CO2 Conversion into N-Doped Porous Carbon-Encapsulated NiO/Ni Composite Nanomaterials as Outstanding Anode Material of Li Battery
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of NiO/Ni@C
2.2. Characterizations
2.3. Anode Preparation of Lithium Ion Battery
3. Results and Discussion
3.1. Characterization Results of Recovered Samples
3.2. Electrochemical Characterization of NiO/Ni@C Composite Nanomaterials
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zou, Y.; Wang, Y. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. Nanoscale 2011, 3, 2615–2620. [Google Scholar] [CrossRef] [PubMed]
- Paek, S.-M.; Yoo, E.; Honma, I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 2009, 9, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Natural 2000, 407, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ma, C.; Li, Y.; Chen, H.; Shao, Z. Self-adhesive Co3O4/expanded graphite paper as high-performance flexible anode for Li-ion batteries. Carbon 2015, 95, 494–496. [Google Scholar] [CrossRef]
- Singh, A.K.; Sarkar, D.; Khan, G.G.; Mandal, K. Hydrogenated NiO nanoblock architecture for high performance pseudocapacitor. ACS Appl. Mater. Interfaces 2014, 6, 4684–4692. [Google Scholar] [CrossRef]
- Wei, C.; Pang, H.; Zhang, B.; Lu, Q.; Liang, S.; Gao, F. Two-dimensional β-MnO2 nanowire network with enhanced electrochemical capacitance. Sci. Rep. 2013, 3, 2193. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Zhang, W.; Yang, S. Synthesis of Cu(OH)2 and CuO nanoribbon arrays on a copper surface. Langmuir 2003, 19, 5898–5903. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Zhang, Q.; Zhou, N.; Uchaker, E.; Cao, G. Porous nanostructured V2O5 film electrode with excellent Li-ion intercalation properties. Electrochem. Commun. 2011, 13, 1276–1279. [Google Scholar] [CrossRef]
- Nuli, Y.; Zhang, P.; Guo, Z.P.; David, W.; Liu, H.K.; Yang, J.; Wang, J.L. Nanostructured NiO/C composite for lithium-ion battery anode. J. Nanosci. Nanotechnol. 2009, 9, 1951–1955. [Google Scholar] [CrossRef]
- Jiapan, Z.; Mi, H.; Jide, W.; Qingxia, C.; Jialiang, Z. Preparation and lithium storage performance of NiO/ C@CNT anode material. Rare Met. Mater. Eng. 2015, 44, 2109–2113. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Pan, C.-J.; Hwang, B.J. Highly-dispersed and thermally-stable NiO nanoparticles exclusively confined in SBA-15: Blockage-free nanochannels. J. Mater. Chem. 2009, 19, 5193–5200. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, Z.; Wang, L.; Dong, Y.; Jiang, T.; Li, Z.; Liu, L.; Shao, G. In-situ synthesis of NiO foamed sheets on Ni foam as efficient cathode of battery-type supercapacitor. Electrochim. Acta 2018, 269, 62–69. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, S.-H.; Yan, Y.; Oh, J.; Zhu, K. Controlled synthesis of aligned Ni-NiO core-shell nanowire arrays on glass substrates as a new supercapacitor electrode. RSC Adv. 2012, 2, 8281–8285. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Y.; Wang, Y.; Yang, X.; Wang, S.; Guo, H. Hollow NiO nanotubes synthesized by bio-templates as the high performance anode materials of lithium-ion batteries. Electrochimica Acta 2013, 114, 42–47. [Google Scholar] [CrossRef]
- Wu, J.; Yin, W.-J.; Liu, L.-M.; Guo, P.; Liu, G.; Liu, X.; Geng, D.; Lau, W.-M.; Liu, H.; Liu, L.-M. High performance NiO nanosheets anchored on three-dimensional nitrogen-doped carbon nanotubes as a binder-free anode for lithium ion batteries. J. Mater. Chem. A 2016, 4, 10940–10947. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Zhou, L.; Mai, Y.-W.; Huang, H. Exceptional electrochemical performance of porous TiO2–carbon nanofibers for lithium ion battery anodes. J. Mater. Chem. A 2014, 2, 3875–3880. [Google Scholar] [CrossRef]
- Zhao, B.; Song, J.; Liu, P.; Xu, W.; Fang, T.; Jiao, Z.; Zhang, H.; Jiang, Y. Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. J. Mater. Chem. 2011, 21, 18792–18798. [Google Scholar] [CrossRef]
- Kim, N.D.; Kim, W.; Joo, J.B.; Oh, S.; Kim, P.; Kim, Y.; Yi, J. Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation. J. Power Sources 2008, 180, 671–675. [Google Scholar] [CrossRef]
- Chen, M. Microporous N-doped carbon electrochemical catalyst derived from polyacrylamide hydrogel for oxygen reduction reaction in alkaline media. Int. J. Electrochem. Sci. 2018, 13, 2401–2411. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Zhang, Y.; Yang, Y.; Cao, Z.; Xiong, S. Synthesis and capacitance properties of N-doped porous carbon/NiO nanosheet composites using coal-based polyaniline as carbon and nitrogen source. Appl. Surf. Sci. 2018, 442, 565–574. [Google Scholar] [CrossRef]
- Lai, H.; Wu, Q.; Zhao, J.; Shang, L.; Li, H.; Che, R.; Lyu, Z.; Xiong, J.; Yang, L.; Wang, X.; et al. Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy Environ. Sci. 2016, 9, 2053–2060. [Google Scholar] [CrossRef]
- Patil, K.C.; Hegde, M.S.; Rattan, T.; Aruna, S.T. Zirconia and related oxide materials. In Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications; World Scientific: Singapore, 2008; pp. 212–225. [Google Scholar]
