Applications of Filled Single-Walled Carbon Nanotubes: Progress, Challenges, and Perspectives
Abstract
:1. Introduction
2. Applications of Filled SWCNTs
2.1. Nanoelectronics
2.1.1. Overview of Reports
2.1.2. Remarks on Applications
2.2. Magnetic Recording
2.2.1. Overview of Reports
2.2.2. Remarks on Applications
2.3. Nanobiotechnology
2.3.1. Overview of Reports
2.3.2. Remarks on Applications
2.4. Sensors
2.4.1. Overview of Reports
2.4.2. Remarks on Applications
2.5. Spintronics
2.5.1. Overview of Reports
2.5.2. Remarks on Applications
2.6. Catalysis
2.6.1. Overview of Reports
2.6.2. Remarks on Applications
2.7. Electrochemical Energy Storage
2.7.1. Overview of Reports
2.7.2. Remarks on Applications
2.8. Thermoelectric Power Generation
2.8.1. Overview of Reports
2.8.2. Remarks on Applications
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
1 D | one-dimensional |
CV | cyclic voltammogram |
DNA | deoxyribonucleic acid |
DWCNT | double-walled carbon nanotube |
FET | field-effect transistor |
F4TCNQ | tetrafluorocyano-p-quinodimethane |
HAADF | high-angle annular dark-field |
HR | high-resolution |
MRI | magnetic resonance imaging |
NP | nanoparticle |
POM | polyoxometalate |
SMM | single-molecule magnet |
STEM | scanning transmission electron microscopy |
SQUID | superconducting quantum interference device |
SWCNT | single-walled carbon nanotube |
TCNQ | tetracyano-p-quinodimethane |
TDAE | tetrakis(dimethylamino)ethylene |
TEM | transmission electron miscroscopy |
TM | transition metal |
TTF | tetrathiafulvalene |
XMCD | X-ray magnetic circular dichroism |
XRD | X-ray diffraction |
XRF | X-ray fluorescence |
References
- Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK, 1998. [Google Scholar]
- Endo, M.; Strano, M.S.; Ajayan, P.M. Potential applications of carbon nanotubes. Carbon Nanotubes 2008, 111, 13–61. [Google Scholar]
- Liu, B.L.; Wu, F.Q.; Gui, H.; Zheng, M.; Zhou, C.W. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes. Acs Nano. 2017, 11, 31–53. [Google Scholar] [CrossRef] [PubMed]
- Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105–1136. [Google Scholar] [CrossRef] [PubMed]
- Kharlamova, M.V. Advances in tailoring the electronic properties of single-walled carbon nanotubes. Prog. Mater. Sci. 2016, 77, 125–211. [Google Scholar] [CrossRef]
- Takenobu, T.; Takano, T.; Shiraishi, M.; Murakami, Y.; Ata, M.; Kataura, H.; Achiba, Y.; Iwasa, Y. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat. Mater. 2003, 2, 683–688. [Google Scholar] [CrossRef]
- Lu, J.; Nagase, S.; Yu, D.P.; Ye, H.Q.; Han, R.S.; Gao, Z.X.; Zhang, S.; Peng, L.M. Amphoteric and controllable doping of carbon nanotubes by encapsulation of organic and organometallic molecules. Phys.Rev.Lett. 2004, 93, 116804. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pichler, T.; Knupfer, M.; Golden, M.S.; Fink, J.; Kataura, H.; Achiba, Y.; Hirahara, K.; Iijima, S. Filling factors, structural, and electronic properties of C-60 molecules in single-wall carbon nanotubes. Phys.Rev.B 2002, 65, 045419. [Google Scholar] [CrossRef]
- Shiozawa, H.; Ishii, H.; Kihara, H.; Sasaki, N.; Nakamura, S.; Yoshida, T.; Takayama, Y.; Miyahara, T.; Suzuki, S.; Achiba, Y.; et al. Photoemission and inverse photoemission study of the electronic structure of C-60 fullerenes encapsulated in single-walled carbon nanotubes. Phys. Rev. B 2006, 73, 075406. [Google Scholar] [CrossRef] [Green Version]
- Du, M.H.; Cheng, H.P. Manipulation of fullerene-induced impurity states in carbon peapods. Phys. Rev. B 2003, 68, 113402. [Google Scholar] [CrossRef]
- Dubay, O.; Kresse, G. Density functional calculations for C 60 peapods. Phys. Rev. B 2004, 70, 165424. [Google Scholar] [CrossRef]
- Lu, J.; Nagase, S.; Zhang, S.; Peng, L.M. Strongly size-dependent electronic properties in C-60-encapsulated zigzag nanotubes and lower size limit of carbon nanopeapods. Phys. Rev. B 2003, 68, 121402. [Google Scholar] [CrossRef]
- Okada, S.; Otani, M.; Oshiyama, A. Electron-state control of carbon nanotubes by space and encapsulated fullerenes. Phys. Rev. B 2003, 67, 205411. [Google Scholar] [CrossRef] [Green Version]
- Otani, M.; Okada, S.; Oshiyama, A. Energetics and electronic structures of one-dimensional fullerene chains encapsulated in zigzag nanotubes. Phys. Rev. B 2003, 68, 125424. [Google Scholar] [CrossRef]
- Rochefort, A. Electronic and transport properties of carbon nanotube peapods. Phys. Rev. B 2003, 67, 115401. [Google Scholar] [CrossRef] [Green Version]
- Pichler, T.; Kramberger, C.; Ayala, P.; Shiozawa, H.; Knupfer, M.; Rummeli, M.H.; Batchelor, D.; Kitaura, R.; Imazu, N.; Kobayashi, K.; et al. Bonding environment and electronic structure of Gd metallofullerene and Gd nanowire filled single-wall carbon nanotubes. Phys. Status Solidi B-Basic Solid StatePhys. 2008, 245, 2038–2041. [Google Scholar] [CrossRef]
- Ayala, P.; Kitaura, R.; Kramberger, C.; Shiozawa, H.; Imazu, N.; Kobayashi, K.; Mowbray, D.J.; Hoffmann, P.; Shinohara, H.; Pichler, T. A Resonant Photoemission Insight to the Electronic Structure of Gd Nanowires Templated in the Hollow Core of SWCNTs. Mater. Express 2011, 1, 30–35. [Google Scholar] [CrossRef]
- Chernysheva, M.V.; Kiseleva, E.A.; Verbitskii, N.I.; Eliseev, A.A.; Lukashin, A.V.; Tretyakov, Y.D.; Savilov, S.V.; Kiselev, N.A.; Zhigalina, O.M.; Kumskov, A.S.; et al. The electronic properties of SWNTs intercalated by electron acceptors. Phys. E 2008, 40, 2283–2288. [Google Scholar] [CrossRef]
- Corio, P.; Santos, A.P.; Santos, P.S.; Temperini, M.L.A.; Brar, V.W.; Pimenta, M.A.; Dresselhaus, M.S. Characterization of single wall carbon nanotubes filled with silver and with chromium compounds. Chem. Phys. Lett. 2004, 383, 475–480. [Google Scholar] [CrossRef]
- Zakalyukin, R.M.; Mavrin, B.N.; Dem’yanets, L.N.; Kiselev, N.A. Synthesis and characterization of single-walled carbon nanotubes filled with the superionic material SnF2. Carbon 2008, 46, 1574–1578. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Mittelberger, A.; Yanagi, K.; Pichler, T.; Eder, D. Silver Chloride Encapsulation-Induced Modifications of Raman Modes of Metallicity-Sorted Semiconducting Single-Walled Carbon Nanotubes. J. Spectrosc. 2018. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Domanov, O.; Mittelberger, A.; Yanagi, K.; Pichler, T.; Eder, D. Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride. J. Mater. Sci. 2018, 53, 13018–13029. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Domanov, O.; Mittelberger, A.; Saito, T.; Yanagi, K.; Pichler, T.; Eder, D. Comparison of Doping Levels of Single-Walled Carbon Nanotubes Synthesized by Arc-Discharge and Chemical Vapor Deposition Methods by Encapsulated Silver Chloride. Phys. Status Solidi B-Basic Solid State Phys. 2018, 255, 1800178. [Google Scholar] [CrossRef]
