Non-Linear Optical Properties of Er3+–Yb3+-Doped NaGdF4 Nanostructured Glass–Ceramics
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Thermal and Structural Characterization
2.3. Optical Characterization
3. Results and Discussion
3.1. Thermal and Structural Properties
3.2. Optical Properties
Up-Conversion Emission
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fedorov, P.P.; Luginina, A.A.; Popov, A.I. Transparent oxyfluoride glass ceramics. J. Fluor. Chem. 2015, 172, 22–50. [Google Scholar] [CrossRef]
- de Pablos-Martín, A.; Durán, A.; Pascual, M.J. Nanocrystallisation in oxyfluoride systems: Mechanisms of crystallisation and photonic properties. Int. Mater. Rev. 2012, 57, 165–186. [Google Scholar] [CrossRef]
- Wang, Y.; Ohwaki, J. New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. Appl. Phys. Lett. 1993, 63, 3268–3270. [Google Scholar] [CrossRef]
- Rodríguez, V.D.; Tikhomirov, V.K.; Méndez-Ramos, J.; Seddon, A.B. The shape of the 1.55 μm emission band of the Er3+-dopant in oxyfluoride nano-scaled glass-ceramics. Europhys. Lett. 2005, 69, 128–134. [Google Scholar] [CrossRef]
- Ye, S.; Zhu, B.; Luo, J.; Chen, J.; Lakshminarayana, G.; Qiu, J. Enhanced cooperative quantum cutting in Tm3+–Yb3+ codoped glass ceramics containing LaF3 nanocrystals. Opt. Express 2008, 16, 8989–8994. [Google Scholar] [CrossRef]
- Krishnaiah, K.V.; Filho, E.S.d.; Ledemi, Y.; Nemova, G.; Messaddeq, Y.; Kashyap, R. Development of ytterbium-doped oxyfluoride glasses for laser cooling applications. Sci. Rep. 2016, 6, 21905. [Google Scholar] [CrossRef]
- de Pablos-Martín, A.; Méndez-Ramos, J.; del-Castillo, J.; Durán, A.; Rodríguez, V.D.; Pascual, M.J. Crystallization and up-conversion luminescence properties of Er3+/Yb3+-doped NaYF4-based nano-glass-ceramics. J. Eur. Ceram. Soc. 2015, 35, 1831–1840. [Google Scholar] [CrossRef]
- Gorni, G.; Velázquez, J.J.; Mosa, J.; Balda, R.; Fernández, J.; Durán, A.; Castro, Y. Transparent glass-ceramics produced by sol-gel: A suitable alternative for photonic materials. Materials 2018, 11, 212. [Google Scholar] [CrossRef]
- Berthier, T.; Fokin, V.M.; Zanotto, E.D. New large grain, highly crystalline, transparent glass–ceramics. J. Non-Cryst. Solids 2008, 354, 1721–1730. [Google Scholar] [CrossRef]
- Wang, F.; Han, Y.; Lim, C.S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065. [Google Scholar] [CrossRef]
- Hirao, K.; Tanaka, K.; Makita, M.; Soga, N. Preparation and optical properties of transparent glass-ceramics containing β-PbF2: Tm3+. J. Appl. Phys. 1995, 78, 3445–3450. [Google Scholar] [CrossRef]
- Ye, S.; Zhu, B.; Chen, J.; Luo, J.; Qiu, J.R. Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals. Appl. Phys. Lett. 2008, 92, 141112. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Y.; Yu, Y.; Huang, P. Intense ultraviolet upconversion luminescence from Tm3+/Yb3+: β-YF3 nanocrystals embedded glass ceramic. Appl. Phys. Lett. 2007, 91, 51920. [Google Scholar] [CrossRef]
