Facile One-Step Fabrication of Phthalocyanine–Graphene–Bacterial–Cellulose Nanocomposite with Superior Catalytic Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of [email protected]
2.3. Characterization
2.4. Catalytic Oxidation Studies and Analysis
3. Results and Discussion
3.1. Materials Characterization
3.2. Study of Interaction between PcS and Graphene
3.3. Catalytic Oxidation Performance of [email protected]
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Claessens, C.G.; Hahn, U.; Torres, T. Phthalocyanines: From outstanding electronic properties to emerging applications. Chem. Rec. 2008, 8, 75–97. [Google Scholar] [CrossRef]
- Imada, H.; Miwa, K.; Imai-Imada, M.; Kawahara, S.; Kimura, K.; Kim, Y. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 2016, 538, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Doppagne, B.; Chong, M.C.; Bulou, H.; Boeglin, A.; Scheurer, F.; Schull, G. Electrofluorochromism at the single-molecule level. Science 2018, 361, 251–254. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sorokin, A.B. Phthalocyanine metal complexes in catalysis. Chem. Rev. 2013, 113, 8152–8191. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Joulie, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C.P. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 2019, 365, 367–369. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jiang, Z.; Lu, X.; Liang, Y.; Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 2019, 575, 639–642. [Google Scholar] [CrossRef]
- Li, B.; Sun, L.; Bian, J.; Sun, N.; Sun, J.; Chen, L.; Li, Z.; Jing, L. Controlled synthesis of novel Z-scheme iron phthalocyanine/porous WO3 nanocomposites as efficient photocatalysts for CO2 reduction. Appl. Catal. B Environ. 2020, 270, 118849. [Google Scholar] [CrossRef]
- Liu, Y.S.; McCrory, C.C.L. Modulating the mechanism of electrocatalytic CO2 reduction by cobalt phthalocyanine through polymer coordination and encapsulation. Nat. Commun. 2019, 10, 1683. [Google Scholar] [CrossRef]
- Makarov, S.G.; Ketkov, S.Y.; Wohrle, D. A planar binuclear cobalt(ii) phthalocyanine as a highly efficient catalyst for the oxidation of a mercaptan. Chem. Commun. 2020, 56, 5653–5656. [Google Scholar] [CrossRef]
- De Souza, F.A.L.; Amorim, R.G.; Prasongkit, J.; Scopel, W.L.; Scheicher, R.H.; Rocha, A.R. Topological line defects in graphene for applications in gas sensing. Carbon 2018, 129, 803–808. [Google Scholar] [CrossRef][Green Version]
- Browne, M.P.; Novotny, F.; Sofer, Z.; Pumera, M. 3D printed graphene electrodes’ electrochemical activation. ACS Appl. Mater. Interfaces 2018, 10, 40294–40301. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.; Nunespereira, J.; Oliveira, J.A.; Silva, J.; Moreira, J.A.; Carabineiro, S.A.C.; Buijnsters, J.G.; Lancerosmendez, S. High-performance graphene-based carbon nanofiller/polymer composites for piezoresistive sensor applications. Compos. Sci. Technol. 2017, 153, 241–252. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, K.; Dixit, A.R. Carbon nanotube- and graphene-reinforced multiphase polymeric composites: Review on their properties and applications. J. Mater. Sci. 2020, 55, 2682–2724. [Google Scholar] [CrossRef]
