Annealing Condition Effects on the Structural Properties of FePt Nanoparticles Embedded in MgO via Pulsed Laser Deposition
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, S.H.; Murray, C.B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jiang, Y.H.; Zhang, X.L.; Wang, Y.X.; Zhang, Y.J.; Liu, H.L.; Zhai, H.J.; Liu, Y.Q.; Yang, J.H.; Yan, Y.S. Effects of annealing temperature on the structure and magnetic properties of the L10-FePt nanoparticles synthesized by the modified sol-gel method. Powder Technol. 2013, 239, 217–222. [Google Scholar] [CrossRef]
- Weisheit, M.; Schultz, L.; Fahler, S. Temperature dependence of FePt thin film growth on MgO(100). Thin Solid Films 2007, 515, 3952–3955. [Google Scholar] [CrossRef]
- Kurth, F.; Weisheit, M.; Leistner, K.; Gemming, T.; Holzapfel, B.; Schultz, L.; Fahler, S. Finite-size effects in highly ordered ultrathin FePt films. Phys. Rev. B 2010, 82, 184404. [Google Scholar] [CrossRef]
- Chou, S.W.; Liu, C.L.; Liu, T.M.; Shen, Y.F.; Kuo, L.C.; Wu, C.H.; Hsieh, T.Y.; Wu, P.C.; Tsai, M.R.; Yang, C.C.; et al. Infrared-active quadruple contrast FePt nanoparticles for multiple scale molecular imaging. Biomaterials 2016, 85, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Xiao, F.; Wei, Z.; Guo, X.; Zhu, Y.; Liu, Y.; Li, G.; Yu, Z.; Shao, M.; Wong, W. Direct synthesis of L10-FePt nanoparticles from single-source bimetallic complex and their electrocatalytic applications in oxygen reduction and hydrogen evolution reactions. Nano Res. 2019, 12, 2954–2959. [Google Scholar] [CrossRef]
- Takahashi, Y.K.; Koyama, T.; Ohnuma, M.; Ohkubo, T.; Hono, K. Size dependence of ordering in FePt nanoparticles. J. Appl. Phys. 2004, 95, 2690–2696. [Google Scholar] [CrossRef]
- Yamamoto, S.; Morimoto, Y.; Ono, T.; Takano, M. Magnetically superior and easy to handle L10-FePt nanocrystals. Appl. Phys. Lett. 2005, 87, 032503. [Google Scholar] [CrossRef]
- Yamamoto, S.; Morimoto, Y.; Tamada, Y.; Takahashi, Y.K.; Hono, K.; Ono, T.; Takano, M. Preparation of monodisperse and highly coercive L10-FePt nanoparticles dispersible in nonpolar organic solvents. Chem. Mater. 2006, 18, 5385–5388. [Google Scholar] [CrossRef] [Green Version]
- Tamada, Y.; Morimoto, Y.; Yamamoto, S.; Takano, M.; Nasu, S.; Ono, T. Effects of annealing time on structural and magnetic properties of L10-FePt nanoparticles synthesized by the SiO2-nanoreactor method. J. Magn. Magn. Mater. 2007, 310, 2381–2383. [Google Scholar] [CrossRef] [Green Version]
- Tamada, Y.; Yamamoto, S.; Takano, M.; Nasu, S.; Ono, T. Well-ordered L10-FePt nanoparticles synthesized by improved SiO2-nanoreactor method. Appl. Phys. Lett. 2007, 90, 162509. [Google Scholar] [CrossRef] [Green Version]
- Xiao, T.T.; Wang, X.M.; Yu, J.; Yang, Q.; Peng, L.P.; Zhao, Y.; Wang, X.M.; Yan, D.W.; Cai, C.Z.; Wu, W.D. The microstructure, strain state and optical properties of FePt nano-clusters in MgO matrix. J. Alloys Compd. 2018, 731, 554–559. [Google Scholar] [CrossRef]
- Yu, J.; Xiao, T.T.; Wang, X.M.; Zhao, Y.; Li, X.J.; Xu, X.B.; Wu, W.D. Splitting of the ultraviolet plasmon resonance from controlling FePt nanoparticles morphology. Appl. Surf. Sci. 2018, 435, 1–6. [Google Scholar] [CrossRef]
- Elkins, K.; Li, D.; Poudyal, N.; Nandwana, V.; Jin, Z.; Chen, K.; Liu, J.P. Monodisperse face-centred tetragonal FePt nanoparticles with giant coercivity. J. Phys. D Appl. Phys. 2015, 38, 2306–2309. [Google Scholar] [CrossRef]
