google Scholar]
- Li, S.L.; Zhang, C.Q.; He, Y.; Feng, M.; Ma, C.; Cui, Y. Multi-interpolation mixing effects under the action of micro-scale free arc. J. Mater. Process. Tech. 2019, 271, 645–650. [Google Scholar] [CrossRef]
- Li, S.L.; Wang, K.; Feng, M.; Yang, H.L.; Liu, X.Y.; He, Y.; Zhang, C.Q.; Wang, J.Y.; Fu, J.F. Preparation of light-transmissive conductive film by free arc dispersed carbon nanotubes and thermos compression bonding. Carbon Lett. 2020, 30, 651–656. [Google Scholar] [CrossRef]
- Li, S.L.; Ci, Y.D.; Zhang, D.; Zhang, C.Q.; He, Y. Free arc liquid-phase dispersion method for the preparation of carbon nanotube dispersion. Carbon Lett. 2020, 31, 287–295. [Google Scholar] [CrossRef]
- Wang, X.; Fan, H.; Ren, P.; Li, M. Homogeneous SnO2 core-shell microspheres: Microwave-assisted hydrothermal synthesis, morphology control and photocatalytic properties. Mater. Res. Bull. 2014, 50, 191–196. [Google Scholar] [CrossRef]
- Mouyane, M.; Ruiz, J.M.; Artus, M.; Cassaignon, S.; Jolivet, J.P.; Caillon, G.; Jordy, C.; Driesen, K.; Scoyer, J.; Stievano, L.; et al. Carbothermal synthesis of Sn-based composites as negative electrode for lithium-ion batteries. J. Power Sources 2011, 196, 6863–6869. [Google Scholar] [CrossRef]
- Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R. Microwave plasma chemical vapor deposition of nano-structured Sn/C composite thin-film anodes for Li-ion batteries. J. Power Sources. 2007, 173, 965–971. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.G.; Nam, S.H.; Lee, S.H.; Choi, S.M.; Kim, W.B. SnO2 nanorod-planted graphite: An effective nanostructure configuration for reversible lithium ion storage. Acs Appl. Mater. Int. 2011, 3, 828–835. [Google Scholar] [CrossRef]
- Lian, P.C.; Zhu, X.F.; Liang, S.Z.; Li, Z.; Yang, W.S.; Wang, H.H. High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim. Acta. 2011, 56, 4532–4539. [Google Scholar] [CrossRef]
- Yao, J.; Shen, X.; Wang, B.; Liu, H.; Wang, G. In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1849–1852. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Tang, Y.; Zhang, C.; Dong, Q.; Song, W.; He, Y. One-Step Synthesis of SnO2/Carbon Nanotube Nanonests Composites by Direct Current Arc-Discharge Plasma and Its Application in Lithium-Ion Batteries. Nanomaterials 2021, 11, 3138. https://doi.org/10.3390/nano11113138
Zhang D, Tang Y, Zhang C, Dong Q, Song W, He Y. One-Step Synthesis of SnO2/Carbon Nanotube Nanonests Composites by Direct Current Arc-Discharge Plasma and Its Application in Lithium-Ion Batteries. Nanomaterials. 2021; 11(11):3138. https://doi.org/10.3390/nano11113138
Chicago/Turabian StyleZhang, Da, Yuanzheng Tang, Chuanqi Zhang, Qianpeng Dong, Wenming Song, and Yan He. 2021. "One-Step Synthesis of SnO2/Carbon Nanotube Nanonests Composites by Direct Current Arc-Discharge Plasma and Its Application in Lithium-Ion Batteries" Nanomaterials 11, no. 11: 3138. https://doi.org/10.3390/nano11113138
APA StyleZhang, D., Tang, Y., Zhang, C., Dong, Q., Song, W., & He, Y. (2021). One-Step Synthesis of SnO2/Carbon Nanotube Nanonests Composites by Direct Current Arc-Discharge Plasma and Its Application in Lithium-Ion Batteries. Nanomaterials, 11(11), 3138. https://doi.org/10.3390/nano11113138