Design of Hierarchical NiCo2O4 Nanocages with Excellent Electrocatalytic Dynamic for Enhanced Methanol Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of NiCo2O4 NCs
2.3. Electrochemical Measurements
2.4. Materials Characterization
3. Results and Discussion
3.1. Characterization
3.2. Electrocatalytic Activity of NiCo2O4 NCs/GCE towards Methanol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Joghee, P.; Malik, J.N.; Pylypenko, S.; O’Hayre, R. A review on direct methanol fuel cells–In the perspective of energy and sustainability. MRS Energy Sustain. 2015, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Bangyang, J.; Tang, H.; Pan, M. Well-ordered sulfonated silica electrolyte with high proton conductivity and enhanced selectivity at elevated temperature for DMFC. Int. J. Hydrog. Energy 2012, 37, 4612–4618. [Google Scholar] [CrossRef]
- Gong, L.; Yang, Z.; Li, K.; Xing, W.; Liu, C.; Ge, J. Recent development of methanol electrooxidation catalysts for direct methanol fuel cell. J. Energy Chem. 2018, 27, 1618–1628. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Z.; Yang, Y.; Su, D. The growth and enhanced catalytic performance of Au@Pd core–shell nanodendrites. Nanoscale 2013, 5, 139–142. [Google Scholar] [CrossRef]
- Huang, H.; Wang, X. Pd nanoparticles supported on low-defect graphene sheets: For use as high-performance electrocatalysts for formic acid and methanol oxidation. J. Mater. Chem. 2012, 22, 22533–22541. [Google Scholar] [CrossRef]
- Kua, J.; Goddard, W.A. Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells. J. Am. Chem. Soc. 1999, 121, 10928–10941. [Google Scholar] [CrossRef]
- Liu, Y.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K.-I. Transition Metal Oxides as DMFC Cathodes Without Platinum. J. Electrochem. Soc. 2007, 154, B664. [Google Scholar] [CrossRef]
- Wang, W.; Chu, Q.; Zhang, Y.; Zhu, W.; Wang, X.; Liu, X. Nickel foam supported mesoporous NiCo2O4 arrays with excellent methanol elec-tro-oxidation performance. New J. Chem. 2015, 39, 6491–6497. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, L.; Chen, Y.; Lu, X.F.; Gao, S.; Lou, X.W. Designed formation of double-shelled Ni–Fe layered-double-hydroxide nanocages for efficient Oxygen Evolution Reaction. Adv. Mater. 2020, 32, 1906432. [Google Scholar] [CrossRef]
- Dou, Y.; Lian, R.; Zhang, Y.; Zhao, Y.; Chen, G.; Wei, Y.; Peng, Z. Co9S8@carbon porous nanocages derived from a metal–organic framework: A highly efficient bifunctional catalyst for aprotic Li–O2 batteries. J. Mater. Chem. A 2018, 6, 8595–8603. [Google Scholar] [CrossRef]
- Kumar, R. NiCo2O4 Nano-/Microstructures as High-Performance Biosensors: A Review. Nano-Micro Lett. 2020, 12, 1–52. [Google Scholar] [CrossRef]
- Tian, L.; He, G.; Cai, Y.; Wu, S.; Su, Y.; Yan, H.; Yang, C.; Chen, Y.; Li, L. Co3O4 based nonenzymatic glucose sensor with high sensitivity and reliable stability derived from hollow hierarchical architecture. Nanotechnology 2018, 29, 075502. [Google Scholar] [CrossRef]
- Nai, J.; Tian, Y.; Guan, X.; Guo, L. Pearson’s Principle Inspired Generalized Strategy for the Fabrication of Metal Hydroxide and Oxide Nanocages. J. Am. Chem. Soc. 2013, 135, 16082–16091. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, B.; Ma, W.; Du, Y.; Han, X.; Xu, P. Pearson’s principle-inspired strategy for the synthesis of amorphous transition metal hydroxide hollow nanocubes for electrocatalytic oxygen evolution. Mater. Chem. Front. 2018, 2, 1523–1528. [Google Scholar] [CrossRef]
- He, G.; Tian, L.; Cai, Y.; Wu, S.; Su, Y.; Yan, H.; Pu, W.; Zhang, J.; Li, L. Sensitive Nonenzymatic Electrochemical Glucose Detection Based on Hollow Porous NiO. Nanoscale Res. Lett. 2018, 13, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, H.; Zhang, Z.; Hua, Q.; Huang, W. Compositions, Structures, and Catalytic Activities of CeO2@Cu2O Nanocomposites Prepared by the Template-Assisted Method. Langmuir 2014, 30, 6427–6436. [Google Scholar] [CrossRef] [PubMed]
- Marco, J.F.; Gancedo, J.R.; Gracia, M.; Gautier, J.L.; Rios, E.; Berry, F.J. Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods. J. Solid State Chem. 2000, 153, 74–81. [Google Scholar] [CrossRef]
- Kim, J.G.; Pugmire, D.L.; Battaglia, D.; Langell, M.A. Analysis of the NiCo2O4 spinel surface with auger and X-ray photoelectron spec-troscopy. Appl. Surf. Sci. 2000, 165, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, T.; Saied, S.O.; Sullivan, J.L.; Abbot, A. M Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bom-bardment. J. Phys. D 1989, 22, 1185–1195. [Google Scholar] [CrossRef]
- Roginskaya, Y.E.; Morozova, O.V.; Lubnin, E.N.; Ulitina, Y.E.; Lopukhova, G.V.; Trasatti, S. Characterization of bulk and surface composition of CoxNi1-xOy mixed oxides for electrocatalysis. Langmuir 1997, 13, 4621–4627. [Google Scholar] [CrossRef]
