Evaluation of Silica-Coated Insect Proof Nets for the Control of Aphis fabae, Sitophilus oryzae, and Tribolium confusum
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects Tested
2.2. Nettings and Dust Formulations
2.3. Bioassay Series
2.3.1. Short-Term Effect
2.3.2. Long-Term Effect
2.4. Statistical Analysis
3. Results
3.1. Short-Term Effect
3.2. Long-Term Effect
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boyer, S.; Zhang, H.; Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 2012, 102, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, C.-G.; Kavallieratos, N.-G.; Benelli, G.; Losic, D.; Usha Rani, P.; Desneux, N. Nanoparticles for pest control: Current status and future perspectives. J. Pest Sci. 2017, 91, 1–15. [Google Scholar] [CrossRef]
- Awolola, T.-S.; Adeogun, A.; Olakiigbe, A.-K.; Oyeniyi, T.; Olukosi, Y.-A.; Okoh, H.; Arowolo, T.; Akila, J.; Oduola, A.; Amajoh, C.-N. Pyrethroids resistance intensity and resistance mechanisms in Anopheles gambiae from malaria vector surveillance sites in Nigeria. PLoS ONE 2018, 13, e0205230. [Google Scholar] [CrossRef]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Knoch, S.; Chouinard, G.; Tavares, J.-R.; Dumont, M.-J. Use of bio-based polymers in agricultural exclusion nets: A perspective. Biosyst. Eng. 2019, 180, 121–145. [Google Scholar] [CrossRef]
- Kittas, C.; Katsoulas, N.; Bartzanas, T.; Mermier, M.; Boulard, T. The impact of insect screens and ventilation openings on the greenhouse microclimate. Trans. ASABE 2008, 51, 2151–2165. [Google Scholar] [CrossRef]
- Kitta, E.; Baille, A.-D.; Katsoulas, N.; Rigakis, N.; González-Real, M.-M. Effects of cover optical properties on screenhouse radiative environment and sweet pepper productivity. Biosyst. Eng. 2014, 122, 115–126. [Google Scholar] [CrossRef]
- Teitel, M. The effect of screened openings on greenhouse microclimate. Agric. For. Meteorol. 2007, 143, 159–175. [Google Scholar] [CrossRef]
- Dáder, B.; Legarrea, S.; Moreno, A.; Ambros, C.-M.; Fereres, A.; Skovmand, O.; Bosselmann, R.; Viñuela, E. Insecticide-treated nets as a new approach to control vegetable pests in protected crops. Acta Hortic. 2014, 1015, 103–112. [Google Scholar] [CrossRef]
- Rigakis, N.; Katsoulas, N.; Teitel, M.; Bartzanas, T.; Kittas, C. A simple model for ventilation rate determination in screenhouses. Energy Build. 2015, 87, 293–301. [Google Scholar] [CrossRef]
- Bell, M.-L.; Baker, J.-R. Comparison of greenhouse screening materials for excluding whitefly (Homoptera: Aleyrodidae) and thrips (Thysanoptera: Thripidae). J. Econ. Entomol. 2000, 93, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Parra, J.-P.; Baeza, E.; Montero, J.-I.; Bailey, B.-J. Natural ventilation of parral greenhouses. Biosyst. Eng. 2004, 87, 355–366. [Google Scholar] [CrossRef]
- Fatnassi, H.; Boulard, T.; Demrati, H.; Bouirden, L.; Sappe, G. Ventilation performance of a large Canarian-type greenhouse equipped with insect-proof nets. Biosyst. Eng. 2002, 82, 97–105. [Google Scholar] [CrossRef]
- Katsoulas, N.; Bartzanas, T.; Boulard, T.; Mermier, M.; Kittas, C. Effect of vent openings and insect screens on greenhouse ventilation. Biosyst. Eng. 2006, 93, 427–436. [Google Scholar] [CrossRef]