- Lv, C.; Hu, C.; Luo, J.H.; Liu, S.; Qiao, Y.; Zhang, Z.; Song, J.F.; Shi, Y.; Cai, J.G.; Watanabe, A. Recent Advances in Graphene-Based Humidity Sensors. Nanomaterials 2019, 9, 422. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Guo, C.C.; Zhang, J.F.; Xu, W.; Liu, K.; Yuan, X.D.; Qin, S.Q.; Zhu, Z.H. Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications. Nanomaterials 2018, 8, 1033. [Google Scholar] [CrossRef][Green Version]
- Xu, L.J.; Wang, J.L. The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1042–1105. [Google Scholar] [CrossRef]
- Machado, B.F.; Serp, P. Graphene-based materials for catalysis. Catal. Sci. Technol. 2012, 2, 54–75. [Google Scholar] [CrossRef]
- Legrand, U.; Meunier, J.L.; Berk, D. Iron functionalization on graphene nanoflakes using thermal plasma for catalyst applications. Appl. Catal. A Gen. 2016, 528, 36–43. [Google Scholar] [CrossRef]
- Pham, N.N.T.; Park, J.S.; Kim, H.; Kim, H.; Son, Y.; Kang, S.G.; Lee, S.G. Catalytic performance of graphene quantum dot supported manganese phthalocyanine for efficient oxygen reduction: Density functional theory approach. New J. Chem. 2019, 43, 348–355. [Google Scholar] [CrossRef]
- Liu, D.; Long, Y.T. Superior catalytic activity of electrochemically reduced graphene oxide supported iron phthalocyanines toward oxygen reduction reaction. ACS Appl. Mater. Interfaces 2015, 7, 24063–24068. [Google Scholar] [CrossRef]
- Roth, A.; Ragoussi, M.E.; Wibmer, L.; Katsukis, G.; de la Torre, G.; Torres, T.; Guldi, D.M. Electron-accepting phthalocyanine pyrene conjugates: Towards liquid phase exfoliation of graphite and photoactive nanohybrid formation with graphene. Chem. Sci. 2014, 5, 3432–3438. [Google Scholar] [CrossRef][Green Version]
- Ragoussi, M.E.; Katsukis, G.; Roth, A.; Malig, J.; de la Torre, G.; Guldi, D.M.; Torres, T. Electron-donating behavior of few-layer graphene in covalent ensembles with electron-accepting phthalocyanines. J. Am. Chem. Soc. 2014, 136, 4593–4598. [Google Scholar] [CrossRef] [PubMed]
- Wibmer, L.; Lourenco, L.M.O.; Roth, A.; Katsukis, G.; Neves, M.G.P.M.S.; Cavaleiro, J.A.S.; Tome, J.P.C.; Torres, T.; Guldi, D.M. Decorating graphene nanosheets with electron accepting pyridyl-phthalocyanines. Nanoscale 2015, 7, 5674–5682. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mahyari, M.; Shaabani, A. Graphene oxide-iron phthalocyanine catalyzed aerobic oxidation of alcohols. Appl. Catal. A Gen. 2014, 469, 524–531. [Google Scholar] [CrossRef]
- Qiu, B.C.; Xing, M.Y.; Zhang, J.L. Recent advances in three-dimensional graphene based materials for catalysis applications. Chem. Soc. Rev. 2018, 47, 2165–2216. [Google Scholar] [CrossRef]
- Gao, C.; Chen, K.Y.; Wang, Y.; Zhao, Y.; Qu, L.T. 2D graphene-based macroscopic assemblies for micro-supercapacitors. Chemsuschem 2020, 13, 1255–1274. [Google Scholar] [CrossRef]
- Cong, H.P.; Chen, J.F.; Yu, S.H. Graphene-based macroscopic assemblies and architectures: An emerging material system. Chem. Soc. Rev. 2014, 43, 7295–7325. [Google Scholar] [CrossRef]
- Chen, S.L.; Xie, W.J.; Guo, B.F.; Pan, T.; Chen, W.X. Revealing the role of graphene in enhancing the catalytic performance of phthalocyanine immobilized graphene/bacterial cellulose nanocomposite. Cellulose 2019, 26, 7863–7875. [Google Scholar] [CrossRef]
- Zaborniak, I.; Chmielarz, P. Ultrasound-Mediated Atom Transfer Radical Polymerization (ATRP). Materials 2019, 12, 3600. [Google Scholar] [CrossRef][Green Version]