- Eliseev, A.A.; Yashina, L.V.; Brzhezinskaya, M.M.; Chernysheva, M.V.; Kharlamova, M.V.; Verbitsky, N.I.; Lukashin, A.V.; Kiselev, N.A.; Kumskov, A.S.; Zakalyuhin, R.M.; et al. Structure and electronic properties of AgX (X = Cl, Br, I)-intercalated single-walled carbon nanotubes. Carbon 2010, 48, 2708–2721. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Brzhezinskaya, M.; Vinogradov, A.; Suzdalev, I.; Maksimov, Y.V.; Imshennik, V.; Novichikhin, S.V.; Krestinin, A.V.; Yashina, L.V.; Lukashin, A.V.; et al. The forming and properties of one-dimensional FeHaI2 (HaI=Cl, Br, I) nanocrystals in channels of single-walled carbon nanotubes. Russ. Nanotechnologies. 2009, 4, 77–8787. [Google Scholar]
- Kharlamova, M.V.; Eliseev, A.A.; Yashina, L.V.; Petukhov, D.I.; Liu, C.P.; Wang, C.Y.; Semenenko, D.A.; Belogorokhov, A.I. Study of the electronic structure of single-walled carbon nanotubes filled with cobalt bromide. JETP Lett. 2010, 91, 196–200. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Yashina, L.V.; Eliseev, A.A.; Volykhov, A.A.; Neudachina, V.S.; Brzhezinskaya, M.M.; Zyubina, T.S.; Lukashin, A.V.; Tretyakov, Y.D. Single-walled carbon nanotubes filled with nickel halogenides: Atomic structure and doping effect. Phys. Status Solidi B-Basic Solid State Phys. 2012, 249, 2328–2332. [Google Scholar] [CrossRef]
- Kharlamova, M.V. Raman Spectroscopy Study of the Doping Effect of the Encapsulated Iron, Cobalt, and Nickel Bromides on Single-Walled Carbon Nanotubes. J. Spectrosc. 2015, 2015, 653848. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Eliseev, A.A.; Yashina, L.V.; Lukashin, A.V.; Tretyakov, Y.D. Synthesis of Nanocomposites on Basis of Single-walled Carbon Nanotubes Intercalated by Manganese Halogenides. J. Phys. Conf. Ser. 2012, 345, 012034. [Google Scholar] [CrossRef]
- Kharlamova, M.V. Electronic properties of single-walled carbon nanotubes filled with manganese halogenides. Appl. Phys. A 2016, 122, 791. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Yashina, L.V.; Volykhov, A.A.; Niu, J.J.; Neudachina, V.S.; Brzhezinskaya, M.M.; Zyubina, T.S.; Belogorokhov, A.I.; Eliseev, A.A. Acceptor doping of single-walled carbon nanotubes by encapsulation of zinc halogenides. Eur. Phys. J. B. 2012, 85, 1–8. [Google Scholar] [CrossRef]
- Kharlamova, M.V. Comparison of influence of incorporated 3d-, 4d-and 4f-metal chlorides on electronic properties of single-walled carbon nanotubes. Appl. Phys. A 2013, 111, 725–731. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Yashina, L.V.; Lukashin, A.V. Comparison of modification of electronic properties of single-walled carbon nanotubes filled with metal halogenide, chalcogenide, and pure metal. Appl. Phys. A 2013, 112, 297–304. [Google Scholar] [CrossRef]
- Ayala, P.; Kitaura, R.; Nakanishi, R.; Shiozawa, H.; Ogawa, D.; Hoffmann, P.; Shinohara, H.; Pichler, T. Templating rare-earth hybridization via ultrahigh vacuum annealing of ErCl3 nanowires inside carbon nanotubes. Phys. Rev. B 2011, 83, 085407. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Volykhov, A.A.; Yashina, L.V.; Egorov, A.V.; Lukashin, A.V. Experimental and theoretical studies on the electronic properties of praseodymium chloride-filled single-walled carbon nanotubes. J. Mater. Sci 2015, 50, 5419–5430. [Google Scholar] [CrossRef]
- Kharlamova, M.V. Rare-earth metal halogenide encapsulation-induced modifications in Raman spectra of single-walled carbon nanotubes. Appl. Phys. A 2015, 118, 27–35. [Google Scholar] [CrossRef]
- Eliseev, A.A.; Yashina, L.V.; Verbitskiy, N.I.; Brzhezinskaya, M.M.; Kharlamova, M.V.; Chernysheva, M.V.; Lukashin, A.V.; Kiselev, N.A.; Kumskov, A.S.; Freitag, B.; et al. Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X = Cl, Br, I) nanostructures. Carbon 2012, 50, 4021–4039. [Google Scholar] [CrossRef]
- Chernysheva, M.V.; Eliseev, A.A.; Lukashin, A.V.; Tretyakov, Y.D.; Savilov, S.V.; Kiselev, N.A.; Zhigalina, O.M.; Kumskov, A.S.; Krestinin, A.V.; Hutchison, J.L. Filling of single-walled carbon nanotubes by Cul nanocrystals via capillary technique. Phys. E 2007, 37, 62–65. [Google Scholar] [CrossRef]
- Kumskov, A.S.; Zhigalina, V.G.; Chuvilin, A.L.; Verbitskiy, N.I.; Ryabenko, A.G.; Zaytsev, D.D.; Eliseev, A.A.; Kiselev, N.A. The structure of 1D and 3D CuI nanocrystals grown within 1.5–2.5 nm single wall carbon nanotubes obtained by catalyzed chemical vapor deposition. Carbon 2012, 50, 4696–4704. [Google Scholar] [CrossRef]
- Fedotov, P.V.; Tonkikh, A.A.; Obraztsova, E.A.; Nasibulin, A.G.; Kauppinen, E.I.; Chuvilin, A.L.; Obraztsova, E.D. Optical properties of single-walled carbon nanotubes filled with CuCl by gas-phase technique. Phys. Status Solidi B-Basic Solid State Phys. 2014, 251, 2466–2470. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Yashina, L.V.; Lukashin, A.V. Charge transfer in single-walled carbon nanotubes filled with cadmium halogenides. J. Mater. Sci. 2013, 48, 8412–8419. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Mittelberger, A. Raman spectroscopy study of the doping effect of the encapsulated terbium halogenides on single-walled carbon nanotubes. Appl. Phys. A 2017, 123, 239. [Google Scholar] [CrossRef]
- Sceats, E.L.; Green, J.C.; Reich, S. Theoretical study of the molecular and electronic structure of one-dimensional crystals of potassium iodide and composites formed upon intercalation in single-walled carbon nanotubes. Phys. Rev. B 2006, 73, 125441. [Google Scholar] [CrossRef] [Green Version]
- Yam, C.Y.; Ma, C.C.; Wang, X.J.; Chen, G.H. Electronic structure and charge distribution of potassium iodide intercalated single-walled carbon nanotubes. Appl. Phys. Lett. 2004, 85, 4484–4486. [Google Scholar] [CrossRef] [Green Version]
- Christ, K.V.; Sadeghpour, H.R. Energy dispersion in graphene and carbon nanotubes and molecular encapsulation in nanotubes. Phys. Rev. B 2007, 75, 195418. [Google Scholar] [CrossRef] [Green Version]
