Structural and Optical Properties of Silicon Carbide Powders Synthesized from Organosilane Using High-Temperature High-Pressure Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Transformations in C-H-Si System
3.2. Optical Properties
3.2.1. Raman Spectra and IR Transmission
3.2.2. Low-Temperature Photoluminescence
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anggara, B.S.; Fahdiran, R.; Marpaung, M.A.; Soegijono, B. Silicon Carbide (SiC) Effect on Mechanical Properties and Corrosion Rates on Composite Al/SiC and Al-Cu/SiC; American Institute of Physics Inc.: College Park, MD, USA, 2019. [Google Scholar] [CrossRef]
- Davidsson, J.; Ivády, V.; Armiento, R.; Ohshima, T.; Son, N.T.; Gali, A.; Abrikosov, I.A. Erratum: Identification of divacancy and silicon vacancy qubits in 6H-SiC. Appl. Phys. Lett. 2020, 116, 059901. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Kovos, B.; Onizhuk, M.; Awschalom, D.; Gal, G.L. Theoretical and experimental study of the nitrogen-vacancy center in 4H-SiC. Phys. Rev. Mater. 2021, 5, 074602. [Google Scholar] [CrossRef]
- Su, J.; Yang, Y.; Ren, J.; Guo, P. Study on magnetic properties of Fe-doped 3C-SiC nanowires. J. Cryst. Growth 2020, 532, 125412. [Google Scholar] [CrossRef]
- Yu, Y.; Liyan, L.; Guifu, D.; Ting, C. SiC nanowire-based SU-8 with enhanced mechanical properties for MEMS structural layer design. Nanotechnol. Precis. Eng. 2019, 2, 169–176. [Google Scholar] [CrossRef]
- Mi, Y.; Chen, Y.; Zheng, Z.; Qiao, N.; Liang, Y. New discoveries in the growth of SiC whiskers derived from hydrogen silicone oil. J. Cryst. Growth 2020, 543, 125711. [Google Scholar] [CrossRef]
- Károly, Z.; Mohai, I.; Klébert, S.; Keszler, A.; Sajó, I.E.; Szépvölgyi, J. Synthesis of SiC powder by RF plasma technique. Powder Technol. 2011, 214, 300–305. [Google Scholar] [CrossRef]
- Wu, R.; Zhou, K.; Yue, C.Y.; Wei, J.; Pan, Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 2015, 72, 1–60. [Google Scholar] [CrossRef]
- Dai, D.; Zhang, N.; Zhang, W.; Fan, J. Highly bright tunable blue-violet photoluminescence in SiC nanocrystal-sodium dodecyl sulfonate crosslinked network. Nanoscale 2012, 4, 3044–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, O.; Wang, B.; Brown, C.L.; Tiralongo, J.; Iacopi, F. Toward Label-Free Biosensing with Silicon Carbide: A Review. IEEE Access 2016, 4, 477–497. [Google Scholar] [CrossRef]
- Wright, N.G.; Horsfall, A.B. SiC sensors: A review. J. Phys. D Appl. Phys. 2007, 40, 6345–6354. [Google Scholar] [CrossRef]
- Chaira, D.; Mishra, B.K.; Sangal, S. Synthesis and characterization of silicon carbide by reaction milling in a dual-drive planetary mill. Mater. Sci. Eng. A 2007, 460–461, 111–120. [Google Scholar] [CrossRef]
- Real, C.; Alcala, D.; Criado, J.M. Synthesis of silicon carbide whiskers from carbothermal reduction of silica gel by means of the constant rate thermal analysis (CRTA) method. Solid State Ion. 1997, 95, 29–32. [Google Scholar] [CrossRef]
