Magnon Torque Transferred into a Magnetic Insulator through an Antiferromagnetic Insulator
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sinova, J.; Valenzuela, S.O.; Wunderlich, J.; Back, C.H.; Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 2015, 87, 1213–1260. [Google Scholar] [CrossRef]
- Jungwirth, T.; Wunderlich, J.; Olejnik, K. Spin Hall effect devices. Nat. Mater. 2012, 11, 382–390. [Google Scholar] [CrossRef]
- Manchon, A.; Koo, H.C.; Nitta, J.; Frolov, S.M.; Duine, R.A. New perspectives for Rashba spin-orbit coupling. Nat. Mater. 2015, 14, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Soumyanarayanan, A.; Reyren, N.; Fert, A.; Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 2016, 539, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Manchon, A.; Železnỳ, J.; Miron, I.M.; Jungwirth, T.; Sinova, J.; Thiaville, A.; Garello, K.; Gambardella, P. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 2019, 91, 035004. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Pai, C.F.; Li, Y.; Tseng, H.W.; Ralph, D.C.; Buhrman, R.A. Spin-torque switching with the giant spin Hall effect of tantalum. Science 2012, 336, 555–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miron, I.M.; Garello, K.; Gaudin, G.; Zermatten, P.J.; Costache, M.V.; Auffret, S.; Bandiera, S.; Rodmacq, B.; Schuhl, A.; Gambardella, P. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 2011, 476, 189–193. [Google Scholar] [CrossRef]
- Garello, K.; Miron, I.M.; Avci, C.O.; Freimuth, F.; Mokrousov, Y.; Blügel, S.; Auffret, S.; Boulle, O.; Gaudin, G.; Gambardella, P. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 2013, 8, 587. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Wu, J.; Chen, Y.; Jerry, M.J.; Zhang, H.; Xiao, J.Q. Observation of the nonlocal spin-orbital effective field. Nat. Commun. 2013, 4, 1–7. [Google Scholar] [CrossRef]
- Kim, J.; Sinha, J.; Hayashi, M.; Yamanouchi, M.; Fukami, S.; Suzuki, T.; Mitani, S.; Ohno, H. Layer thickness dependence of the current-induced effective field vector in Ta∣CoFeB∣MgO. Nat. Mater. 2013, 12, 240–245. [Google Scholar] [CrossRef]
- Takei, S.; Moriyama, T.; Ono, T.; Tserkovnyak, Y. Antiferromagnet-mediated spin transfer between a metal and a ferromagnet. Phys. Rev. B 2015, 92, 020409. [Google Scholar] [CrossRef] [Green Version]
- Rezende, S.; Rodríguez-Suárez, R.; Azevedo, A. Diffusive magnonic spin transport in antiferromagnetic insulators. Phys. Rev. B 2016, 93, 054412. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, D.; Yang, Y.; Lee, K.; Mishra, R.; Go, G.; Oh, S.H.; Kim, D.H.; Cai, K.; Liu, E.; et al. Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator. Science 2019, 366, 1125–1128. [Google Scholar] [CrossRef]
- Suresh, A.; Bajpai, U.; Petrović, M.D.; Yang, H.; Nikolić, B.K. Magnon-versus Electron-Mediated Spin-Transfer Torque Exerted by Spin Current across an Antiferromagnetic Insulator to Switch the Magnetization of an Adjacent Ferromagnetic Metal. Phys. Rev. Appl. 2021, 15, 034089. [Google Scholar] [CrossRef]