- Zaborniak, I.; Chmielarz, P. Temporally Controlled Ultrasonication-Mediated Atom Transfer Radical Polymerization in Miniemulsion. Macromol. Chem. Phys. 2019, 220, 1900285. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, J.; Tang, J.; Tang, W. Three-Dimensional, Chemically Bonded Polypyrrole/Bacterial Cellulose/Graphene Composites for High-Performance Supercapacitors. Chem. Mater. 2015, 27, 7034–7041. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09 Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Palmisano, G.; Gutierrez, M.C.; Ferrer, M.L.; Gil-Luna, M.D.; Augugliaro, V.; Yurdakal, S.; Pagliaro, M. TiO2/ORMOSIL thin films doped with phthalocyanine dyes: New photocatalytic devices activated by solar light. J. Phys. Chem. C 2008, 112, 2667–2670. [Google Scholar] [CrossRef]
- Wang, Q.L.; Li, H.Y.; Yang, J.H.; Sun, Q.; Li, Q.Y.; Yang, J.J. Iron phthalocyanine-graphene donor-acceptor hybrids for visible-light-assisted degradation of phenol in the presence of H2O2. Appl. Catal. B Environ. 2016, 192, 182–192. [Google Scholar] [CrossRef]
- Stillman, M.J.; Mack, J. Assignment of the optical spectra of metal phthalocyanines through spectral band deconvolution analysis and ZINDO calculations. Coord. Chem. Rev. 2001, 219, 993–1032. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kurokawa, F.; Uyeda, N.; Suito, E. The metal-ligand vibrations in the infrared spectra of various metal phthalocyanines. Spectrochim. Acta Part. A 1970, 26, 1305–1311. [Google Scholar] [CrossRef]
- Fu, M.; Jiao, Q.; Zhao, Y. In situ fabrication and characterization of cobalt ferrite nanorods/graphene composites. Mater. Charact. 2013, 86, 303–315. [Google Scholar] [CrossRef]
- Jeong, H.K.; Lee, Y.P.; Lahaye, R.J.W.E.; Park, M.; An, K.H.; Kim, I.J.; Yang, C.; Park, C.Y.; Ruoff, R.S.; Lee, Y.H. Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. 2008, 130, 1362–1366. [Google Scholar] [CrossRef]
- Freitas, R.R.Q.; Rivelino, R.; Mota, F.D.; de Castilho, C.M.C. DFT studies of the interactions of a graphene layer with small water aggregates. J. Phys. Chem. A 2011, 115, 12348–12356. [Google Scholar] [CrossRef]
- Rasool, H.I.; Song, E.B.; Mecklenburg, M.; Regan, B.C.; Wang, K.L.; Weiller, B.H.; Gimzewski, J.K. Atomic-scale characterization of graphene grown on copper (100) single crystals. J. Am. Chem. Soc. 2011, 133, 12536–12543. [Google Scholar] [CrossRef]
- Lu, W.Y.; Li, N.; Chen, W.X.; Yao, Y.Y. The role of multiwalled carbon nanotubes in enhancing the catalytic activity of cobalt tetraaminophthalocyanine for oxidation of conjugated dyes. Carbon 2009, 47, 3337–3345. [Google Scholar] [CrossRef]
- Chen, S.; Huang, X.; Xu, Z. Decoration of phthalocyanine on multiwalled carbon nanotubes/cellulose nanofibers nanocomposite for decoloration of dye wastewater. Compos. Sci. Technol. 2014, 101, 11–16. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Q.; Chen, S. Facile One-Step Fabrication of Phthalocyanine–Graphene–Bacterial–Cellulose Nanocomposite with Superior Catalytic Performance. Nanomaterials 2020, 10, 1673. https://doi.org/10.3390/nano10091673
Hong Q, Chen S. Facile One-Step Fabrication of Phthalocyanine–Graphene–Bacterial–Cellulose Nanocomposite with Superior Catalytic Performance. Nanomaterials. 2020; 10(9):1673. https://doi.org/10.3390/nano10091673
Chicago/Turabian StyleHong, Qiulin, and Shiliang Chen. 2020. "Facile One-Step Fabrication of Phthalocyanine–Graphene–Bacterial–Cellulose Nanocomposite with Superior Catalytic Performance" Nanomaterials 10, no. 9: 1673. https://doi.org/10.3390/nano10091673