- Pan, S.; Zhang, J.; Yang, Y.; Song, G. Effect of process parameters on the production of nanocrystalline silicon carbide from water glass. Ceram. Int. 2008, 34, 391–395. [Google Scholar] [CrossRef]
- Narciso-Romero, F.J.; Rodrıguez-Reinoso, F.; Dıez, M.A. Influence of the carbon material on the synthesis of silicon carbide. Carbon 1999, 37, 1771–1778. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, Z.M.; Li, J.T. Synthesis of SiC by silicon and carbon combustion in air. J. Eur. Ceram. Soc. 2009, 29, 175–180. [Google Scholar] [CrossRef]
- Ebadzadeh, T.; Marzban-Rad, E. Microwave hybrid synthesis of silicon carbide nanopowders. Mater. Charact. 2009, 60, 69–72. [Google Scholar] [CrossRef]
- Narisawa, M.; Shimoda, M.; Okamura, K.; Sugimoto, M. Reaction Mechanism of the Pyrolysis of Polycarbosilane and Polysilazane as Ceramic Precursors. Bull. Chem. Soc. Jpn. 1995, 68, 1098–1104. [Google Scholar] [CrossRef]
- Čerović, L.; Milonjić, S.K.; Zec, S.P. A comparison of sol-gel derived silicon carbide powders from saccharose and activated carbon. Ceram. Int. 1995, 21, 271–276. [Google Scholar] [CrossRef]
- Cao, L.Z.; Jiang, H.; Song, H.; Liu, X.; Guo, W.G.; Yu, S.Z.; Li, Z.M.; Miao, G.Q. SiC/SiO2 core–shell nanowires with different shapes: Synthesis and field emission properties. Solid State Commun. 2010, 150, 794–798. [Google Scholar] [CrossRef]
- Schaaf, P.; Kahle, M.; Carpene, E. Reactive laser synthesis of carbides and nitrides. Appl. Surf. Sci. 2005, 247, 607–615. [Google Scholar] [CrossRef]
- Rai, P.; Park, J.S.; Park, G.G.; Lee, W.M.; Yu, Y.T.; Kang, S.K.; Moon, S.Y.; Hong, B.G. Influence of carbon precursors on thermal plasma assisted synthesis of SiC nanoparticles. Adv. Powder Technol. 2014, 25, 640–646. [Google Scholar] [CrossRef]
- Sasaki, Y.; Nishina, Y.; Sato, M.; Okamura, K. Raman study of SiC fibres made from polycarbosilane. J. Mater. Sci. 1987, 22, 443–448. [Google Scholar] [CrossRef]
- Ko, S.M.; Koo, S.M.; Cho, W.S.; Hwnag, K.T.; Kim, J.H. Synthesis of SiC nano-powder from organic precursors using RF inductively coupled thermal plasma. Ceram. Int. 2012, 38, 1959–1963. [Google Scholar] [CrossRef]
- Voronin, G.A.; Pantea, C.; Zerda, T.W.; Ejsmont, K. Oriented growth of β-SiC on diamond crystals at high pressure. J. Appl. Phys. 2001, 90, 5933–5935. [Google Scholar] [CrossRef]
- Ekimov, E.A.; Sadykov, R.A.; Gierlotka, S. A High-Pressure Cell for High-Temperature Experiments in a Toroid-Type Chamber. Instrum. Exp. Tech. 2004, 47, 276–278. [Google Scholar] [CrossRef]
- Zhong, Y.; Malagari, S.D.; Hamilton, T.; Wasserman, D.; Malagari, D. Review of Mid-Infrared Plasmonic Materials. 2015. Available online: http://nanophotonics.spiedigitallibrary.org/ (accessed on 5 November 2015).
