Synergistic Adsorption-Catalytic Sites TiN/Ta2O5 with Multidimensional Carbon Structure to Enable High-Performance Li-S Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of TiN@C/S/Ta2O5 Composite
2.2. Material Characterization Techniques
2.3. Polysulfides Adsorption Experiment
2.4. Assembly of the Symmetric Cell
2.5. Electrochemical Measurement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Peng, H.J.; Huang, J.Q.; Cheng, X.B.; Zhang, Q. Review on High-Loading and High-Energy Lithium–Sulfur Batteries. Adv. Energy Mater. 2017, 7, 1700260. [Google Scholar] [CrossRef]
- Han, P.; Chung, S.H.; Manthiram, A. Recent Advances in Lithium Sulfide Cathode Materials and Their Use in Lithium Sulfur Batteries. Energy Storage Mater. 2019, 17, 317–324. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Zhou, G.; Lv, W.; Ling, G.; Zhi, L.; Yang, Q.H. Catalytic Effects in Lithium-Sulfur Batteries: Promoted Sulfur Transformation and Reduced Shuttle Effect. Adv. Sci. 2018, 5, 1700270. [Google Scholar] [CrossRef]
- Xu, Z.L.; Lin, S.; Onofrio, N.; Zhou, L.; Shi, F.; Lu, W.; Kang, K.; Zhang, Q.; Lau, S.P. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 2018, 9, 4164. [Google Scholar] [CrossRef] [PubMed]
- Tsao, Y.; Lee, M.; Miller, E.C.; Gao, G.; Park, J.; Chen, S.; Katsumata, T.; Tran, H.; Wang, L.-W.; Toney, M.F. Designing a Quinone-Based Redox Mediator to Facilitate Li2S Oxidation in Li-S Batteries. Joule 2019, 3, 872. [Google Scholar] [CrossRef] [Green Version]
- Pang, Q.; Kundu, D.P.; Cuisinier, M.; Nazar, L.F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 2014, 5, 4759. [Google Scholar] [CrossRef]
- Chao, D.; Zhu, C.; Yang, P.; Xia, X.; Liu, J.; Wang, J.; Fan, X.; Savilov, S.V.; Lin, J.; Fan, H.J.; et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.H.; Zhang, J.Q.; Yin, L.C.; Hu, G.J.; Fang, R.P.; Cheng, H.M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627. [Google Scholar] [CrossRef]
- Chen, X.X.; Ding, X.Y.; Wang, C.S.; Feng, Z.Y.; Xu, L.Q.; Gao, X.; Zhai, Y.J.; Wang, D.B. A multi-shelled CoP nanosphere modified separator for highly efficient Li-S batteries. Nanoscale 2018, 10, 13694–13701. [Google Scholar] [CrossRef]
- Xie, J.; Li, B.Q.; Peng, H.J.; Song, Y.W.; Zhao, M.; Chen, X.; Zhang, Q.; Huang, J.Q. Implanting Atomic Cobalt within Mesoporous Carbon toward Highly Stable Lithium-Sulfur Batteries. Adv. Mater. 2019, 31, 1903813. [Google Scholar] [CrossRef]
- Zhou, T.H.; Lv, W.; Li, J.; Zhou, G.M.; Zhao, Y.; Fan, S.X.; Liu, B.L.; Li, B.H.; Kang, F.Y.; Yang, Q.H. Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ. Sci. 2017, 10, 16941703. [Google Scholar] [CrossRef]
- Hao, Z.X.; Yuan, L.X.; Chen, C.J.; Xiang, J.W.; Li, Y.Y.; Huang, Z.M.; Hu, P.; Huang, Y.H. TiN as a simple and efficient polysulfide immobilizer for lithium–sulfur batteries. J. Mater. Chem. A 2016, 4, 17711–17717. [Google Scholar] [CrossRef]