- Li, D.R.; Poudyal, N.; Nandwana, V.; Jin, Z.Q.; Elkins, K.; Liu, J.P. Hard magnetic FePt nanoparticles by salt-matrix annealing. J. Appl. Phys. 2006, 99, 08E911. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.A.; Dutson, J.D.; O’Grady, K.; Hickey, B.J.; Li, D.R.; Poudyal, N.; Liu, J.P. Magnetic Properties of FePt Nanoparticles Annealed With NaCl. IEEE Trans. Magn. 2006, 42, 3066–3068. [Google Scholar] [CrossRef] [Green Version]
- Rong, C.B.; Poudyal, N.; Chaubey, G.S.; Nandwana, V.; Liu, Y.; Wu, Y.Q.; Kramer, M.J.; Kozlov, M.E.; Baughman, R.H.; Liu, J.P. High thermal stability of carbon-coated L10-FePt nanoparticles prepared by salt-matrix annealing. J. Appl. Phys. 2008, 103, 07E131. [Google Scholar] [CrossRef] [Green Version]
- Moradi, R.; Sebt, A.; Arabi, H. 1Size controlling of L10-FePt Nanoparticles during high temperature annealing on the surface of carbon nanotubes. J. Inorg. Organomet. Polym. 2016, 26, 344–352. [Google Scholar] [CrossRef]
- Yang, W.; Yu, Y.; Feng, M.; Li, J.; Li, H. Structure and magnetic properties of graded (001)-oriented FePt films prepared by magnetron sputtering and rapid thermal annealing. J. Supercond. Nov. Magn. 2018, 31, 3251–3254. [Google Scholar] [CrossRef]
- Ying, Y.; Wang, H.; Zheng, J.; Yu, J.; Li, W.; Qiao, L.; Cai, W.; Che, S. Preparation, microstructure, and magnetic properties of electrodeposited nanocrystalline L10 FePt films. J. Supercond. Nov. Magn. 2020, 33, 3563–3570. [Google Scholar] [CrossRef]
- Hsiao, S.N.; Liu, S.H.; Chen, S.K.; Chin, T.S.; Lee, H.Y. Direct evidence for stress-induced (001) anisotropy of rapid-annealed FePt thin films. Appl. Phys. Lett. 2012, 100, 261909. [Google Scholar] [CrossRef]
- Berry, D.C.; Barmak, K. Time-temperature-transformation diagrams for the A1 to L10 phase transformation in FePt and FeCuPt thin films. J. Appl. Phys. 2007, 101, 014905. [Google Scholar] [CrossRef] [Green Version]
- Buschbeck, J.; Fähler, S.; Weisheit, M.; Leistner, K.; McCord, J.; Rellinghaus, B.; Schultz, L. Thermodynamics and kinetics during pulsed laser annealing and patterning of FePt films. J. Appl. Phys. 2006, 100, 123901. [Google Scholar] [CrossRef]
- Leistner, K.; Thomas, J.; Schleorb, H.; Weisheit, M.; Schultz, L.; Faahler, S. Highly coercive electrodeposited FePt films by postannealing in hydrogen. Appl. Phys. Lett. 2004, 85, 3498. [Google Scholar] [CrossRef]
- Vladymyrskyi, I.A.; Karpets, M.V.; Ganss, F.; Katona, G.L.; Beke, D.L.; Sidorenko, S.I.; Nagata, T.; Nabatame, T.; Chikyow, T.; Beddies, G.; et al. Influence of the annealing atmosphere on the structural properties of FePt thin films. J. Appl. Phys. 2013, 114, 164314. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.H.; Wu, Y.C.; Chiang, C.C. Effects of forming gas annealing on low-temperature ordering of FePt films. J. Appl. Phys. 2005, 97, 10H305. [Google Scholar] [CrossRef]
- Liu, C.; Klemmer, T.J.; Shukla, N.; Wu, X.W.; Weller, D.; Tanase, M.; Laughlin, D. Oxidation of FePt nanoparticles. J. Magn. Magn. Mater. 2003, 266, 96–101. [Google Scholar] [CrossRef]
- Tran, Y.; Wright, C.D. Suppressed silicide formation in FePt thin films by nitrogen addition. J. Magn. Magn. Mater. 2013, 331, 216–219. [Google Scholar] [CrossRef] [Green Version]
- Addato, S.D.; Grillo, V.; Bona, A.; Luches, P.; Frabboni, S.; Valeri, S.; Lupo, P.; Casoli, F.; Albertini, F. Controlled co-deposition of FePt nanoparticles embedded in MgO: Adetailed investigation of structure and electronic and magnetic properties. Nanotechnology 2013, 24, 495703. [Google Scholar]
- Liu, X.; Wang, H.; Zuo, S.; Zhang, T.; Dong, Y.; Li, D.; Jiang, C. Dispersible and manipulable magnetic L10-FePt nanoparticles. Nanoscale 2020, 12, 7843. [Google Scholar] [CrossRef]
- Hsiao, S.N.; Chou, C.L.; Liu, S.H.; Chen, S.K. Influence of pressure on (001)-preferred orientation and in-plane residual stress in rapidly annealed FePt thin films. Appl. Surf. Sci. 2020, 509, 145304. [Google Scholar] [CrossRef]