- Avci, C.O.; Quindeau, A.; Pai, C.F.; Mann, M.; Caretta, L.; Tang, A.S.; Onbasli, M.C.; Ross, C.A.; Beach, G.S. Current-induced switching in a magnetic insulator. Nat. Mater. 2017, 16, 309–314. [Google Scholar] [CrossRef]
- Shao, Q.; Tang, C.; Yu, G.; Navabi, A.; Wu, H.; He, C.; Li, J.; Upadhyaya, P.; Zhang, P.; Razavi, S.A.; et al. Role of dimensional crossover on spin-orbit torque efficiency in magnetic insulator thin films. Nat. Commun. 2018, 9, 3612. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Wan, C.; Zhao, M.; Wu, H.; Fang, C.; Yan, Z.; Feng, J.; Liu, H.; Han, X. Spin-orbit torque switching in perpendicular Y3Fe5O12/Pt bilayer. Appl. Phys. Lett. 2019, 114, 192409. [Google Scholar] [CrossRef]
- Liu, L.; Fan, Z.; Chen, Z.; Chen, Z.; Ye, Z.; Zheng, H.; Zeng, Q.; Jia, W.; Li, S.; Wang, N.; et al. Spin–orbit torques in heavy metal/ferrimagnetic insulator bilayers near compensation. Appl. Phys. Lett. 2021, 119, 052401. [Google Scholar] [CrossRef]
- Tang, C.; Sellappan, P.; Liu, Y.; Xu, Y.; Garay, J.E.; Shi, J. Anomalous Hall hysteresis in Tm3Fe5O12/Pt with strain-induced perpendicular magnetic anisotropy. Phys. Rev. B 2016, 94, 140403. [Google Scholar] [CrossRef] [Green Version]
- Pai, C.F.; Mann, M.; Tan, A.J.; Beach, G.S. Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy. Phys. Rev. B 2016, 93, 144409. [Google Scholar] [CrossRef] [Green Version]
- Finley, J.; Liu, L. Spin-orbit-torque efficiency in compensated ferrimagnetic cobalt-terbium alloys. Phys. Rev. Appl. 2016, 6, 054001. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.; Li, J.; Hou, D.; Arenholz, E.; N’Diaye, A.T.; Tan, A.; Uchida, K.I.; Sato, K.; Okamoto, S.; Tserkovnyak, Y.; et al. Spin-current probe for phase transition in an insulator. Nat. Commun. 2016, 7, 12670. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.; Gao, T.; Harumoto, T.; Zhang, Z.; Nakamura, Y.; Shi, J. Asymmetry in magnetic behavior caused by superposition of unidirectional and four-fold magnetic anisotropies in CoPt/FeMn bilayers. Appl. Surf. Sci. 2019, 480, 148–153. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Chen, Z.; Zhao, X.; Cui, B.; Zheng, H.; Liu, L.; Jia, W.; Li, T.; Ye, Z.; Qiu, M.; et al. Magnon Torque Transferred into a Magnetic Insulator through an Antiferromagnetic Insulator. Nanomaterials 2021, 11, 2766. https://doi.org/10.3390/nano11112766
Chen Z, Chen Z, Zhao X, Cui B, Zheng H, Liu L, Jia W, Li T, Ye Z, Qiu M, et al. Magnon Torque Transferred into a Magnetic Insulator through an Antiferromagnetic Insulator. Nanomaterials. 2021; 11(11):2766. https://doi.org/10.3390/nano11112766
Chicago/Turabian StyleChen, Zhiren, Zehan Chen, Xiaotian Zhao, Baoshan Cui, Hongnan Zheng, Lin Liu, Wei Jia, Tianhui Li, Zhixiang Ye, Mingxia Qiu, and et al. 2021. "Magnon Torque Transferred into a Magnetic Insulator through an Antiferromagnetic Insulator" Nanomaterials 11, no. 11: 2766. https://doi.org/10.3390/nano11112766
APA StyleChen, Z., Chen, Z., Zhao, X., Cui, B., Zheng, H., Liu, L., Jia, W., Li, T., Ye, Z., Qiu, M., Wang, N., Ma, L., & An, H. (2021). Magnon Torque Transferred into a Magnetic Insulator through an Antiferromagnetic Insulator. Nanomaterials, 11(11), 2766. https://doi.org/10.3390/nano11112766