- Baeza, E.-J.; Pérez-Parra, J.-J.; Montero, J.-I.; Bailey, B.-J.; López, J.-C.; Gázquez, J.-C. Analysis of the role of sidewall vents on buoyancy-driven natural ventilation in parral-type greenhouses with and without insect screens using computational fluid dynamics. Biosyst. Eng. 2009, 104, 86–96. [Google Scholar] [CrossRef]
- Chouinard, G.; Veilleux, J.; Pelletier, F.; Larose, M.; Philion, V.; Cormier, D. Impact of exclusion netting row covers on arthropod presence and crop damage to ‘Honeycrisp’ apple trees in North America: A five-year study. Crop Prot. 2017, 98, 248–254. [Google Scholar] [CrossRef]
- Rumbos, C.-I.; Sakka, M.; Schaffert, S.; Sterz, T.; Austin, J.-W.; Bozoglou, C.; Klitsinaris, P.; Athanassiou, C.-G. Evaluation of Carifend®, an alpha-cypermethrin-coated polyester net, for the control of Lasioderma serricorne and Ephestia elutella in stored tobacco. J. Pest Sci. 2018, 91, 751–759. [Google Scholar] [CrossRef]
- Dáder, B.; Legarrea, S.; Moreno, A.; Plaza, M.; Carmo-Sousa, M.; Amor, F.; Viñuela, E.; Fereres, A. Control of insect vectors and plant viruses in protected crops by novel pyrethroid-treated nets. Pest Manag. Sci. 2014, 71, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Arthurs, S.-P.; Krauter, P.-C.; Gilder, K.; Heinz, K.-M. Evaluation of deltamethrin-impregnated nets as a protective barrier against Western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) under laboratory and greenhouse conditions. Crop Prot. 2018, 112, 227–231. [Google Scholar] [CrossRef]
- Paloukas, Y.-Z.; Agrafioti, P.; Rumbos, C.-I.; Schaffert, S.; Sterz, T.; Bozoglou, C.; Klitsinaris, P.; Austin, J.-W.; Athanassiou, C.-G. Evaluation of Carifend® for the control of stored-product beetles. J. Stored Prod. Res. 2020, 85. [Google Scholar] [CrossRef]
- Epstein, E. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA 1994, 91, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, A.; Tripathi, D.-K.; Yadav, S.; Chauhan, D.-K.; Živčák, M.; Ghorbanpour, M.; El-Sheery, N.-I.; Brestic, M. Application of silicon nanoparticles in agriculture. 3 Biotech 2019, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- Debnath, N.; Mitra, S.; Das, S.; Goswami, A. Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol. 2012, 221, 252–256. [Google Scholar] [CrossRef]
- Barik, T.-K.; Sahu, B.; Swain, V. Nanosilica—From medicine to pest control. Parasitol. Res. 2008, 103, 253–258. [Google Scholar] [CrossRef]
- Benelli, G. Mode of action of nanoparticles against insects. Environ. Sci. Pollut. Res. 2018, 25, 12329–12341. [Google Scholar] [CrossRef]
- Vayias, B.-J.; Athanassiou, C.-G. Factors affecting the insecticidal efficacy of the diatomaceous earth formulation SilicoSec against adults and larvae of the confused flour beetle, Tribolium confusum DuVal (Coleoptera: Tenebrionidae). Crop Prot. 2004, 23, 565–573. [Google Scholar] [CrossRef]
- Ng, J.C.-K.; Perry, K.-L. Transmission of plant viruses by aphid vectors. Mol. Plant Pathol. 2004, 5, 505–511. [Google Scholar] [CrossRef]
- Singh, B.; Singh, V. Laboratory and field studies demonstrating the insecticidal potential of diatomaceous earth against wheat aphids in rice-wheat cropping system of Punjab (India). Cereal Res. Commun. 2016, 44, 435–443. [Google Scholar] [CrossRef]
- Shoaib, A.; Elabasy, A.; Waqas, M.; Lin, L.; Cheng, X.; Zhang, Q.; Shi, Z.H. Entomotoxic effect of silicon dioxide nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicol. Environ. Chem. 2018, 100, 80–91. [Google Scholar] [CrossRef]