- Chen, D.; Yu, Y.; Huang, P.; Weng, F.; Lin, H.; Wang, Y. Optical spectroscopy of Eu3+ and Tb3+ doped glass ceramics containing LiYbF4 nanocrystals. Appl. Phys. Lett. 2009, 94, 41909. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Y.; Zheng, K.; Guo, T.; Yu, Y.; Huang, P. Bright upconversion white light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+:β-YF3 nanocrystals. Appl. Phys. Lett. 2007, 91, 251903. [Google Scholar] [CrossRef]
- de Pablos-Martín, A.; Mather, G.C.; Muñoz, F.; Bhattacharyya, S.; Höche, T.; Jinschek, J.R.; Heil, T.; Durán, A.; Pascual, M.J. Design of oxy-fluoride glass-ceramics containing NaLaF4 nano-crystals. J. Non-Cryst. Solids 2010, 356, 3071–3079. [Google Scholar] [CrossRef]
- de Pablos-Martín, A.; Muñoz, F.; Mather, G.C.; Patzig, C.; Bhattacharyya, S.; Jinschek, J.R.; Höche, T.; Durán, A.; Pascual, M.J. KLaF4 nanocrystallisation in oxyfluoride glass-ceramics. CrystEngComm 2013, 15, 10323. [Google Scholar]
- Pascual, M.J.; Garrido, C.; Durán, A.; Miguel, A.; Pascual, L.; de Pablos-Martín, A.; Fernández, J.; Balda, R. Optical Properties of Transparent Glass–Ceramics Containing Er3+-Doped Sodium Lutetium Fluoride Nanocrystals. Int. J. Appl. Glass Sci. 2016, 7, 27–40. [Google Scholar] [CrossRef]
- Huang, X. Dual-model upconversion luminescence from NaGdF4:Nd/Yb/Tm@NaGdF4:Eu/Tb core–shell nanoparticles. J. Alloys Compd. 2015, 628, 240–244. [Google Scholar] [CrossRef]
- Chen, D.; Huang, P. Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core–shell nanocrystals with complete shell enclosure of the core. Dalton Trans. 2014, 43, 11299–11304. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, Y.; Yang, T.; Feng, W.; Li, C.; Li, F. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J. Am. Chem. Soc. 2011, 133, 17122–17125. [Google Scholar] [CrossRef]
- Ghosh, P.; Patra, A. Tuning of crystal phase and luminescence properties of Eu3+ doped sodium yttrium fluoride nanocrystals. J. Phys. Chem. C 2008, 112, 3223–3231. [Google Scholar] [CrossRef]
- Liu, F.; Ma, E.; Chen, D.; Yu, Y.; Wang, Y. Tunable red-green upconversion luminescence in novel transparent glass ceramics containing Er:NaYF4 nanocrystals. J. Phys. Chem. B 2006, 110, 20843–20846. [Google Scholar] [CrossRef] [PubMed]
- Aebischer, A.; Hostettler, M.; Hauser, J.; Krämer, K.; Weber, T.; Güdel, H.U.; Bürgi, H.-B. Structural and Spectroscopic Characterization of Active Sites in a Family of Light-Emitting Sodium Lanthanide Tetrafluorides. Angew. Chem. Int. Ed. 2006, 45, 2802–2806. [Google Scholar] [CrossRef] [PubMed]
- Krämer, K.W.; Biner, D.; Frei, G.; Güdel, H.U.; Hehlen, M.P.; Lüthi, S.R. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 2004, 16, 1244–1251. [Google Scholar] [CrossRef]
- Ptacek, P.; Schäfer, H.; Kömpe, K.; Haase, M. Crystal Phase Control of Luminescing α-NaGdF4:Eu3+ and β-NaGdF4:Eu3+ Nanocrystals. Adv. Funct. Mater. 2007, 17, 3843–3848. [Google Scholar] [CrossRef]
- Herrmann, A.; Tylkowski, M.; Bocker, C.; Rüssel, C. Cubic and hexagonal NaGdF4 crystals precipitated from an aluminosilicate glass: Preparation and luminescence properties. Chem. Mater. 2013, 25, 2878–2884. [Google Scholar] [CrossRef]