- Bohren, C.F.; Wickramasinghe, N.C. On the Computation of Optical Properties of Heterogeneous Grains. Astrophys. Space Sci. 1977, 50, 461–472. [Google Scholar] [CrossRef]
- Sasaki, Y.; Nishina, Y.; Sato, M.; Qkamura, K. Optical-phonon states of SiC small particles studied by Raman scattering and infrared absorption. Phys. Rev. B 1989, 40, 1762. [Google Scholar] [CrossRef]
- Feng, K.; Streyer, W.; Islam, S.M.; Verma, J.; Jena, D.; Wasserman, D.; Hoffman, A.J. Localized surface phonon polariton resonances in polar gallium nitride. Appl. Phys. Lett. 2015, 107, 081108. [Google Scholar] [CrossRef] [Green Version]
- Krivobok, V.S.; Kondorskiy, A.D.; Pashkeev, D.A.; Ekimov, E.A.; Shabrin, A.D.; Litvinov, D.A.; Grigoreva, L.N.; Kolosov, S.A.; Chernopitsskii, M.A.; Klekovkin, A.V.; et al. A Hybrid Mid-IR Photodetector Based on Semiconductor Quantum Wells. Tech. Phys. Lett. 2021, 47, 402–405. [Google Scholar] [CrossRef]
- Yang, B.; Wu, T.; Yang, Y.; Zhang, X. Effects of charges on the localized surface phonon polaritons in dielectric nanoparticles. J. Opt. Soc. Am. B 2017, 34, 1303. [Google Scholar] [CrossRef]
- Kondrina, K.M.; Kudryavtsev, O.S.; Vlasov, I.I.; Khmelnitskiy, R.A.; Ekimov, E.A. High-pressure synthesis of microdiamonds from polyethylene terephthalate. Diam. Relat. Mater. 2018, 83, 190–195. [Google Scholar] [CrossRef]
- Leite, E.R.; Ribeiro, C. Crystallization and Growth of Colloidal Nanocrystals; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Ekimov, E.A.; Kondrin, M.V.; Krivobok, V.S.; Khomich, A.A.; Vlasov, I.I.; Khmelnitskiy, R.A.; Iwasaki, T.; Hatano, M. Effect of Si, Ge and Sn dopant elements on structure and photoluminescence of nano- and microdiamonds synthesized from organic compounds. Diam. Relat. Mater. 2019, 93, 75–83. [Google Scholar] [CrossRef]
- Gubicza, J.; Nauyoks, S.; Balogh, L.; Labar, J.; Zerda, T.W.; Ungár, T. Influence of sintering temperature and pressure on crystallite size and lattice defect structure in nanocrystalline SiC. J. Mater. Res. 2007, 22, 1314–1321. [Google Scholar] [CrossRef] [Green Version]
- Hofmeister, A.M.; Pitman, K.M.; Goncharov, A.F.; Speck, A.K. Optical constants of silicon carbide for astrophysical applications. II. Extending optical functions from infrared to ultraviolet using single-crystal absorption spectra. Astrophys. J. 2009, 696, 1502–1516. [Google Scholar] [CrossRef] [Green Version]
- Aksyanov, I.G.; Kompan, M.E.; Kul’kova, I.V. Raman scattering in mosaic silicon carbide films. Phys. Solid State 2010, 52, 1850–1854. [Google Scholar] [CrossRef]
- Yugami, H.; Nakashima, S.; Mitsuishi, A.; Uemoto, A.; Shigeta, M.; Furukawa, K.; Suzuki, A.; Nakajima, S. Characterization of the free-carrier concentrations in doped β-SiC crystals by Raman scattering. J. Appl. Phys. 1987, 61, 354–358. [Google Scholar] [CrossRef]
- Rohmfeld, S.; Hundhausen, M.; Ley, L. Raman scattering in polycrystalline 3C-SiC: Influence of stacking faults. Physical Review B 1998, 58, 9858. [Google Scholar] [CrossRef]
- Ekimov, E.A.; Lyapin, S.G.; Grigoriev, Y.v.; Zibrov, I.P.; Kondrina, K.M. Size-controllable synthesis of ultrasmall diamonds from halogenated adamantanes at high static pressure. Carbon 2019, 150, 436–438. [Google Scholar] [CrossRef]