- Kharlamova, M.V. Novel approach to tailoring the electronic properties of single-walled carbon nanotubes by the encapsulation of high-melting gallium selenide using a single-step process. JETP Lett. 2013, 98, 272–277. [Google Scholar] [CrossRef]
- Kharlamova, M.V. Comparative analysis of electronic properties of tin, gallium, and bismuth chalcogenide-filled single-walled carbon nanotubes. J. Mater. Sci. 2014, 49, 8402–8411. [Google Scholar] [CrossRef]
- Li, L.J.; Khlobystov, A.N.; Wiltshire, J.G.; Briggs, G.A.D.; Nicholas, R.J. Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nat. Mater. 2005, 4, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Suarez, V.M.; Ferrer, J.; Lambert, C.J. Tuning the electrical conductivity of nanotube-encapsulated metallocene wires. Phys. Rev. Lett. 2006, 96, 106804. [Google Scholar] [CrossRef] [PubMed]
- Sceats, E.L.; Green, J.C. Noncovalent interactions between organometallic metallocene complexes and single-walled carbon nanotubes. J. Chem. Phys. 2006, 125, 154704. [Google Scholar] [CrossRef]
- Shiozawa, H.; Pichler, T.; Gruneis, A.; Pfeiffer, R.; Kuzmany, H.; Liu, Z.; Suenaga, K.; Kataura, H. A catalytic reaction inside a single-walled carbon nanotube. Adv. Mater. 2008, 20, 1443–1449. [Google Scholar] [CrossRef]
- Shiozawa, H.; Pichler, T.; Kramberger, C.; Gruneis, A.; Knupfer, M.; Buchner, B.; Zolyomi, V.; Koltai, J.; Kurti, J.; Batchelor, D.; et al. Fine tuning the charge transfer in carbon nanotubes via the interconversion of encapsulated molecules. Phys. Rev. B 2008, 77, 153402. [Google Scholar] [CrossRef] [Green Version]
- Sauer, M.; Shiozawa, H.; Ayala, P.; Ruiz-Soria, G.; Kataura, H.; Yanagi, K.; Krause, S.; Pichler, T. In situ filling of metallic single-walled carbon nanotubes with ferrocene molecules. Phys. Status Solidi B-Basic Solid State Phys. 2012, 249, 2408–2411. [Google Scholar] [CrossRef]
- Liu, X.J.; Kuzmany, H.; Ayala, P.; Calvaresi, M.; Zerbetto, F.; Pichler, T. Selective Enhancement of Photoluminescence in Filled Single-Walled Carbon Nanotubes. Adv. Funct. Mater. 2012, 22, 3202–3208. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Sauer, M.; Saito, T.; Krause, S.; Liu, X.; Yanagi, K.; Pichler, T.; Shiozawa, H. Inner tube growth properties andelectronic structure offerrocene-filled large diametersingle-walled carbon nanotubes. Phys. Status Solidi B-Basic Solid State Phys. 2013, 250, 2575–2580. [Google Scholar] [CrossRef]
- Sauer, M.; Shiozawa, H.; Ayala, P.; Ruiz-Soria, G.; Liu, X.J.; Chernov, A.; Krause, S.; Yanagi, K.; Kataura, H.; Pichler, T. Internal charge transfer in metallicity sorted ferrocene filled carbon nanotube hybrids. Carbon 2013, 59, 237–245. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Sauer, M.; Saito, T.; Sato, Y.; Suenaga, K.; Pichler, T.; Shiozawa, H. Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene. Nanoscale 2015, 7, 1383–1391. [Google Scholar] [CrossRef] [Green Version]
- Kharlamova, M.V.; Sauer, M.; Egorov, A.; Kramberger, C.; Saito, T.; Pichler, T.; Shiozawa, H. Temperature-dependent inner tube growth and electronic structure of nickelocene-filled single-walled carbon nanotubes. Phys. Status Solidi B-Basic Solid State Phys. 2015, 252, 2485–2490. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Sauer, M.; Yanagi, K.; Saito, T.; Pichler, T. Inner tube growth and electronic properties of metallicity-sorted nickelocene-filled semiconducting single-walled carbon nanotubes. Appl. Phys. A 2018, 1124, 247. [Google Scholar] [CrossRef]
- Shiozawa, H.; Pichler, T.; Kramberger, C.; Rummeli, M.; Batchelor, D.; Liu, Z.; Suenaga, K.; Kataura, H.; Silva, S.R.P. Screening the Missing Electron: Nanochemistry in Action. Phys. Rev. Lett. 2009, 102, 046804. [Google Scholar] [CrossRef] [Green Version]
- Shiozawa, H.; Kramberger, C.; Rummeli, M.; Batchelor, D.; Kataura, H.; Pichler, T.; Silva, S.R.P. Electronic properties of single-walled carbon nanotubes encapsulating a cerium organometallic compound. Phys. Status Solidi B-Basic Solid StatePhys. 2009, 246, 2626–2630. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Niu, J.J. Comparison of metallic silver and copper doping effects on single-walled carbon nanotubes. Appl. Phys. A 2012, 109, 25–29. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Niu, J.J. Donor doping of single-walled carbon nanotubes by filling of channels with silver. J. Exp. Theor. Phys. 2012, 115, 485–491. [Google Scholar] [CrossRef]
- Borowiak-Palen, E.; Ruemmeli, M.H.; Gemming, T.; Pichler, T.; Kalenczuk, R.J.; Silva, S.R.P. Silver filled single-wall carbon nanotubes-synthesis, structural and electronic properties. Nanotechnology 2006, 17, 2415–2419. [Google Scholar] [CrossRef]
- Fagan, S.B.; Filho, A.G.S.; Filho, J.M.; Corio, P.; Dresselhaus, M.S. Electronic properties of Ag- and CrO3-filled single-wall carbon nanotubes. Chem. Phys. Lett. 2005, 406, 54–59. [Google Scholar] [CrossRef]
- Li, W.F.; Zhao, M.W.; Xia, Y.Y.; He, T.; Song, C.; Lin, X.H.; Liu, X.D.; Mei, L.M. Silver-filled single-walled carbon nanotubes: Atomic and electronic structures from first-principles calculations. Phys. Rev. B 2006, 74, 195421. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Niu, J.J. New method of the directional modification of the electronic structure of single-walled carbon nanotubes by filling channels with metallic copper from a liquid phase. JETP Lett. 2012, 95, 314–319. [Google Scholar] [CrossRef]
- Nakanishi, R.; Kitaura, R.; Ayala, P.; Shiozawa, H.; De Blauwe, K.; Hoffmann, P.; Choi, D.; Miyata, Y.; Pichler, T.; Shinohara, H. Electronic structure of Eu atomic wires encapsulated inside single-wall carbon nanotubes. Phys. Rev. B 2012, 86, 115445. [Google Scholar] [CrossRef]
- Zhou, J.; Yan, X.; Luo, G.F.; Qin, R.; Li, H.; Lu, J.; Mei, W.N.; Gao, Z.X. Structural, Electronic, and Transport Properties of Gd/Eu Atomic Chains Encapsulated in Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2010, 114, 15347–15353. [Google Scholar] [CrossRef]
- Galpern, E.G.; Stankevich, I.V.; Chistykov, A.L.; Chernozatonskii, L.A. Carbon Nanotubes with Metal Inside-Electron-Structure of Tubelenes [Li-At-C24]N and [K-At-C36]N. Chem. Phys. Lett. 1993, 214, 345–348. [Google Scholar] [CrossRef]
- Du, X.J.; Zhang, J.M.; Wang, S.F.; Xu, K.W.; Ji, V. First-principle study on energetics and electronic structure of a single copper atomic chain bound in carbon nanotube. Eur. Phys. J. B 2009, 72, 119–126. [Google Scholar] [CrossRef]