- Debnath, N.; Das, S.; Seth, D.; Chandra, R.; Bhattacharya, S.-C.; Goswami, A. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J. Pest Sci. 2011, 84, 99–105. [Google Scholar] [CrossRef]
- Eroglu, N.; Emekci, M.; Athanassiou, C.-G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, N.-E.; Martinou, A.-F.; Kontodimas, D.-C.; Matsinos, Y.-G.; Milonas, P.-G. Functional responses of immature stages of Propylea quatuordecimpunctata (Coleoptera: Coccinellidae) to Aphis fabae (Hemiptera: Aphididae). Eur. J. Entomol. 2011, 108, 391–395. [Google Scholar] [CrossRef]
- Faliagka, S.; Agrafioti, P.; Lampiri, E.; Katsoulas, Ν.; Athanassiou, C.G. Assessment of different inert dust formulations for the control of Sitophilus oryzae, Tribolium confusum and Aphis fabae. Crop Prot. 2020, 137, 105312. [Google Scholar] [CrossRef]
- Kavallieratos, N.-G.; Athanassiou, C.-G.; Vayias, B.-J.; Kotzamanidis, S.; Synodis, S.-D. Efficacy and adherence ratio of diatomaceous earth and spinosad in three wheat varieties against three stored-prosuct insect pests. J. Stored Prod. Res. 2010, 46, 73–80. [Google Scholar] [CrossRef]
- Kavallieratos, N.-G.; Athanassiou, C.-G.; Mpassoukou, A.-E.; Mpakou, F.-D.; Tomanovic, Z.; Manessioti, T.-B.; Papadopoulou, S.-C. Bioassays with diatomaceous earth formulations: Effect of species co-occurrenece, size of vials and application technique. J. Stored Prod. Res. 2012, 42, 170–179. [Google Scholar] [CrossRef]
- Athanassiou, C.-G.; Kavallieratos, N.-G.; Andris, N.-S. Insecticide effect of three diatomaceous earth formulations against adults of Sitophlus oryzae (Coleoptera: Curcilionidae) and Tribolium confusum (Coleoptera: Tenebrionidae) on oat, rye and triticale. J. Econ. Entomol. 2004, 97, 2160–2167. [Google Scholar] [CrossRef]
- Athanassiou, C.-G.; Vassilakos, N.-T.; Dutton, A.-C.; Jeesop, N.; Sherwood, D.; Pease, G.; Brglez, A.; Storm, C.; Trdan, S. Combining electrostatic powder with an insecticide: Effect on stored prosuct beetles and on the commodity. Pest Manag. Sci. 2016, 72, 2208–2217. [Google Scholar] [CrossRef]
- Vayias, B.-J.; Athanassiou, C.-G.; Korunic, Z.; Rozman, V. Evaluation of natural diatomaceous earth deposits from south-eastern Europe for stored-grain protection: The effect of particle size. Pest Manag. Sci. 2009, 65, 1118–1123. [Google Scholar] [CrossRef]
- Rumbos, C.-I.; Sakka, M.; Berillis, P.; Athanassiou, C.-G. Insecticidal potential of zeolite formulations against three stored-grain insects, particle size effect, adherence to kernels and influence on test weight of grains. J. Stored Prod. Res. 2016, 68, 93–101. [Google Scholar] [CrossRef]
- Korunić, Z. Rapid assessment of the insecticidal value of diatomaceous earths without conducting bioassays. J. Stored Prod. Res. 1997, 33, 219–229. [Google Scholar] [CrossRef]
- Peng, D.-X.; Kang, Y.; Hwang, R.-M.; Shyr, S.-S.; Chang, Y.-P. Tribological properties of diamond and SiO2 nanoparticles added in paraffin. Tribol. Int. 2009, 42, 911–917. [Google Scholar] [CrossRef]
- Kavallieratos, N.-G.; Athanassiou, C.-G.; Korunic, Z.; Mikeli, N.-H. Evaluations of three novel diatomaceous earths against three stored-grain beetle species on wheat and maize. Crop Prot. 2015, 75, 132–138. [Google Scholar] [CrossRef]
- Subramanyam, B.; Roesli, R. Inert dusts. In Alternatives to Pesticides in Stored-Product IPM; Springer: Boston, MA, USA, 2000; pp. 321–380. [Google Scholar]