- Xu, Z.; He, Z.; Song, Y.; Fu, X.; Rommel, M.; Luo, X.; Hartmaier, A.; Zhang, J.; Fang, F. Topic review: Application of raman spectroscopy characterization in micro/nano-machining. Micromachines 2018, 9, 361. [Google Scholar] [CrossRef] [Green Version]
- Ekimov, E.A.; Sherin, P.S.; Krivobok, V.S.; Lyapin, S.G.; Gavva, V.A.; Kondrin, M.V. Photoluminescence excitation study of split-vacancy centers in diamond. Phys. Rev. B 2018, 97, 045206. [Google Scholar] [CrossRef]
- Kuwabara, H.; Yamada, S. Free-to-Bound Transition in beta-SiC Doped with Boron. Phys. Stat. Sol. 1975, 30, 739. [Google Scholar] [CrossRef]
- Bishop, S.G.; Freitas, J.A. Photoluminescence characterization of cubic SiC grown by chemical vapor deposition on Si substrates. J. Cryst. Growth 1990, 106, 38–46. [Google Scholar] [CrossRef]
- Borowicz, P.; Gutt, T.; Małachowski, T.; Łatek, M. Structural investigation of silicon carbide with micro-raman spectroscopy. In Proceedings of the 2009 MIXDES-16th International Conference Mixed Design of Integrated Circuits & Systems, Lodz, Poland, 25–27 June 2009. [Google Scholar]
- Bai, S.; Ke, Y.; Shishkin, Y.; Shigiltchoff, O.; Devaty, R.P.; Choyke, W.J.; Strauch, D.; Stojetz, B.; Dorner, B.; Hobgood, D.; et al. Four current examples of characterization of silicon carbide. Mater. Res. Soc. Symp.-Proc. 2002, 742, 151–162. [Google Scholar] [CrossRef]
T, C | a, Å (Rietveld Method) | Size (Scherrer Formula), nm | Measured, nm |
---|---|---|---|
2000 | 4.357 | 200 | 100–500 |
1600 | 4.359 | 200 | 100–500 |
1400 | 4.359 | 150 | 100–500 |
1250 | 4.361 | 22 | 20–50 |
1100 | 4.367 | 5 | <10 |
900 | 4.390 | 2 | |
800 | 4.397 | 1.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekimov, E.A.; Krivobok, V.S.; Kondrin, M.V.; Litvinov, D.A.; Grigoreva, L.N.; Koroleva, A.V.; Zazymkina, D.A.; Khmelnitskii, R.A.; Aminev, D.F.; Nikolaev, S.N. Structural and Optical Properties of Silicon Carbide Powders Synthesized from Organosilane Using High-Temperature High-Pressure Method. Nanomaterials 2021, 11, 3111. https://doi.org/10.3390/nano11113111
Ekimov EA, Krivobok VS, Kondrin MV, Litvinov DA, Grigoreva LN, Koroleva AV, Zazymkina DA, Khmelnitskii RA, Aminev DF, Nikolaev SN. Structural and Optical Properties of Silicon Carbide Powders Synthesized from Organosilane Using High-Temperature High-Pressure Method. Nanomaterials. 2021; 11(11):3111. https://doi.org/10.3390/nano11113111
Chicago/Turabian StyleEkimov, Evgeny A., Vladimir S. Krivobok, Mikhail V. Kondrin, Dmitry A. Litvinov, Ludmila N. Grigoreva, Aleksandra V. Koroleva, Darya A. Zazymkina, Roman A. Khmelnitskii, Denis F. Aminev, and Sergey N. Nikolaev. 2021. "Structural and Optical Properties of Silicon Carbide Powders Synthesized from Organosilane Using High-Temperature High-Pressure Method" Nanomaterials 11, no. 11: 3111. https://doi.org/10.3390/nano11113111
APA StyleEkimov, E. A., Krivobok, V. S., Kondrin, M. V., Litvinov, D. A., Grigoreva, L. N., Koroleva, A. V., Zazymkina, D. A., Khmelnitskii, R. A., Aminev, D. F., & Nikolaev, S. N. (2021). Structural and Optical Properties of Silicon Carbide Powders Synthesized from Organosilane Using High-Temperature High-Pressure Method. Nanomaterials, 11(11), 3111. https://doi.org/10.3390/nano11113111