- Ivanovskaya, V.V.; Kohler, C.; Seifert, G. 3d metal nanowires and clusters inside carbon nanotubes: Structural, electronic, and magnetic properties. Phys. Rev. B 2007, 75, 075410. [Google Scholar] [CrossRef]
- Kang, Y.J.; Choi, J.; Moon, C.Y.; Chang, K.J. Electronic and magnetic properties of single-wall carbon nanotubes filled with iron atoms. Phys. Rev. B 2005, 71, 115441. [Google Scholar] [CrossRef]
- Meunier, V.; Muramatsu, H.; Hayashi, T.; Kim, Y.A.; Shimamoto, D.; Terrones, H.; Dresselhaus, M.S.; Terrones, M.; Endo, M.; Sumpter, B.G. Properties of One-Dimensional Molybdenum Nanowires in a Confined Environment. Nano Lett. 2009, 9, 1487–1492. [Google Scholar] [CrossRef]
- Parq, J.H.; Yu, J.; Kim, G. First-principles study of ultrathin (2 × 2) Gd nanowires encapsulated in carbon nanotubes. J. Chem. Phys. 2010, 132, 054701. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Yang, X.B.; Ni, J. Bonding differences between single iron atoms versus iron chains with carbon nanotubes: First-principles calculations. Phys. Rev. B 2007, 76, 035407. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J.M.; Huo, Y.P. Structural, electronic and magnetic properties of hcp Fe, Co and Ni nanowires encapsulated in zigzag carbon nanotubes. Eur. Phys. J. B 2011, 81, 459–465. [Google Scholar] [CrossRef]
- Li, Y.; Hatakeyama, R.; Shishido, J.; Kato, T.; Kaneko, T. Air-stable p-n junction diodes based on single-walled carbon nanotubes encapsulating Fe nanoparticles. Appl. Phys. Lett. 2007, 90, 173127. [Google Scholar] [CrossRef]
- Kato, T.; Hatakeyama, R.; Shishido, J.; Oohara, W.; Tohji, K. P-N junction with donor and acceptor encapsulated single-walled carbon nanotubes. Appl. Phys. Lett. 2009, 95, 083109. [Google Scholar] [CrossRef]
- Vavro, J.; Llaguno, M.C.; Satishkumar, B.C.; Luzzi, D.E.; Fischer, J.E. Electrical and thermal properties of C-60-filled single-wall carbon nanotubes. Appl. Phys. Lett. 2002, 80, 1450–1452. [Google Scholar] [CrossRef] [Green Version]
- Hongo, H.; Nihey, F.; Yudasaka, M.; Ichihashi, T.; Iijima, S. Transport properties of single-wall carbon nanotubes with encapsulated C-60. Phys. B 2002, 323, 244–245. [Google Scholar] [CrossRef]
- Hirahara, K.; Suenaga, K.; Bandow, S.; Kato, H.; Okazaki, T.; Shinohara, H.; Iijima, S. One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 2000, 85, 5384–5387. [Google Scholar] [CrossRef] [PubMed]
- Utko, P.; Nygard, J.; Monthioux, M.; Noe, L. Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots. Appl. Phys. Lett. 2006, 89, 233118. [Google Scholar] [CrossRef] [Green Version]
- Eliasen, A.; Paaske, J.; Flensberg, K.; Smerat, S.; Leijnse, M.; Wegewijs, M.R.; Jorgensen, H.I.; Monthioux, M.; Nygard, J. Transport via coupled states in a C-60 peapod quantum dot. Phys. Rev. B 2010, 81, 155431. [Google Scholar] [CrossRef] [Green Version]
- Kharlamova, M.V. Nickelocene-Filled Purely Metallic Single-Walled CarbonNanotubes: Sorting and Tuning the Electronic Properties. Nanomaterials 2021, 11(10), 2500. [Google Scholar] [CrossRef]
- Yu, H.Y.; Lee, D.S.; Lee, S.H.; Kim, S.S.; Lee, S.W.; Park, Y.W.; Dettlaff-Weglikowskaand, U.; Roth, S. Single-electron transistor mediated by C-60 insertion inside a carbon nanotube. Appl. Phys. Lett. 2005, 87, 163118. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Kahng, S.J.; Kim, G.; Son, Y.W.; Ihm, J.; Kato, H.; Wang, Z.W.; Okazaki, T.; Shinohara, H.; et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 2002, 415, 1005–1008. [Google Scholar] [CrossRef]
- Okazaki, T.; Shimada, T.; Suenaga, K.; Ohno, Y.; Mizutani, T.; Lee, J.; Kuk, Y.; Shinohara, H. Electronic properties of Gd@C-82 metallofullerene peapods: (Gd @ C-82)(n)@SWNTs. Appl. Phys. A 2003, 76, 475–478. [Google Scholar] [CrossRef]
- Shimada, T.; Okazaki, T.; Taniguchi, R.; Sugai, T.; Shinohara, H.; Suenaga, K.; Ohno, Y.; Mizuno, S.; Kishimoto, S.; Mizutani, T. Ambipolar field-effect transistor behavior of Gd@C-82 metallofullerene peapods. Appl. Phys. Lett. 2002, 81, 4067–4069. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Yanagi, K.; Sauer, M.; Saito, T.; Pichler, T. Separation of Nickelocene-Filled Single-Walled CarbonNanotubes by Conductivity Type and Diameter. Phys. Status Solidi B 2017, 254(11), 1700178. [Google Scholar] [CrossRef]
- Shea, H.R.; Martel, R.; Hertel, T.; Schmidt, T.; Avouris, P. Manipulation of carbon nanotubes and properties of nanotube field-effect transistors and rings. Microelectron. Eng. 1999, 46, 101–104. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Rudatis, P.; Yanagi, K.; Eder, D. Characterization of the Electronic Properties ofSingle-Walled Carbon Nanotubes Filled with an ElectronDonor-Rubidium Iodide: Multifrequency Raman and X-rayPhotoelectron Spectroscopy Studies. Phys. Status Solidi B 2019, 256, 1900209. [Google Scholar] [CrossRef]
- Shimada, T.; Ohno, Y.; Okazaki, T.; Sugai, T.; Suenaga, K.; Kishimoto, S.; Mizutani, T.; Inoue, T.; Taniguchi, R.; Fukui, N.; et al. Transport properties of C-78, C-90 and Dy@C-82 fullerenes-nanopeapods by field effect transistors. Phys. E 2004, 21, 1089–1092. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Rudatis, P.; Pichler, T.; Eder, D. Revealing the doping effect of encapsulated lead halogenides on single-walled carbon nanotubes. Appl. Phys. A 2019, 125, 320. [Google Scholar] [CrossRef]
- Chiu, P.W.; Gu, G.; Kim, G.T.; Philipp, G.; Roth, S.; Yang, S.F.; Yang, S. Temperature-induced change from p to n conduction in metallofullerene nanotube peapods. Appl. Phys. Lett. 2001, 79, 3845–3847. [Google Scholar] [CrossRef]
- Chiu, P.W.; Yang, S.F.; Yang, S.H.; Gu, G.; Roth, S. Temperature dependence of conductance character in nanotube peapods. Appl. Phys. A 2003, 76, 463–467. [Google Scholar] [CrossRef]
- Li, Y.F.; Hatakeyama, R.; Kaneko, T.; Izumida, T.; Okada, T.; Kato, T. Electrical properties of ferromagnetic semiconducting single-walled carbon nanotubes. Appl. Phys. Lett. 2006, 89, 083117. [Google Scholar] [CrossRef]
- Shiozawa, H.; Briones-Leon, A.; Domanov, O.; Zechner, G.; Sato, Y.; Suenaga, K.; Saito, T.; Eisterer, M.; Weschke, E.; Lang, W.; et al. Nickel clusters embedded in carbon nanotubes as high performance magnets. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kitaura, R.; Ogawa, D.; Kobayashi, K.; Saito, T.; Ohshima, S.; Nakamura, T.; Yoshikawa, H.; Awaga, K.; Shinohara, H. High Yield Synthesis and Characterization of the Structural and Magnetic Properties of Crystalline ErCl3 Nanowires in Single-Walled Carbon Nanotube Templates. Nano Res. 2008, 1, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Borowiak-Palen, E.; Mendoza, E.; Bachmatiuk, A.; Rummeli, M.H.; Gemming, T.; Nogues, J.; Skumryev, V.; Kalenczuk, R.J.; Pichler, T.; Silva, S.R.P. Iron filled single-wall carbon nanotubes-A novel ferromagnetic medium. Chem. Phys. Lett. 2006, 421, 129–133. [Google Scholar] [CrossRef]