- Chen, D.; Wan, Z.; Zhou, Y.; Huang, P.; Zhong, J.; Ding, M.; Xiang, W.; Liang, X.; Ji, Z. Bulk glass ceramics containing Yb3+/Er3+:β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior. J. Alloys Compd. 2015, 638, 21–28. [Google Scholar] [CrossRef]
- Xin, F.; Zhao, S.; Huang, L.; Deng, D.; Jia, G.; Wang, H.; Xu, S. Up-conversion luminescence of Er3+-doped glass ceramics containing β-NaGdF4 nanocrystals for silicon solar cells. Mater. Lett. 2012, 78, 75–77. [Google Scholar] [CrossRef]
- Velázquez, J.J.; Balda, R.; Fernández, J.; Gorni, G.; Pascual, L.; Chen, G.; Sundararajan, M.; Durán, A.; Pascual, M.J. Transparent oxyfluoride glass-ceramics with NaGdF4 nanocrystals doped with Pr3+ and Pr3+-Yb3+. J. Lumin. 2018, 193, 61–69. [Google Scholar] [CrossRef]
- Cullity, B.D.; Weymouth, J.W. Elements of X-ray Diffraction. Am. J. Phys. 1957, 25, 394–395. [Google Scholar]
- Środa, M.; Wacławska, I.; Stoch, L.; Reben, M. DTA/DSC study of nanocrystallization in oxyfluoride glasses. J. Therm. Anal. Calorim. 2004, 77, 193–200. [Google Scholar] [CrossRef]
- Velázquez, J.J.; Balda, R.; Fernández, J.; Gorni, G.; Mather, G.C.; Pascual, L.; Durán, A.; Pascual, M.J. Transparent glass-ceramics of sodium lutetium fluoride co-doped with erbium and ytterbium. J. Non-Cryst. Solids 2018, 501, 136–144. [Google Scholar] [CrossRef]
- Shen, W.; Lai, J.; Yang, Y.; Zhou, D.; Qiu, J.; Khan, M.I.; Li, Z.; Wang, Q.; Zhang, K. Effect of TiO2 on glass structure control of self-crystallized Ba2LaF7 glass-ceramics. Ceram. Int. 2020, 46, 14173–14177. [Google Scholar] [CrossRef]
- Velazquez, J.J.; Yanes, A.C.; del Castillo, J.; Méndez-Ramos, J.; Rodríguez, V.D. Optical properties of Ho3+–Yb3+ co-doped nanostructured SiO2–LaF3 glass-ceramics prepared by sol–gel method. Phys. Status Solidi Appl. Mater. Sci. 2007, 6, 1762–1768. [Google Scholar] [CrossRef]
- Méndez-Ramos, J.; Velázquez, J.J.; Yanes, A.C.; Del-Castillo, J.; Rodriguez, V.D. Up-conversion in nanostructured Yb3+–Tm3+ co-doped sol–gel derived SiO2–LaF3 transparent glass-ceramics. Phys. Status Solidi Appl. Mater. Sci. 2008, 2, 330–334. [Google Scholar] [CrossRef]
- Katayama, Y.; Tanabe, S. Near infrared downconversion in Pr3+–Yb3+ codoped oxyfluoride glass ceramics. Opt. Mater. 2010, 33, 176–179. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, D.; Cheng, Y.; Wang, Y.; Hu, Z.; Bao, F. Investigation on crystallization and influence of Nd3+ doping of transparent oxyfluoride glass-ceramics. J. Eur. Ceram. Soc. 2006, 26, 2761–2767. [Google Scholar] [CrossRef]
- Gorni, G.; Velázquez, J.J.; Mather, G.C.; Durán, A.; Chen, G.; Sundararajan, M.; Balda, R.; Fernández, J.; Pascual, M.J. Selective excitation in transparent oxyfluoride glass-ceramics doped with Nd3+. J. Eur. Ceram. Soc. 2017, 37, 1695–1706. [Google Scholar] [CrossRef]
- Gorni, G.; Cosci, A.; Pelli, S.; Pascual, L.; Durán, A.; Pascual, M.J. Transparent oxyfluoride nano-glass ceramics doped with Pr3+ and Pr3+–Yb3+ for NIR emission. Front. Mater. 2017, 3, 58. [Google Scholar] [CrossRef]