- Li, F.-T.; Ran, J.; Jaroniec, M.; Qiao, S. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale 2015, 7, 17590–17610. [Google Scholar] [CrossRef] [PubMed]
- Varma, A.; Mukasyan, A.S.; Rogachev, A.S.; Manukyan, K.V. Solution combustion synthesis of nanoscale materials. Chem. Rev. 2016, 116, 14493–14586. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Chen, P.; Liu, K.; Gao, X.; Du, L. CO2 conversion into N-doped carbon nanomesh sheets. ACS Appl. Nano Mater. 2019, 2, 2991–2998. [Google Scholar] [CrossRef]
- Wang, L.; Jiao, Y.; Yao, S.; Li, P.; Wang, R.; Chen, G. MOF-derived NiO/Ni architecture encapsulated into N-doped carbon nanotubes for advanced asymmetric supercapacitors. Inorg. Chem. Front. 2019, 6, 1553–1560. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhuang, X.; Yang, C.; Cao, J.; Yao, Z.; Tang, Y.; Jiang, J.; Wu, D.; Feng, X. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 2016, 28, 1981–1987. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, Z.; Zhang, J.; Xia, Z.; Yang, H.; Fan, M.; Yu, Y. N-doped 3D interconnected carbon bubbles as anode materials for lithium-ion and sodium-ion storage with excellent performance. J. Nanosci. Nanotechnol. 2019, 19, 7301–7307. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Yuan, C.; Li, H.; Fan, K.; Wei, Z.; Sun, H.; Ma, J. Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nano-Micro Lett. 2017, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Debart, A.; Revel, B.; Dupont, L.; Montagne, L.; Touboul, M.; Leriche, J.-B.; Tarascon, J.-M. Study of the reactivity mechanism of M3B2O6 (with M: Co, Ni, and Cu) toward lithium. Chem. Mater. 2003, 34, 3683–3691. [Google Scholar] [CrossRef]
- Adams, R.A.; Syu, J.-M.; Zhao, Y.; Lo, C.-T.; Varma, A.; Pol, V.G. Binder-free N- and O-rich carbon nanofiber anodes for long cycle life K-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 17872–17881. [Google Scholar] [CrossRef]
- Huang, X.; Tu, J.; Zhang, B.; Zhang, C.; Li, Y.; Yuan, Y.; Wu, H. Electrochemical properties of NiO–Ni nanocomposite as anode material for lithium ion batteries. J. Power Sources 2006, 161, 541–544. [Google Scholar] [CrossRef]
- Ni, S.; Li, T.; Lv, X.; Yang, X.; Zhang, L. Designed constitution of NiO/Ni nanostructured electrode for high performance lithium ion battery. Electrochim. Acta 2013, 91, 267–274. [Google Scholar] [CrossRef]
- Ni, S.; Lv, X.; Ma, J.; Yang, X.; Zhang, L. A novel electrochemical reconstruction in nickel oxide nanowalls on Ni foam and the fine electrochemical performance as anode for lithium ion batteries. J. Power Sour. 2014, 270, 564–568. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, M.; Cao, G. Chemically anchored NiOx–carbon composite fibers for Li-ion batteries with long cycle-life and enhanced capacity. RSC Adv. 2015, 5, 26521–26529. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Lugo, C.E.Z.; Guzmán, S.F.A.; Daniel, G.; Kessler, V.G.; Seisenbaeva, G.A.; Pol, V.G. Pushing the theoretical capacity limits of iron oxide anodes: Capacity rise of γ-Fe2O3nanoparticles in lithium-ion batteries. J. Mater. Chem. A 2016, 4, 18107–18115. [Google Scholar] [CrossRef]
- Débart, A.; Dupont, L.; Poizot, P.; Leriche, J.-B.; Tarascon, J.M. A Transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J. Electrochem. Soc. 2001, 148, A1266. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, B.; Miao, X.; Feng, Z.; Huang, Y. An environmental benign approach to high performance anode for Li-ion battery: N-rich porous carbon from Cr(VI)-polluted water treatment. Mater. Lett. 2018, 219, 100–103. [Google Scholar] [CrossRef]
- Xu, C.; Chen, S.; Du, L.; Li, C.; Gao, X.; Liu, J.; Qu, L.; Chen, P. Scalable conversion of CO2 to N-doped carbon foam for efficient oxygen reduction reaction and lithium storage. ACS Sustain. Chem. Eng. 2018, 6, 3358–3366. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xu, C.; Liu, K.; Chen, P.; Gao, X. CO2 Conversion into N-Doped Porous Carbon-Encapsulated NiO/Ni Composite Nanomaterials as Outstanding Anode Material of Li Battery. Nanomaterials 2020, 10, 1502. https://doi.org/10.3390/nano10081502
Li Y, Xu C, Liu K, Chen P, Gao X. CO2 Conversion into N-Doped Porous Carbon-Encapsulated NiO/Ni Composite Nanomaterials as Outstanding Anode Material of Li Battery. Nanomaterials. 2020; 10(8):1502. https://doi.org/10.3390/nano10081502
Chicago/Turabian StyleLi, Yayong, Chunxiao Xu, Kaiyuan Liu, Pengwan Chen, and Xin Gao. 2020. "CO2 Conversion into N-Doped Porous Carbon-Encapsulated NiO/Ni Composite Nanomaterials as Outstanding Anode Material of Li Battery" Nanomaterials 10, no. 8: 1502. https://doi.org/10.3390/nano10081502
APA StyleLi, Y., Xu, C., Liu, K., Chen, P., & Gao, X. (2020). CO2 Conversion into N-Doped Porous Carbon-Encapsulated NiO/Ni Composite Nanomaterials as Outstanding Anode Material of Li Battery. Nanomaterials, 10(8), 1502. https://doi.org/10.3390/nano10081502