- Briones-Leon, A.; Ayala, P.; Liu, X.J.; Yanagi, K.; Weschke, E.; Eisterer, M.; Jiang, H.; Kataura, H.; Pichler, T.; Shiozawa, H. Orbital and spin magnetic moments of transforming one-dimensional iron inside metallic and semiconducting carbon nanotubes. Phys. Rev. B 2013, 87, 195435. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Kaneko, T.; Ogawa, T.; Takahashi, M.; Hatakeyama, R. Novel properties of single-walled carbon nanotubes with encapsulated magnetic atoms. Jpn. J. Appl. Phys. 2008, 47, 2048–2055. [Google Scholar] [CrossRef]
- Kasai, K.; Morenoi, J.L.V.; David, M.Y.; Sarhan, A.A.A.; Shimoji, N.; Kasai, H. First-principles study of electronic and magnetic properties of 3d transition metal-filled single-walled carbon nanotubes. Jpn. J. Appl. Phys. 2008, 47, 2317–2319. [Google Scholar] [CrossRef]
- Kharlamova, M.V. Electronic properties of pristine and modified single-walled carbon nanotubes. Physics-Uspekhi 2013, 56, 1047–1073. [Google Scholar] [CrossRef]
- Mao, Y.L.; Yan, X.H.; Xiao, Y. First-principles study of transition-metal-doped single-walled carbon nanotubes. Nanotechnology 2005, 16, 3092–3096. [Google Scholar] [CrossRef]
- Cleuziou, J.P.; Wernsdorfer, W.; Ondarcuhu, T.; Monthioux, M. Electrical Detection of Individual Magnetic Nanoparticles Encapsulated in Carbon Nanotubes. Acs Nano. 2011, 5, 2348–2355. [Google Scholar] [CrossRef] [PubMed]
- Yashina, L.V.; Eliseev, A.A.; Kharlamova, M.V.; Volykhov, A.A.; Egorov, S.V.; Savilov, A.V.; Lukashin, R.P.; Belogorokhov, A.I. Growth and Characterization of One-Dimensional SnTe Crystalswithin the Single-Walled Carbon Nanotube Channels. J. Phys. Chem. C 2011, 115, 3578–3586. [Google Scholar] [CrossRef]
- Weissmann, M.; Garcia, G.; Kiwi, M.; Ramirez, R. Theoretical study of carbon-coated iron nanowires. Phys. Rev. B 2004, 70, 201401. [Google Scholar] [CrossRef] [Green Version]
- Weissmann, M.; Garcia, G.; Kiwi, M.; Ramirez, R.; Fu, C.C. Theoretical study of iron-filled carbon nanotubes. Phys. Rev. B 2006, 73, 125435. [Google Scholar] [CrossRef]
- Mahajan, S.; Patharkar, A.; Kuche, K.; Maheshwari, R.; Deb, P.K.; Kalia, K.; Tekade, R.K. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int. J. Pharm. 2018, 548, 540–558. [Google Scholar] [CrossRef]
- Ben-Valid, S.; Dumortier, H.; Decossas, M.; Sfez, R.; Meneghetti, M.; Bianco, A.; Yitzchaik, S. Polyaniline-coated single-walled carbon nanotubes: Synthesis, characterization and impact on primary immune cells. J. Mater. Chem. 2010, 20, 2408–2417. [Google Scholar] [CrossRef]
- Bussy, C.; Al-Jamal, K.T.; Boczkowski, J.; Lanone, S.; Prato, M.; Bianco, A.; Kostarelos, K. Microglia Determine Brain Region-Specific Neurotoxic Responses to Chemically Functionalized Carbon Nano tubes. Acs Nano. 2015, 9, 7815–7830. [Google Scholar] [CrossRef] [PubMed]
- Bussy, C.; Hadad, C.; Prato, M.; Bianco, A.; Kostarelos, K. Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model. Nanoscale 2016, 8, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Dykas, M.M.; Poddar, K.; Yoong, S.L.; Viswanathan, V.; Mathew, S.; Patra, A.; Saha, S.; Pastorin, G.; Venkatesan, T. Enhancing image contrast of carbon nanotubes on cellular background using helium ion microscope by varying helium ion fluence. J. Microsc. 2018, 269, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Elgrabli, D.; Dachraoui, W.; de Marmier, H.; Menard-Moyon, C.; Begin, D.; Begin-Colin, S.; Bianco, A.; Alloyeau, D.; Gazeau, F. Intracellular degradation of functionalized carbon nanotube/iron oxide hybrids is modulated by iron via Nrf2 pathway. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Jagusiak, A.; Chlopas, K.; Zemanek, G.; Wolski, P.; Panczyk, T. Controlled Release of Doxorubicin from the Drug Delivery Formulation Composed of Single-Walled Carbon Nanotubes and Congo Red: A Molecular Dynamics Study and Dynamic Light Scattering Analysis. Pharmaceutics 2020, 12, 622. [Google Scholar] [CrossRef] [PubMed]
- Jagusiak, A.; Goclon, J.; Panczyk, T. Adsorption of Evans blue and Congo red on carbon nanotubes and its influence on the fracture parameters of defective and functionalized carbon nanotubes studied using computational methods. Appl. Surf. Sci. 2021, 539, 148236. [Google Scholar] [CrossRef]
- Muzi, L.; Menard-Moyon, C.; Russier, J.; Li, J.; Chin, C.F.; Ang, W.H.; Pastorin, G.; Risuleo, G.; Bianco, A. Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes. Nanoscale 2015, 7, 5383–5394. [Google Scholar] [CrossRef] [Green Version]
- Muzi, L.; Tardani, F.; La Mesa, C.; Bonincontro, A.; Bianco, A.; Risuleo, G. Interactions and effects of BSA-functionalized single-walled carbon nanotubes on different cell lines. Nanotechnology 2016, 27, 155704. [Google Scholar] [CrossRef]
- Panczyk, T.; Jagusiak, A.; Pastorin, G.; Ang, W.H.; Narkiewicz-Michalek, J. Molecular Dynamics Study of Cisplatin Release from Carbon Nanotubes Capped by Magnetic Nanoparticles. J. Phys. Chem.C 2013, 117, 17327–17336. [Google Scholar] [CrossRef]
- Pelaz, B.; Alexiou, C.H.; Puebla, R.A.; Alves, F.; Andrews, A.M.; Ashraf, S.; Balogh, L.P.; Ballerini, L.; Bestetti, A.; Brendel, C.; et al. Diverse Applications of Nanomedicine. Acs Nano. 2017, 11, 2313–2381. [Google Scholar] [CrossRef] [Green Version]
- Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 2008, 41, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Shityakov, S.; Salvador, E.; Pastorin, G.; Forster, C. Blood-brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate. Int. J. Nanomed. 2015, 10, 1703–1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsoufis, T.; Ampoumogli, A.; Gournis, D.; Georgakilas, V.; Jankovic, L.; Christoforidis, K.C.; Deligiannakis, Y.; Mavrandonakis, A.; Froudakis, G.E.; Maccallini, E.; et al. Direct observation of spin-injection in tyrosinate-functionalized single-wall carbon nanotubes. Carbon 2014, 67, 424–433. [Google Scholar] [CrossRef]
- Wojton, P.; Wolski, P.; Wolinski, K.; Panczyk, T. Protonation of Cytosine-Rich Telomeric DNA Fragments by Carboxylated Carbon Nanotubes: Insights from Computational Studies. J. Phys. Chem.B 2021, 125, 5526–5536. [Google Scholar] [CrossRef] [PubMed]
