Carbon Nanotube Film Electrodes with Acrylic Additives: Blocking Electrochemical Charge Transfer Reactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ink Preparation and Electrode Deposition
2.3. Electrical and Electrochemical Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sayago, I.; Terrado, E.; Lafuente, E.; Horrillo, M.; Maser, W.; Benito, A.; Navarro, R.; Urriolabeitia, E.; Martinez, M.T.; Gutierrez, J. Hydrogen sensors based on carbon nanotubes thin films. Synth. Met. 2005, 148, 15–19. [Google Scholar] [CrossRef]
- Sayago, I.; Terrado, E.; Aleixandre, M.; Horrillo, M.; Fernandez, M.; Lozano, J.; Lafuente, E.; Maser, W.; Benito, A.; Martinez, M.T.; et al. Novel selective sensors based on carbon nanotube films for hydrogen detection. Sens. Actuators B 2007, 122, 75–80. [Google Scholar] [CrossRef]
- Sayago, I.; Santos, H.; Horrillo, M.; Aleixandre, M.; Fernandez, M.; Terrado, E.; Tacchini, I.; Aroz, R.; Maser, W.; Benito, A.; et al. Carbon nanotube networks as gas sensors for NO2 detection. Talanta 2008, 77, 758–764. [Google Scholar] [CrossRef]
- Gutierrez, F.A.; Gonzalez-Dominguez, J.M.; Anson-Casaos, A.; Hernandez-Ferrer, J.; Rubianes, M.D.; Martinez, M.T.; Rivas, G. Single-walled carbon nanotubes covalently functionalized with cysteine: A new alternative for the highly sensitive and selective Cd(II) quantification. Sens. Actuators B 2017, 249, 506–514. [Google Scholar] [CrossRef]
- Ramirez, M.L.; Tettamanti, C.S.; Gutierrez, F.A.; Gonzalez-Dominguez, J.M.; Anson-Casaos, A.; Hernandez-Ferrer, J.; Martinez, M.T.; Rivas, G.A.; Rodriguez, M.C. Cysteine functionalized bio-nanomaterial for the affinity sensing of Pb(II) as an indicator of environmental damage. Microchem. J. 2018, 141, 271–278. [Google Scholar] [CrossRef]
- Gasnier, A.; Gonzalez-Dominguez, J.M.; Anson-Casaos, A.; Hernandez-Ferrer, J.; Pedano, M.L.; Rubianes, M.D.; Martinez, M.T.; Rivas, G. Single-wall carbon nanotubes covalently functionalized with polylysine: Synthesis, characterization and analytical applications for the development of electrochemical (bio)sensors. Electroanal 2014, 26, 1676–1683. [Google Scholar] [CrossRef]
- Gutierrez, A.; Gasnier, A.; Pedano, M.L.; Gonzalez-Dominguez, J.M.; Anson-Casaos, A.; Hernandez-Ferrer, J.; Galicia, L.; Rubianes, M.D.; Martinez, M.T.; Rivas, G.A. Electrochemical sensor for the quantification of dopamine using glassy carbon electrodes modified with single-wall carbon nanotubes covalently functionalized with polylysine. Electroanal 2015, 27, 1565–1571. [Google Scholar] [CrossRef]
- Eguilaz, M.; Gutierrez, A.; Gutierrez, F.; Gonzalez-Dominguez, J.M.; Anson-Casaos, A.; Hernandez-Ferrer, J.; Ferreyra, N.F.; Martinez, M.T.; Rivas, G. Covalent functionalization of single-walled carbon nanotubes with polytyrosine: Characterization and analytical applications for the sensitive quantification of polyphenols. Anal. Chim. Acta 2016, 909, 51–59. [Google Scholar] [CrossRef]
- Gutierrez, A.; Gutierrez, F.A.; Eguilaz, M.; Gonzalez-Dominguez, J.M.; Hernandez-Ferrer, J.; Anson-Casaos, A.; Martinez, M.T.; Rivas, G.A. Electrochemical sensing of guanine, adenine and 8-hydroxy-2 ‘-deoxyguanosine at glassy carbon modified with single-walled carbon nanotubes covalently functionalized with lysine. RSC Adv. 2016, 6, 13469–13477. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Tung, V.; Huang, J. Water processable graphene oxide: Single walled carbon nanotube composite as anode modifier for polymer solar cells. Adv. Energy Mater. 2011, 1, 1052–1057. [Google Scholar] [CrossRef]