- Thangaraju, D.; Masuda, Y.; Sahip, I.K.M.M.; Inami, W.; Kawata, Y.; Hayakawa, Y. Multi-modal imaging of HeLa cells using a luminescent ZnS:Mn/NaGdF4:Yb:Er nanocomposite with enhanced upconversion red emission. RSC Adv. 2016, 6, 33569–33579. [Google Scholar] [CrossRef]
- Jang, H.S.; Woo, K.; Lim, K. Bright dual-mode green emission from selective set of dopant ions in β-Na(Y,Gd)F4:Yb, Er/β-NaGdF4: Ce, Tb core/shell nanocrystals. Opt. Express 2012, 20, 17107–17118. [Google Scholar] [CrossRef]
- D’Angelo, P.; Zitolo, A.; Migliorati, V.; Chillemi, G.; Duvail, M.; Vitorge, P.; Abadie, S.; Spezia, R. Revised ionic radii of lanthanoid (III) ions in aqueous solution. Inorg. Chem. 2011, 50, 4572–4579. [Google Scholar] [CrossRef] [PubMed]
- Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhou, Y.; Wan, Z.; Yu, H.; Lu, H.; Ji, Z.; Huang, P. Tunable upconversion luminescence in self-crystallized Er3+:K (Y1−xYbx)3F10 nano-glass-ceramics. Phys. Chem. Chem. Phys. 2015, 17, 7100–7103. [Google Scholar] [CrossRef]
- Gonçalves, R.R.; Carturan, G.; Zampedri, L.; Ferrari, M.; Chiasera, A.; Montagna, M.; Righini, G.C.; Pelli, S.; Ribeiro, S.J.L.; Messaddeq, Y. Infrared-to-visible CW frequency upconversion in erbium activated silica–hafnia waveguides prepared by sol–gel route. J. Non-Cryst. Solids 2003, 322, 306–310. [Google Scholar] [CrossRef]
- Pollnau, M.; Gamelin, D.R.; Lüthi, S.R.; Güdel, H.U.; Hehlen, M.P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 2000, 61, 3337–3346. [Google Scholar] [CrossRef]
- Liu, J.; Kaczmarek, A.M.; van Deun, R. Concentration and temperature dependent upconversion luminescence of CaWO4:Er3+, Yb3+ 3D microstructure materials. J. Lumin. 2017, 188, 604–611. [Google Scholar] [CrossRef]
Undoped | 0.5 Er3+ | 0.5 Er3+–2Yb3+ | |
---|---|---|---|
Tg (°C) ± 3 | 510 | 530 | 546 |
Td (°C) ± 6 | 590 | 613 | 648 |
α·10−6 (K−1) ± 0.5 | 10.2 | 10.4 | 9.9 |
70Si7Gd | 550 °C-80 h | 580 °C-80 h | 580 °C-120 h | 600 °C-80 h |
---|---|---|---|---|
undoped | 13.0 ± 1 | – | 17.5 ± 1 | – |
0.5Er3+ | 13.2 ± 1 | – | 20.0 ± 1 | – |
0.5Er3+–2Yb3+ | 17.0 ± 1 | 20.0 ± 1 | 23.0 ± 1 | 28.0 ± 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velázquez, J.J.; Gorni, G.; Balda, R.; Fernández, J.; Pascual, L.; Durán, A.; Pascual, M.J. Non-Linear Optical Properties of Er3+–Yb3+-Doped NaGdF4 Nanostructured Glass–Ceramics. Nanomaterials 2020, 10, 1425. https://doi.org/10.3390/nano10071425
Velázquez JJ, Gorni G, Balda R, Fernández J, Pascual L, Durán A, Pascual MJ. Non-Linear Optical Properties of Er3+–Yb3+-Doped NaGdF4 Nanostructured Glass–Ceramics. Nanomaterials. 2020; 10(7):1425. https://doi.org/10.3390/nano10071425
Chicago/Turabian StyleVelázquez, José J., Giulio Gorni, Rolindes Balda, Joaquin Fernández, Laura Pascual, Alicia Durán, and Maria J. Pascual. 2020. "Non-Linear Optical Properties of Er3+–Yb3+-Doped NaGdF4 Nanostructured Glass–Ceramics" Nanomaterials 10, no. 7: 1425. https://doi.org/10.3390/nano10071425
APA StyleVelázquez, J. J., Gorni, G., Balda, R., Fernández, J., Pascual, L., Durán, A., & Pascual, M. J. (2020). Non-Linear Optical Properties of Er3+–Yb3+-Doped NaGdF4 Nanostructured Glass–Ceramics. Nanomaterials, 10(7), 1425. https://doi.org/10.3390/nano10071425