- Wolski, P.; Narkiewicz-Michalek, J.; Panczyk, M.; Pastorin, G.; Panczyk, T. Molecular Dynamics Modeling of the Encapsulation and De-encapsulation of the Carmustine Anticancer Drug in the Inner Volume of a Carbon Nanotube. J. Phys. Chem. C 2017, 121, 18922–18934. [Google Scholar] [CrossRef]
- Tregubov, A.A.; Nikitin, P.I.; Nikitin, M.P. Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots. Chem. Rev. 2018, 118, 10294–10348. [Google Scholar] [CrossRef] [Green Version]
- Nikitin, M.P.; Zelepukin, I.V.; Shipunova, V.O.; Sokolov, I.L.; Deyev, S.M.; Nikitin, P.I. Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes. Nat. Biomed. Eng. 2020, 4, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Tregubov, A.A.; Sokolov, I.L.; Babenyshev, A.V.; Nikitin, P.I.; Cherkasov, V.R.; Nikitin, M.P. Magnetic hybrid magnetite/metal organic framework nanoparticles: Facile preparation, post-synthetic biofunctionalization and tracking in vivo with magnetic methods. J. Magn. Magn. Mater. 2018, 449, 590–596. [Google Scholar] [CrossRef]
- Ringaci, A.; Yaremenko, A.V.; Shevchenko, K.G.; Zvereva, S.D.; Nikitin, M.P. Metal-organic frameworks for simultaneous gene and small molecule delivery in vitro and in vivo. Chem. Eng. J. 2021, 418, 129386. [Google Scholar] [CrossRef]
- Zelepukin, I.V.; Yaremenko, A.V.; Ivanov, I.N.; Yuryev, M.V.; Cherkasov, V.R.; Deyev, S.M.; Nikitin, P.I.; Nikitin, M.P. Long-Term Fate of Magnetic Particles in Mice: A Comprehensive Study. Acs Nano 2021, 15, 11341–11357. [Google Scholar] [CrossRef] [PubMed]
- Cherkasov, V.R.; Mochalova, E.N.; Babenyshev, A.V.; Rozenberg, J.M.; Sokolov, I.L.; Nikitin, M.P. Antibody-directed metal-organic framework nanoparticles for targeted drug delivery. Acta Biomater. 2020, 103, 223–236. [Google Scholar] [CrossRef]
- Nikitin, M.P.; Shipunova, V.O.; Deyev, S.M.; Nikitin, P.I. Biocomputing based on particle disassembly. Nat. Nanotechnol. 2014, 9, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.A.; Yang, K.; Lee, S.T. Single-walled carbon nanotubes in biomedical imaging. J. Mater. Chem. 2011, 21, 586–598. [Google Scholar] [CrossRef]
- Sitharaman, B.; Kissell, K.R.; Hartman, K.B.; Tran, L.A.; Baikalov, A.; Rusakova, I.; Sun, Y.; Khant, H.A.; Ludtke, S.J.; Chiu, W.; et al. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem. Commun. 2005, 31, 3915–3917. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.J.; Summers, G.H.; Gibson, E.A. Increased photocurrent in a tandem dye-sensitized solar cell by modifications in push-pull dye-design. Chem. Commun. 2015, 51, 3915–3918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sethi, R.; Mackeyev, Y.; Wilson, L.J. The Gadonanotubes revisited: A new frontier in MRI contrast agent design. Inorg. Chim. Acta. 2012, 393, 165–172. [Google Scholar] [CrossRef]
- Tran, L.A.; Krishnamurthy, R.; Muthupillai, R.; Cabreira-Hansen, M.D.; Willerson, J.T.; Perin, E.C.; Wilson, L.J. Gadonanotubes as magnetic nanolabels for stem cell detection. Biomaterials 2010, 31, 9482–9491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartman, K.B.; Laus, S.; Bolskar, R.D.; Muthupillai, R.; Helm, L.; Toth, E.; Merbach, A.E.; Wilson, L.J. Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging. Nano Lett. 2008, 8, 415–419. [Google Scholar] [CrossRef]
- Choi, J.H.; Nguyen, F.T.; Barone, P.W.; Heller, D.A.; Moll, A.E.; Patel, D.; Boppart, S.A.; Strano, M.S. Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett. 2007, 7, 861–867. [Google Scholar] [CrossRef] [Green Version]
- Rivera, E.J.; Sethi, R.; Qu, F.F.; Krishnamurthy, R.; Muthupillai, R.; Alford, M.; Swanson, M.A.; Eaton, S.S.; Eaton, G.R.; Wilson, L.J. Nitroxide Radicals@US-Tubes: New Spin Labels for Biomedical Applications. Adv. Funct. Mater. 2012, 22, 3691–3698. [Google Scholar] [CrossRef]
- Rivera, E.J.; Tran, L.A.; Hernandez-Rivera, M.; Yoon, D.; Mikos, A.G.; Rusakova, I.A.; Cheong, B.Y.; Cabreira-Hansen, M.D.; Willerson, J.T.; Perin, E.C.; et al. Bismuth@US-tubes as a potential contrast agent for X-ray imaging applications. J. Mater. Chem. B 2013, 1, 4792–4800. [Google Scholar] [CrossRef] [Green Version]
- Ashcroft, J.M.; Hartman, K.B.; Kissell, K.R.; Mackeyev, Y.; Pheasant, S.; Young, S.; Van der Heide, P.A.W.; Mikos, A.G.; Wilson, L.J. Single-molecule I-2@US-tube nanocapsules: A new X-ray contrast-agent design. Adv. Mater. 2007, 19, 573–576. [Google Scholar] [CrossRef]
- Mackeyev, Y.A.; Marks, J.W.; Rosenblum, M.G.; Wilson, L.J. Stable containment of radionuclides on the nanoscale by cut single-wall carbon nanotubes. J. Phys. Chem. B 2005, 109, 5482–5484. [Google Scholar] [CrossRef]
- Hong, S.Y.; Tobias, G.; Al-Jamal, K.T.; Ballesteros, B.; Ali-Boucetta, H.; Lozano-Perez, S.; Nellist, P.D.; Sim, R.B.; Finucane, C.; Mather, S.J.; et al. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat. Mater. 2010, 9, 485–490. [Google Scholar] [CrossRef] [PubMed]
- De Munari, S.; Sandoval, S.; Pach, E.; Ballesteros, B.; Tobias, G.; Anthony, D.C.; Davis, B.G. In vivo behaviour of glyco-NaI@SWCNTnanobottles. Inorg. Chim. Acta. 2019, 495, 118933. [Google Scholar] [CrossRef]
- D’Accolti, L.; Gajewska, A.; Kierkowicz, M.; Martincic, M.; Nacci, A.; Sandoval, S.; Ballesteros, B.; Tobias, G.; Da Ros, T.; Fusco, C. Epoxidation of Carbon Nanocapsules: Decoration of Single-Walled Carbon Nanotubes Filled with Metal Halides. Nanomaterials 2018, 8, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.T.W.; Klippstein, R.; Martincic, M.; Pach, E.; Feldman, R.; Sefl, M.; Michel, Y.; Asker, D.; Sosabowski, J.K.; Kalbac, M.; et al. Neutron Activated Sm-153 Sealed in Carbon Nanocapsules for in Vivo Imaging and Tumor Radiotherapy. Acs Nano. 2020, 14, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Hartman, K.B.; Hamlin, D.K.; Wilbur, D.S.; Wilson, L.J. (AtCl)-At-211@US-Tube nanocapsules: A new concept in radiotherapeutic-agent design. Small 2007, 3, 1496–1499. [Google Scholar] [CrossRef]
- De Garibay, A.P.R.; Spinato, C.; Klippstein, R.; Bourgognon, M.; Martincic, M.; Pach, E.; Ballesteros, B.; Menard-Moyon, C.; Al-Jamal, K.T.; Tobias, G.; et al. Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy. Sci. Rep. 2017, 7, 1–12. [Google Scholar]