- Cui, Z.M.; Zu, C.X.; Zhou, W.D.; Manthiram, A.; Goodenough, J.B. Mesoporous Titanium Nitride-Enabled Highly Stable Lithium-Sulfur Batteries. Adv. Mater. 2016, 28, 6926–6931. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Li, G.; Sy, S.; Chen, Z. Recessed deposition of TiN into N-doped carbon as a cathode host for superior Li-S batteries performance. Nano Energy 2018, 54, 1–9. [Google Scholar] [CrossRef]
- Choi, J.; Jeong, T.G.; Lee, D.; Oh, S.H.; Jung, Y.; Kim, Y.T. Enhanced rate capability due to highly active Ta2O5 catalysts for lithium sulfur batteries. J. Power Sources 2019, 435, 226707. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, D.; Li, G.; Gao, R.; Li, M.; Li, S.; Zhao, L.; Dou, H.; Wen, G.; Sy, S.; et al. Tantalum-Based Electrocatalyst for Polysulfide Catalysis and Retention for High-Performance Lithium-Sulfur Batteries. Matter 2020, 3, 920. [Google Scholar] [CrossRef]
- Peng, H.J.; Huang, J.Q.; Zhao, M.Q.; Zhao, M.Q.; Zhang, Q.; Cheng, X.B.; Liu, X.Y.; Qian, W.Z.; Wei, F. Nanoarchitectured Graphene/CNT@Porous Carbon with Extraordinary Electrical Conductivity and Interconnected Micro/Mesopores for Lithium-Sulfur Batteries. Adv. Funct. Mater. 2014, 24, 2772–2781. [Google Scholar] [CrossRef]
- Xue, W.J.; Shi, Z.; Suo, L.M.; Wang, C.; Wang, Z.Q.; Wang, H.Z.; So, K.P.; Maurano, A.; Yu, D.W.; Chen, Y.M.; et al. Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 2019, 4, 374–382. [Google Scholar] [CrossRef]
- Li, Z.Q.; Xu, J.; Wang, J.; Niu, D.F.; Hu, S.Z.; Zhang, X.S. Well-dispersed Amorphous Ta2O5 Chemically Grafted onto Multi-Walled Carbon Nanotubes for High-performance Lithium Sulfur Battery. Int. J. Electrochem. Sci. 2019, 14, 6628–6642. [Google Scholar] [CrossRef]
- Lim, W.G.; Jo, C.; Cho, A.; Hwang, J.; Kim, S.; Han, J.W.; Lee, J. Approaching Ultrastable High-Rate Li-S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation. Adv. Mater. 2019, 31, 1806547. [Google Scholar] [CrossRef]
- Shi, H.; Ren, X.; Lu, J.; Dong, C.; Liu, J.; Yang, Q.; Chen, J.; Wu, Z.-S. Dual-Functional Atomic Zinc Decorated Hollow Carbon Nanoreactors for Kinetically Accelerated Polysulfides Conversion and Dendrite Free Lithium Sulfur Batteries. Adv. Energy Mater. 2020, 10, 2002271. [Google Scholar] [CrossRef]
- Shen, Z.; Cao, M.; Zhang, Z.; Pu, J.; Zhong, C.; Li, J.; Ma, H.; Li, F.; Zhu, J.; Pan, F.; et al. Efficient Ni2Co4P3 Nanowires Catalysts Enhance Ultrahigh-Loading Lithium–Sulfur Conversion in a Microreactor-Like Battery. Adv. Funct. Mater. 2020, 30, 1906661. [Google Scholar] [CrossRef]
- Chen, Y.; Choi, S.; Su, D.; Gao, X.; Wang, G. Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries. Nano Energy 2018, 47, 331. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Guan, B.; Wang, D.; Liu, L.M.; Lou, X.W. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries. Nat. Commun. 2016, 7, 13065. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Huang, J.Y.; Lu, J.G.; Lu, B.; Ye, Z. Fabricating efficient polysulfide barrier via ultrathin tantalum pentoxide grown on separator for lithium–sulfur batteries. J. Electroanal. Chem. 2019, 854, 113539. [Google Scholar] [CrossRef]