- White, C.W.; Withrow, S.P.; Williams, J.M.; Budai, J.D.; Meldrum, A.; Sorge, K.D.; Thompson, J.R.; Boatner, L.A. FePt nanoparticles formed in Al2O3 by ion beam synthesis: Annealing environment effects. J. Appl. Phys. 2004, 95, 8160. [Google Scholar] [CrossRef]
- White, C.W.; Withrow, S.P.; Budai, J.D.; Thomas, D.K.; Williams, J.M.; Meldrum, A.; Sorge, K.D.; Thompson, J.R.; Ownby, G.W.; Wendelken, J.F.; et al. Annealing-environment effects on the properties of CoPt nanoparticles formed in single-crystal Al2O3 by ion implantation. J. Appl. Phys. 2005, 98, 114311. [Google Scholar] [CrossRef]
- Gao, M.; Li, A.; Zhang, J.; Kong, J.; Liu, X.; Li, X.; Wu, D. Fabrication and magnetic properties of FePt nanoparticle assemblies embedded in MgO-matrix systems. J. Sol-Gel Sci. Technol. 2014, 71, 283–290. [Google Scholar] [CrossRef]
- Hsiao, S.N.; Wu, S.C.; Liu, S.H.; Tsai, J.L.; Chen, S.K.; Chang, Y.C.; Lee, H.Y. Preventing dewetting during rapid-thermal annealing of FePt films with enhanced L10 ordering by introducing Ag cap-layers. J. Magn. Magn. Mater. 2015, 394, 121–125. [Google Scholar] [CrossRef]
- Leroya, F.; Borowik, L.; Cheynis, F.; Almadori, Y.; Curiotto, S.; Trautmann, M.; Barbé, J.C.; Müller, P. How to control solid state dewetting: A short review. Surf. Sci. Rep. 2016, 71, 391–409. [Google Scholar] [CrossRef]
- Kim, J.S.; Koo, Y.M.; Lee, B.J.; Lee, S.R. The origin of (001) texture evolution in FePt thin films on amorphous substrates. J. Appl. Phys. 2006, 99, 053906. [Google Scholar] [CrossRef] [Green Version]
- Boyen, H.-G.; Fauth, K.; Stahl, B.; Ziemann, P.; Kastle, G.; Weig, F.; Banhart, F.; Heßler, M.; Schutz, G.; Gajbhije, N.S.; et al. Electronic and magnetic properties of ligand-free FePt nanoparticles. Adv. Mater. 2005, 17, 574. [Google Scholar] [CrossRef]
- Salahpour, M.; Sebt, S.A.; Khajehnezhad, A. The growth and annealing of FePt nanoparticles in the presence of magnetic field. J. Supercond. Nov. Magn. 2020, 33, 1489–1493. [Google Scholar] [CrossRef]
- Wu, X.F.K.; Serin, V.; Warot-Fonrose, B.; He, Q.; Yang, R.; Zhang, L.; Huang, X. Electron energy-loss magnetic chiral dichroism of magnetic iron film affected by an underlayer in a double-layer structure. Appl. Phys. Lett. 2019, 115, 112401. [Google Scholar]
Sample No. | Atmosphere | Temperature (°C) | Time (Hours) |
---|---|---|---|
S1 | unannealed | -- | -- |
S2 | O2 (~5 Pa) | 800 °C | 4 |
S3 | O2 (~5 Pa) | 700 °C | 4 |
S4 | high vacuum (~5 × 10−5 Pa) | 800 °C | 4 |
S5 | H2/Ar (95%Ar + 5% H2) | 800 °C | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, T.; Yang, Q.; Yu, J.; Xiong, Z.; Wu, W. Annealing Condition Effects on the Structural Properties of FePt Nanoparticles Embedded in MgO via Pulsed Laser Deposition. Nanomaterials 2021, 11, 131. https://doi.org/10.3390/nano11010131
Xiao T, Yang Q, Yu J, Xiong Z, Wu W. Annealing Condition Effects on the Structural Properties of FePt Nanoparticles Embedded in MgO via Pulsed Laser Deposition. Nanomaterials. 2021; 11(1):131. https://doi.org/10.3390/nano11010131
Chicago/Turabian StyleXiao, Tingting, Qi Yang, Jian Yu, Zhengwei Xiong, and Weidong Wu. 2021. "Annealing Condition Effects on the Structural Properties of FePt Nanoparticles Embedded in MgO via Pulsed Laser Deposition" Nanomaterials 11, no. 1: 131. https://doi.org/10.3390/nano11010131
APA StyleXiao, T., Yang, Q., Yu, J., Xiong, Z., & Wu, W. (2021). Annealing Condition Effects on the Structural Properties of FePt Nanoparticles Embedded in MgO via Pulsed Laser Deposition. Nanomaterials, 11(1), 131. https://doi.org/10.3390/nano11010131