- Spinato, C.; de Garibay, A.P.R.; Kierkowicz, M.; Pach, E.; Martincic, M.; Klippstein, R.; Bourgognon, M.; Wang, J.T.W.; Menard-Moyon, C.; Al-Jamal, K.T.; et al. Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy. Nanoscale 2016, 8, 12626–12638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serpell, C.J.; Rutte, R.N.; Geraki, K.; Pach, E.; Martincic, M.; Kierkowicz, M.; De Munari, S.; Wals, K.; Raj, R.; Ballesteros, B.; et al. Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging. Nat. Commun. 2016, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vashist, S.K.; Zheng, D.; Pastorin, G.; Al-Rubeaan, K.; Luong, J.H.T.; Sheu, F.S. Delivery of drugs and biomolecules using carbon nanotubes. Carbon 2011, 49, 4077–4097. [Google Scholar] [CrossRef]
- Su, Z.D.; Zhu, S.H.; Donkor, A.D.; Tzoganakis, C.; Honek, J.F. Controllable Delivery of Small-Molecule Compounds to Targeted Cells Utilizing Carbon Nanotubes. J. Am. Chem. Soc. 2011, 133, 6874–6877. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Mataraza, J.M.; Qin, Z.H.; Huang, Z.P.; Huang, J.Y.; Chiles, T.C.; Carnahan, D.; Kempa, K.; Ren, Z.F. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods 2005, 2, 449–454. [Google Scholar] [CrossRef]
- Taylor, A.; Lipert, K.; Kramer, K.; Hampel, S.; Fussel, S.; Meyel, A.; Klingeler, R.; Ritschel, M.; Leonhardt, A.; Buchner, B.; et al. Biocompatibility of Iron Filled Carbon Nanotubes In Vitro. J. Nanosci. Nanotech. 2009, 9, 5709–5716. [Google Scholar] [CrossRef] [PubMed]
- Marega, R.; De Leo, F.; Pineux, F.; Sgrignani, J.; Magistrato, A.; Naik, A.D.; Garcia, Y.; Flamant, L.; Michiels, C.; Bonifazi, D. Functionalized Fe-Filled Multiwalled Carbon Nanotubes as Multifunctional Scaffolds for Magnetization of Cancer Cells. Adv. Funct. Mater. 2013, 23, 3173–3184. [Google Scholar] [CrossRef]
- Bahr, J.L.; Tour, J.M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem. Mater. 2001, 13, 3823–3824. [Google Scholar] [CrossRef]
- De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Kolosnjaj-Tabi, J.; Hartman, K.B.; Boudjemaa, S.; Ananta, J.S.; Morgant, G.; Szwarc, H.; Wilson, L.J.; Moussa, F. In Vivo Behavior of Large Doses of Ultrashort and Full-Length Single-Walled Carbon Nanotubes after Oral and Intraperitoneal Administration to Swiss Mice. Acs Nano. 2010, 4, 1481–1492. [Google Scholar] [CrossRef]
- Wolski, P.; Nieszporek, K.; Panczyk, T. Carbon Nanotubes and Short Cytosine-Rich Telomeric DNA Oligomeres as Platforms for Controlled Release of Doxorubicin-A Molecular Dynamics Study. Int. J. Mol. Sci. 2020, 21, 3619. [Google Scholar] [CrossRef]
- Cherkasov, V.R.; Mochalova, E.N.; Babenyshev, A.V.; Vasilyeva, A.V.; Nikitin, P.I.; Nikitin, M.P. Nanoparticle Beacons: Supersensitive Smart Materials with On/Off-Switchable Affinity to Biomedical Targets. Acs Nano. 2020, 14, 1792–1803. [Google Scholar] [CrossRef] [PubMed]
- Kharlamova, M.V. Investigation of growth dynamics of carbon nanotubes. Beilstein J. Nanotechnol. 2017, 8, 826–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlov, A.V.; Pushkarev, A.V.; Mochalova, E.N.; Nikitin, P.I.; Nikitin, M.P. Development and label-free investigation of logic-gating biolayers for smart biosensing. Sens. Actuators B-Chem. 2018, 257, 971–979. [Google Scholar] [CrossRef]
- Bragina, V.A.; Znoyko, S.L.; Orlov, A.V.; Pushkarev, A.V.; Nikitin, M.P.; Nikitin, P.I. Analytical Platform with Selectable Assay Parameters Based on Three Functions of Magnetic Nanoparticles: Demonstration of Highly Sensitive Rapid Quantitation of Staphylococcal Enterotoxin B in Food. Anal. Chem. 2019, 91, 9852–9857. [Google Scholar] [CrossRef] [PubMed]
- Guteneva, N.V.; Znoyko, S.L.; Orlov, A.V.; Nikitin, M.P.; Nikitin, P.I. Rapid lateral flow assays based on the quantification of magnetic nanoparticle labels for multiplexed immunodetection of small molecules: Application to the determination of drugs of abuse. Microchim. Acta 2019, 186, 1–9. [Google Scholar] [CrossRef]
- Claussen, J.C.; Franklin, A.D.; ul Haque, A.; Porterfield, D.M.; Fisher, T.S. Electrochemical Biosensor of Nanocube-Augmented Carbon Nanotube Networks. Acs Nano 2009, 3, 37–44. [Google Scholar] [CrossRef]
- Pagan, M.; Suazo, D.; del Toro, N.; Griebenow, K. A comparative study of different protein immobilization methods for the construction of an efficient nano-structured lactate oxidase-SWCNT-biosensor. Biosens. Bioelectron. 2015, 64, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, H.; Afkhami, A.; Khoshsafar, H.; Hajian, A.; Shahriyari, A. Protein capped Cu nanoclusters-SWCNT nanocomposite as a novel candidate of high performance platform for organophosphates enzymeless biosensor. Biosens. Bioelectron. 2017, 89, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Chimowa, G.; Yang, L.; Lonchambon, P.; Hungria, T.; Datas, L.; Vieu, C.; Flahaut, E. Tailoring of Double-Walled Carbon Nanotubes for Formaldehyde Sensing through Encapsulation of Selected Materials. Phys. Status Solidi A-Appl. Mater. Sci. 2019, 216, 1900279. [Google Scholar] [CrossRef] [Green Version]
- Quang, N.H.; Van Trinh, M.; Lee, B.H.; Huh, J.S. Effect of NH3 gas on the electrical properties of single-walled carbon nanotube bundles. Sens. Actuators B-Chem. 2006, 113, 341–346. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Huh, J.S. Behavior of single-walled carbon nanotube-based gas sensors at various temperatures of treatment and operation. Sens. Actuators B-Chem. 2006, 117, 426–430. [Google Scholar] [CrossRef]
- Fu, D.L.; Lim, H.L.; Shi, Y.M.; Dong, X.C.; Mhaisalkar, S.G.; Chen, Y.; Moochhala, S.; Li, L.J. Differentiation of gas molecules using flexible and all-carbon nanotube devices. J. Phys. Chem.C 2008, 112, 650–653. [Google Scholar] [CrossRef]
- Tran, T.H.; Lee, J.W.; Lee, K.; Lee, Y.D.; Ju, B.K. The gas sensing properties of single-walled carbon nanotubes deposited on an aminosilane monolayer. Sens. Actuators B-Chem. 2008, 129, 67–71. [Google Scholar] [CrossRef]
- Pengfei, Q.F.; Vermesh, O.; Grecu, M.; Javey, A.; Wang, O.; Dai, H.J.; Peng, S.; Cho, K.J. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett. 2003, 3, 347–351. [Google Scholar]
- Bekyarova, E.; Davis, M.; Burch, T.; Itkis, M.E.; Zhao, B.; Sunshine, S.; Haddon, R.C. Chemically functionalized single-walled carbon nanotubes as ammonia sensors. J. Phys. Chem. B 2004, 108, 19717–19720. [Google Scholar] [CrossRef]
- Abraham, J.K.; Philip, B.; Witchurch, A.; Varadan, V.K.; Reddy, C.C. A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor. Smart Mater. Struct. 2004, 13, 1045–1049. [Google Scholar] [CrossRef]