- Athanassiou, C.-G.; Vayias, B.-J.; Dimizas, C.-B.; Kavallieratos, N.-G.; Papagregoriou, A.-S.; Buchelos, C.-T. Insecticidal efficacy of diatomaceous earth against Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Tribolium confusum du Val (Coleoptera: Tenebrionidae) on stored wheat: Influence of dose rate, temperature and exposure interval. J. Stored Prod. Res. 2005, 41, 47–55. [Google Scholar] [CrossRef]
Sample | Mesh Size | Silica Particles Diameter (μm) | Coating Repetition | Mass of Deposited Silica Particles on the Surface of the Net (g × m−2) |
---|---|---|---|---|
ED3 | 50 mesh | 5.8 | 2 | 0.4 |
ED3-P | 50 mesh | 5.8 | 2 | 0.7 |
ED5 | 50 mesh | 9.0 | 2 | 0.7 |
ED5-P | 50 mesh | 9.0 | 2 | 0.9 |
# | Nets | KDt50 | KDt95 | KDt99 | Slope ± SE | X2 | P |
---|---|---|---|---|---|---|---|
A. fabae | ED3 | 253.3 a | 980.2 a | 1281.4 a | 2.7 ± 0.1 | 389.8 | <0.01 |
ED3-P | 279.7 a | 1206.8 a | 1590.9 a | 2.1 ± 0.1 | 290.9 | <0.01 | |
ED5 | 51.3 a | 669.6 a | 925.8 a | 3.3 ± 0.1 | 561.7 | <0.01 | |
ED5-P | 74.9 (49.8—109.1) | 278.8 (206.6—465.8) | 363.3 (265.6—619.5) | 9.6 ± 0.1 | 372.8 | <0.01 | |
# | Nets | KDt50 | KDt95 | KDt99 | Slope ± SE | X2 | P |
S. oryzae | ED3 | - | - | - | - | - | - |
ED3-P | 767.3 a | 1098.5 a | 1235.7 a | 0.6 ± 0.1 | 449.7 | <0.01 | |
ED5 | - | - | - | - | - | - | |
ED5-P | - | - | - | - | - | - |
ED3 | ED3-P | ED5 | ED5-P | Untreated net | Without net | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Short term | Long term | Short term | Long term | Short term | Long term | Short term | Long term | Short term | Long term | Short term | Long term | |||||||
Exposure time | KD | KD | Mortality | KD | KD | Mortality | KD | KD | Mortality | KD | KD | Mortality | KD | KD | Mortality | KD | KD | Mortality |
15 min | 0.0 ± 0.0 a | 0.0± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 a | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 a | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 a | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 | 2.5 ± 2.5 A | 100.0 ± 0.0 A | 0.0 ± 0.0 | 20.0 ± 3.2 B | 36.2 ± 8.6 B |
30 min | 0.0 ± 0.0 a | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 a | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 a | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 a | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 | 22.5 ± 13.1 B | 12.5 ± 3.1 B |
60 min | 27.5 ± 4.5 bA | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 22.5 ± 3.1 bA | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 28.7 ± 3.9 bA | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 15.0 ± 4.6 bA | 0.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 B | 0.0 ± 0.0 A | 93.7 ± 4.1 A | 0.0 ± 0.0 B | 16.2 ± 4.6 B | 23.7 ± 6.7 B |
F | 36.8 | - | - | 51.5 | - | - | 52.1 | - | - | 10.5 | - | - | - | 1.0 | 2.2 | - | 0.1 | 3.2 |
P | <0.01 | - | - | <0.01 | - | - | <0.01 | - | - | <0.01 | - | - | - | 0.38 | 0.13 | - | 0.86 | 0.06 |
ED3 | ED3-P | ED5 | ED5-P | Untreated Net | Without Net | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Exposure time (d) | 1st | 7th | 10th | 1st | 7th | 10th | 1st | 7th | 10th | 1st | 7th | 10th | 1st | 7th | 10th | 1st | 7th | 10th |
15 min | 2.5 ± 1.6 | 100.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 | 97.5 ± 2.5 A | 98.7 ± 1.2 A | 0.0 ± 0.0 | 100.0 ± 0.0 aA | 100.0 ± 0.0 aA | 5.0 ± 1.8 | 100.0 ± 0.0 bA | 100.0 ± 0.0 aA | 6.2 ± 4.1 | 40.0 ± 8.4 B | 56.2 ± 9.0 B | 0.0 ± 0.0 | 0.0 ± 0.0 C | 11.2 ± 2.2 C |