- Piedboeuf, M.-L.C.; Job, N.; Aqil, A.; Busby, Y.; Fierro, V.; Celzard, A.; Detrembleur, C.; Léonard, A.F. Understanding the Influence of Surface Oxygen Groups on the Electrochemical Behavior of Porous Carbons as Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 36054–36065. [Google Scholar] [CrossRef]
- Ding, R.; Qi, L.; Jia, M.; Wang, H. Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation. Nanoscale 2014, 6, 1369–1376. [Google Scholar] [CrossRef]
- Qian, L.; Gu, L.; Yang, L.; Yuan, H.; Xiao, D. Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation. Nanoscale 2013, 5, 7388–7396. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, C.; Yu, Y.; Shi, Y.; Yu, Y.; Niu, Z.; Zhang, B. Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Res. 2018, 11, 603–613. [Google Scholar] [CrossRef]
- Gao, B.; Yuan, C.Z.; Su, L.H.; Chen, L.; Zhang, X.G. Nickel oxide coated on ultrasonically pretreated carbon nanotubes for supercapacitor. J. Solid State Electrochem. 2009, 13, 1251–1257. [Google Scholar] [CrossRef]
- Wang, H.; Gao, Q.; Jiang, L. Facile Approach to Prepare Nickel Cobaltite Nanowire Materials for Supercapacitors. Small 2011, 7, 2454–2459. [Google Scholar] [CrossRef] [PubMed]
- Heli, H.; Yadegari, H. Nanoflakes of the cobaltous oxide, CoO: Synthesis and characterization. Electrochim. Acta 2010, 55, 2139–2148. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Liu, Y.; Li, W.; Lu, W.; Huang, H. Facile synthesis of a mechanically robust and highly porous NiO film with excellent electro-catalytic activity towards methanol oxidation. Nanoscale 2016, 8, 11256–11263. [Google Scholar] [CrossRef]
- Khalafallah, D.; Alothman, O.Y.; Fouad, H.; Khalil, K.A. Hierarchical porous engineering of three-dimensional stacked blocks like NiCo2O4 assembled from vertically aligned nanoplates for efficient alcohols electrooxidation. J. Electrochem. Soc. 2018, 165, F1067–F1074. [Google Scholar] [CrossRef]
- An, L.; Ren, Q.; Li, W.; Xu, K.; Cao, Y.; Ji, T.; Zou, R.; Chen, Z.; Hu, J. Highly ordered mesoporous NiCo2O4 with superior pseudo capacitance performance for super-capacitors. J. Mater. Chem. A. Mater. Energy Sustain. 2015, 3, 11503–11510. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Ye, J.; Wei, H.; Hao, J.; Mu, J.; Zhao, S.; Hussain, S. Facile synthesis of three-dimensional NiCo2O4 with different morphology for supercapacitors. RSC Adv. 2016, 6, 70077–70084. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jung, J.C.; Park, S.; Seo, J.G.; Baeck, S.H.; Yoon, J.R.; Yi, J.; Song, I.K. Preparation and performance of cobalt-doped carbon aerogel for supercapacitor. Korean J. Chem. Eng. 2011, 28, 492–496. [Google Scholar] [CrossRef]
- Lv, X.; Zhu, Y.; Jiang, H.; Yang, X.; Liu, Y.; Su, Y.; Huang, J.; Yao, Y.; Li, C. Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalton Trans. 2015, 44, 4148–4154. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Qin, Y.; Guo, X.; Moutanabbir, O.; Ao, X.; Pippel, E.; Zhang, L.; Knez, M. Enhanced Catalytic Activity for Methanol Electro-oxidation of Uniformly Dispersed Nickel Oxide Nanoparticles-Carbon Nanotube Hybrid Materials. Small 2012, 8, 3390–3395. [Google Scholar] [CrossRef] [PubMed]
- Amin, R.; Hameed, R.A.; El-Khatib, K.; Youssef, M.E.; Elzatahry, A. Pt–NiO/C anode electrocatalysts for direct methanol fuel cells. Electrochim. Acta 2012, 59, 499–508. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; He, G.; Zeng, C.; Zhou, D.; Xiang, J.; Chen, W.; Tian, L.; Yang, W.; Cheng, Z.; Song, J. Design of Hierarchical NiCo2O4 Nanocages with Excellent Electrocatalytic Dynamic for Enhanced Methanol Oxidation. Nanomaterials 2021, 11, 2667. https://doi.org/10.3390/nano11102667
Li X, He G, Zeng C, Zhou D, Xiang J, Chen W, Tian L, Yang W, Cheng Z, Song J. Design of Hierarchical NiCo2O4 Nanocages with Excellent Electrocatalytic Dynamic for Enhanced Methanol Oxidation. Nanomaterials. 2021; 11(10):2667. https://doi.org/10.3390/nano11102667
Chicago/Turabian StyleLi, Xue, Gege He, Chong Zeng, Dengmei Zhou, Jing Xiang, Wenbo Chen, Liangliang Tian, Wenyao Yang, Zhengfu Cheng, and Jing Song. 2021. "Design of Hierarchical NiCo2O4 Nanocages with Excellent Electrocatalytic Dynamic for Enhanced Methanol Oxidation" Nanomaterials 11, no. 10: 2667. https://doi.org/10.3390/nano11102667
APA StyleLi, X., He, G., Zeng, C., Zhou, D., Xiang, J., Chen, W., Tian, L., Yang, W., Cheng, Z., & Song, J. (2021). Design of Hierarchical NiCo2O4 Nanocages with Excellent Electrocatalytic Dynamic for Enhanced Methanol Oxidation. Nanomaterials, 11(10), 2667. https://doi.org/10.3390/nano11102667