- Kong, J.; Chapline, M.G.; Dai, H.J. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater. 2001, 13, 1384–1386. [Google Scholar] [CrossRef]
- Fedi, F.; Domanov, O.; Shiozawa, H.; Yanagi, K.; Lacovig, P.; Lizzit, S.; Goldoni, A.; Pichler, T.; Ayala, P. Reversible changes in the electronic structure of carbon nanotube-hybrids upon NO2 exposure under ambient conditions. J. Mater. Chem. A 2020, 8, 9753–9759. [Google Scholar] [CrossRef] [Green Version]
- Jensen, A.; Hauptmann, J.R.; Nygard, J.; Lindelof, P.E. Magnetoresistance in ferromagnetically contacted single-wall carbon nanotubes. Phys. Rev. B 2005, 72, 035419. [Google Scholar] [CrossRef] [Green Version]
- Tombros, N.; van der Molen, S.J.; van Wees, B.J. Separating spin and charge transport in single-wall carbon nanotubes. Phys. Rev. B 2006, 73, 233403. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.; Kontos, T.; Furer, J.; Hoffmann, C.; Graber, M.; Cottet, A.; Schonenberger, C. Electric field control of spin transport. Nat. Phys. 2005, 1, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Gimenez-Lopez, M.D.; Moro, F.; La Torre, A.; Gomez-Garcia, C.J.; Brown, P.D.; van Slageren, J.; Khlobystov, A.N. Encapsulation of single-molecule magnets in carbon nanotubes. Nat. Commun. 2011, 2, 1–6. [Google Scholar]
- Nakanishi, R.; Satoh, J.; Katoh, K.; Zhang, H.T.; Breedlove, B.K.; Nishijima, M.; Nakanishi, Y.; Omachi, H.; Shinohara, H.; Yamashita, M. DySc2N@C-80 Single-Molecule Magnetic Metallofullerene Encapsulated in a Single-Walled Carbon Nanotube. J. Am. Chem. Soc. 2018, 140, 10955–10959. [Google Scholar] [CrossRef] [PubMed]
- Westerstrom, R.; Uldry, A.C.; Stania, R.; Dreiser, J.; Piamonteze, C.; Muntwiler, M.; Matsui, F.; Rusponi, S.; Brune, H.; Yang, S.; et al. Surface Aligned Magnetic Moments and Hysteresis of an Endohedral Single-Molecule Magnet on a Metal. Phys. Rev. Lett. 2015, 114, 087201. [Google Scholar] [CrossRef] [Green Version]
- Westerstrom, R.; Dreiser, J.; Piamonteze, C.; Muntwiler, M.; Weyeneth, S.; Kramer, K.; Liu, S.X.; Decurtins, S.; Popov, A.; Yang, S.F.; et al. Tunneling, remanence, and frustration in dysprosium-based endohedral single-molecule magnets. Phys. Rev. B 2014, 89, 060406. [Google Scholar] [CrossRef] [Green Version]
- Avdoshenko, S.M.; Fritz, F.; Schlesier, C.; Kostanyan, A.; Dreiser, J.; Luysberg, M.; Popov, A.A.; Meyer, C.; Westerstrom, R. Partial magnetic ordering in one-dimensional arrays of endofullerene single-molecule magnet peapods. Nanoscale 2018, 10, 18153–18160. [Google Scholar] [CrossRef] [Green Version]
- Kharlamova, M.V.; Kramberger, C.; Saito, T.; Pichler, T. Diameter and metal-dependent growth properties of inner tubes inside metallocene-filled single-walled carbon nanotubes. Fuller. Nanotub. Carbon Nanostructures 2020, 28, 20–26. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C. Metal Cluster Size-Dependent Activation Energies of Growth of Single-Chirality Single-Walled Carbon Nanotubes inside Metallocene-Filled Single-Walled Carbon Nanotubes. Nanomaterials 2021, 11, 2649. [Google Scholar] [CrossRef]
- Benjamin, S.C.; Ardavan, A.; Briggs, G.A.D.; Britz, D.A.; Gunlycke, D.; Jefferson, J.; Jones, M.A.G.; Leigh, D.F.; Lovett, B.W.; Khlobystov, A.N.; et al. Towards a fullerene-based quantum computer. J. Phys.-Condens. Mat. 2006, 18, S867–S883. [Google Scholar] [CrossRef] [Green Version]
- Aygun, M.; Stoppiello, C.T.; Lebedeva, M.A.; Smith, E.F.; Gimenez-Lopez, M.D.; Khlobystov, A.N.; Chamberlain, T.W. Comparison of alkene hydrogenation in carbon nanoreactors of different diameters: Probing the effects of nanoscale confinement on ruthenium nanoparticle catalysis. J. Mater. Chem. A 2017, 5, 21467–21477. [Google Scholar] [CrossRef]
- Chamberlain, T.W.; Earley, J.H.; Anderson, D.P.; Khlobystov, A.N.; Bourne, R.A. Catalytic nanoreactors in continuous flow: Hydrogenation inside single-walled carbon nanotubes using supercritical CO2. Chem. Commun. 2014, 50, 5200–5202. [Google Scholar] [CrossRef]
- Che, G.L.; Lakshmi, B.B.; Martin, C.R.; Fisher, E.R. Metal-nanocluster-filled carbon nanotubes: Catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 1999, 15, 750–758. [Google Scholar] [CrossRef]
- Pan, X.L.; Fan, Z.L.; Chen, W.; Ding, Y.J.; Luo, H.Y.; Bao, X.H. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511. [Google Scholar] [CrossRef]
- Jordan, J.W.; Lowe, G.A.; McSweeney, R.L.; Stoppiello, C.T.; Lodge, R.W.; Skowron, S.T.; Biskupek, J.; Rance, G.A.; Kaiser, U.; Walsh, D.A.; et al. Host-Guest Hybrid Redox Materials Self-Assembled from Polyoxometalates and Single-Walled Carbon Nanotubes. Adv. Mater. 2019, 31, 1904182. [Google Scholar] [CrossRef]
- Lota, G.; Frackowiak, E.; Mittal, J.; Monthioux, M. High performance supercapacitor from chromium oxide-nanotubes based electrodes. Chem. Phys. Lett. 2007, 434, 73–77. [Google Scholar] [CrossRef]
- Tsang, S.C.; Chen, Y.K.; Harris, P.J.F.; Green, M.L.H. A Simple Chemical Method of Opening and Filling Carbon Nanotubes. Nature 1994, 372, 159–162. [Google Scholar] [CrossRef]
- Pichler, T.; Kukovecz, A.; Kuzmany, H.; Kataura, H.; Achiba, Y. Quasicontinuous electron and hole doping of C-60 peapods. Phys. Rev. B 2003, 67, 125416. [Google Scholar] [CrossRef]
- Dai, Y.T.; Tang, C.; Guo, W.L. Simulation Studies of a Nanogun Based on Carbon Nanotubes. Nano Res. 2008, 1, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Fukumaru, T.; Fujigaya, T.; Nakashima, N. Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property. Sci. Rep. 2015, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharlamova, M.V.; Kramberger, C. Applications of Filled Single-Walled Carbon Nanotubes: Progress, Challenges, and Perspectives. Nanomaterials 2021, 11, 2863. https://doi.org/10.3390/nano11112863
Kharlamova MV, Kramberger C. Applications of Filled Single-Walled Carbon Nanotubes: Progress, Challenges, and Perspectives. Nanomaterials. 2021; 11(11):2863. https://doi.org/10.3390/nano11112863
Chicago/Turabian StyleKharlamova, Marianna V., and Christian Kramberger. 2021. "Applications of Filled Single-Walled Carbon Nanotubes: Progress, Challenges, and Perspectives" Nanomaterials 11, no. 11: 2863. https://doi.org/10.3390/nano11112863
APA StyleKharlamova, M. V., & Kramberger, C. (2021). Applications of Filled Single-Walled Carbon Nanotubes: Progress, Challenges, and Perspectives. Nanomaterials, 11(11), 2863. https://doi.org/10.3390/nano11112863