30 min | 3.7 ± 1.8 | 97.5 ± 2.5 A | 100.0 ± 0.0 A | 5.0 ± 1.8 | 97.5 ± 1.6 A | 100.0 ± 0.0 A | 0.0 ± 0.0 | 96.2 ± 1.8 bA | 96.2 ± 1.8 bA | 3.7 ± 2.6 | 97.5 ± 2.5 abA | 100.0 ± 0.0 aA | 2.5 ± 1.6 | 22.5 ± 10.6 B | 30.0 ± 11.0 B | 0.0 ± 0.0 | 0.0 ± 0.0 C | 11.2 ± 2.9 C |
60 min | 2.5 ± 1.6 | 98.7 ± 1.2 A | 100.0 ± 0.0 A | 3.7 ± 1.8 | 100.0 ± 0.0 A | 100.0 ± 0.0 A | 0.0 ± 0.0 | 100.0 ± 0.0 aA | 100.0 ± 0.0 aA | 0.0 ± 0.0 | 87.5 ± 5.2 aA | 88.7 ± 5.4 bA | 2.5 ± 2.5 | 43.7 ± 9.9 B | 56.2 ± 9.8 B | 0.0 ± 0.0 | 0.0 ± 0.0 C | 12.5 ± 3.1 C |
F | 0.8 | 0.6 | - | 2.9 | 0.7 | 1.0 | - | 4.2 | 4.2 | 1.9 | 3.9 | 4.2 | 0.5 | 1.3 | 2.3 | - | - | 0.1 |
P | 0.83 | 0.55 | - | 0.07 | 0.50 | 0.38 | - | 0.02 | 0.02 | 0.16 | 0.03 | 0.02 | 0.59 | 0.27 | 0.12 | - | - | 0.93 |
ED3 | ED3-P | ED5 | ED5-P | Untreated net | Without Net | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Exposure time (d) | 1st | 7th | 10th | 1st | 7th | 10th | 1st | 7th | 10th | 1st | 7th | 10th | 1st | 7th | 10th | 1st | 7th | 10th |
15 min | 3.7 ± 2.6 | 12.5 ± 3.1 ab | 13.7 ± 3.2 | 1.2 ± 1.2 a | 8.7 ± 4.4 a | 18.7 ± 3.5 | 2.5 ± 1.6 ab | 13.7 ± 4.1 | 28.7 ± 2.9 a | 2.5 ± 1.6 | 11.2 ± 4.7 ab | 18.7 ± 5.4 ab | 6.2 ± 2.6 | 5.0 ± 1.8 | 16.2 ± 3.7 | 0.0 ± 0.0 | 3.7 ± 2.6 | 28.7 ± 5.1 |
30 min | 0.0 ± 0.0 | 7.5 ± 2.5 aA | 12.5 ± 3.6 | 2.5 ± 1.6 ab | 18.7 ± 3.5 abB | 20.0 ± 3.7 | 0.0 ± 0.0 a | 6.2 ± 2.6 A | 8.7 ± 2.2 b | 0.0 ± 0.0 | 8.7 ± 2.2 aAB | 11.2 ± 1.2 a | 2.5 ± 2.5 | 7.5 ± 2.5 A | 18.7 ± 6.3 | 0.0 ± 0.0 | 1.2 ± 1.2 A | 21.2 ± 3.5 |
60 min | 6.2 ± 1.8 B | 20.0 ± 4.2 bAB | 22.5 ± 3.6 | 7.5 ± 1.6 bB | 30.0 ± 5.3 bB | 32.5 ± 5.2 | 7.5 ± 2.5 bB | 16.2 ± 3.7 AB | 25.0 ± 3.7 a | 3.7 ± 1.8 AB | 26.5 ± 6.5 bB | 33.7 ± 7.0 b | 3.7 ± 1.8 AB | 6.2 ± 3.2 A | 15.0 ± 4.2 | 0.0 ± 0.0A | 2.5 ± 1.6 A | 22.5 ± 3.1 |
F | 2.9 | 3.5 | 2.4 | 4.7 | 5.6 | 3.2 | 4.9 | 2.1 | 12.0 | 1.8 | 3.8 | 4.8 | 0.7 | 0.2 | 0.1 | - | 0.4 | 1.0 |
P | 0.07 | 0.04 | 0.11 | 0.02 | 0.01 | 0.06 | 0.01 | 0.14 | 0.01 | 0.18 | 0.03 | 0.01 | 0.52 | 0.79 | 0.86 | - | 0.66 | 0.38 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agrafioti, P.; Faliagka, S.; Lampiri, E.; Orth, M.; Pätzel, M.; Katsoulas, N.; Athanassiou, C.G. Evaluation of Silica-Coated Insect Proof Nets for the Control of Aphis fabae, Sitophilus oryzae, and Tribolium confusum. Nanomaterials 2020, 10, 1658. https://doi.org/10.3390/nano10091658
Agrafioti P, Faliagka S, Lampiri E, Orth M, Pätzel M, Katsoulas N, Athanassiou CG. Evaluation of Silica-Coated Insect Proof Nets for the Control of Aphis fabae, Sitophilus oryzae, and Tribolium confusum. Nanomaterials. 2020; 10(9):1658. https://doi.org/10.3390/nano10091658
Chicago/Turabian StyleAgrafioti, Paraskevi, Sofia Faliagka, Evagelia Lampiri, Merle Orth, Mark Pätzel, Nikolaos Katsoulas, and Christos G. Athanassiou. 2020. "Evaluation of Silica-Coated Insect Proof Nets for the Control of Aphis fabae, Sitophilus oryzae, and Tribolium confusum" Nanomaterials 10, no. 9: 1658. https://doi.org/10.3390/nano10091658
APA StyleAgrafioti, P., Faliagka, S., Lampiri, E., Orth, M., Pätzel, M., Katsoulas, N., & Athanassiou, C. G. (2020). Evaluation of Silica-Coated Insect Proof Nets for the Control of Aphis fabae, Sitophilus oryzae, and Tribolium confusum. Nanomaterials, 10(9), 1658. https://doi.org/10.3390/nano10091658