- Su, D.; Cortie, M.; Fan, H.; Wang, G. Prussian Blue Nanocubes with an Open Framework Structure Coated with PEDOT as High-Capacity Cathodes for Lithium–Sulfur Batteries. Adv. Mater. 2017, 29, 1700587. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Su, D.; Zhang, W.; Guo, X.; Wang, G. 3D Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithium-Sulfur Batteries. Adv. Funct. Mater. 2016, 26, 8746–8756. [Google Scholar] [CrossRef]
- Sun, Q.; Xi, B.; Li, J.-Y.; Mao, H.; Ma, X.; Liang, J.; Feng, J.; Xiong, S. Nitrogen-Doped Graphene-Supported Mixed Transition-Metal Oxide Porous Particles to Confine Polysulfides for Lithium–Sulfur Batteries. Adv. Energy Mater. 2018, 8, 1800595. [Google Scholar] [CrossRef]
- Luo, L.; Li, J.; Asl, H.Y.; Manthiram, A. In-Situ Assembled VS4 as a Polysulfide Mediator for High-Loading Lithium–Sulfur Batteries. ACS Energy Lett. 2020, 5, 1177–1185. [Google Scholar] [CrossRef]
- Luo, L.; Chung, S.H.; Asl, H.Y.; Manthiram, A. Long-Life Lithium–Sulfur Batteries with a Bifunctional Cathode Substrate Configured with Boron Carbide Nanowires. Adv. Mater. 2018, 30, 1804149. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Kim, M.S.; Do, V.D.; Xia, Y.Y.; Kim, W.; Cho, W. Facile and scalable fabrication of high-energy-density sulfur cathodes for pragmatic lithium-sulfur batteries. J. Power Sources 2019, 422, 104–112. [Google Scholar] [CrossRef]
- Zhang, J.; You, C.; Wang, J.; Xu, H.; Zhu, C.; Guo, S.; Zhang, W.; Yang, R.; Xu, Y. Confinement of sulfur species into heteroatom-doped, porous carbon container for high areal capacity cathode. Chem. Eng. J. 2019, 368, 340–349. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Lu, J.-H.; Wang, Z.-L.; Wang, A.-B.; Zhang, H.; Wang, W.-K.; Jin, Z.-Q.; Fan, L.-Z. Synergistic Adsorption-Catalytic Sites TiN/Ta2O5 with Multidimensional Carbon Structure to Enable High-Performance Li-S Batteries. Nanomaterials 2021, 11, 2882. https://doi.org/10.3390/nano11112882
Wang C, Lu J-H, Wang Z-L, Wang A-B, Zhang H, Wang W-K, Jin Z-Q, Fan L-Z. Synergistic Adsorption-Catalytic Sites TiN/Ta2O5 with Multidimensional Carbon Structure to Enable High-Performance Li-S Batteries. Nanomaterials. 2021; 11(11):2882. https://doi.org/10.3390/nano11112882
Chicago/Turabian StyleWang, Chong, Jian-Hao Lu, Zi-Long Wang, An-Bang Wang, Hao Zhang, Wei-Kun Wang, Zhao-Qing Jin, and Li-Zhen Fan. 2021. "Synergistic Adsorption-Catalytic Sites TiN/Ta2O5 with Multidimensional Carbon Structure to Enable High-Performance Li-S Batteries" Nanomaterials 11, no. 11: 2882. https://doi.org/10.3390/nano11112882
APA StyleWang, C., Lu, J.-H., Wang, Z.-L., Wang, A.-B., Zhang, H., Wang, W.-K., Jin, Z.-Q., & Fan, L.-Z. (2021). Synergistic Adsorption-Catalytic Sites TiN/Ta2O5 with Multidimensional Carbon Structure to Enable High-Performance Li-S Batteries. Nanomaterials, 11(11), 2882. https://doi.org/10.3390/nano11112882