- Kymakis, E.; Stylianakis, M.; Spyropoulos, G.; Stratakis, E.; Koudoumas, E.; Fotakis, C. Spin coated carbon nanotubes as the hole transport layer in organic photovoltaics. Sol. Energy Mater. Sol. Cells 2012, 96, 298–301. [Google Scholar] [CrossRef]
- Gong, M.; Shastry, T.; Xie, Y.; Bernardi, M.; Jasion, D.; Luck, K.; Marks, T.; Grossman, J.; Ren, S.; Hersam, M. Polychiral semiconducting carbon nanotube-fullerene solar cells. Nano Lett. 2014, 14, 5308–5314. [Google Scholar] [CrossRef] [Green Version]
- Jeon, I.; Chiba, T.; Delacou, C.; Guo, Y.; Kaskela, A.; Reynaud, O.; Kauppinen, E.; Maruyama, S.; Matsuo, Y. Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: Investigation of electron-blocking layers and dopants. Nano Lett. 2015, 15, 6665–6671. [Google Scholar] [CrossRef]
- Jeon, I.; Cui, K.; Chiba, T.; Anisimov, A.; Nasibulin, A.; Kauppinen, E.; Maruyama, S.; Matsuo, Y. Direct and dry deposited single-walled carbon nanotube films doped with MoOx as electron-blocking transparent electrodes for flexible organic solar cells. J. Am. Chem. Soc. 2015, 137, 7982–7985. [Google Scholar] [CrossRef]
- Li, H.; Cao, K.; Cui, J.; Liu, S.; Qiao, X.; Shen, Y.; Wang, M. 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes. Nanoscale 2016, 8, 6379–6385. [Google Scholar] [CrossRef]
- Kaempgen, M.; Duesberg, G.; Roth, S. Transparent carbon nanotube coatings. Appl. Surf. Sci. 2005, 252, 425–429. [Google Scholar] [CrossRef]
- Cho, D.; Eun, K.; Choa, S.; Kim, H. Highly flexible and stretchable carbon nanotube network electrodes prepared by simple brush painting for cost-effective flexible organic solar cells. Carbon 2014, 66, 530–538. [Google Scholar] [CrossRef]
- Georgakilas, V.; Demeslis, A.; Ntararas, E.; Kouloumpis, A.; Dimos, K.; Gournis, D.; Kocman, M.; Otyepka, M.; Zboril, R. Hydrophilic nanotube supported graphene-water dispersible carbon superstructure with excellent conductivity. Adv. Funct. Mater. 2015, 25, 1481–1487. [Google Scholar] [CrossRef]
- Wang, S.; Liu, N.; Tao, J.; Yang, C.; Liu, W.; Shi, Y.; Wang, Y.; Su, J.; Li, L.; Gao, Y. Inkjet printing of conductive patterns and supercapacitors using a multi-walled carbon nanotube/Ag nanoparticle based ink. J. Mater. Chem. A 2015, 3, 2407–2413. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Wajahat, M.; Jeong, H.; Chang, W.; Jeong, H.; Yang, J.; Kim, J.; Seol, S. Three-dimensional printing of highly conductive carbon nanotube microarchitectures with fluid ink. ACS Nano 2016, 10, 8879–8887. [Google Scholar] [CrossRef]
- Menon, H.; Aiswarya, R.; Surendran, K. Screen printable MWCNT inks for printed electronics. RSC Adv. 2017, 7, 44076–44081. [Google Scholar] [CrossRef] [Green Version]
- Azoubel, S.; Magdassi, S. Controlling adhesion properties of SWCNT-pet films prepared by wet deposition. ACS Appl. Mater. Interfaces 2014, 6, 9265–9271. [Google Scholar] [CrossRef] [PubMed]
- Santidrian, A.; Sanahuja, O.; Villacampa, B.; Diez, J.; Benito, A.; Maser, W.; Munoz, E.; Anson-Casaos, A. Chemical postdeposition treatments to improve the adhesion of carbon nanotube films on plastic substrates. ACS Omega 2019, 4, 2804–2811. [Google Scholar] [CrossRef]
- Rajanna, P.; Luchkin, S.; Larionov, K.; Grebenko, A.; Popov, Z.; Sorokin, P.; Danilson, M.; Bereznev, S.; Lund, P.; Nasibulin, A. Adhesion of single-walled carbon nanotube thin films with different materials. J. Phys. Chem. Lett. 2020, 11, 504–509. [Google Scholar] [CrossRef]
- Jung, H.; An, S.; Lim, J.; Kim, D. Transparent conductive thin film synthesis based on single-walled carbon nanotubes dispersion containing polymethylmethacrylate binder. J. Nanosci. Nanotechnol. 2011, 11, 6345–6349. [Google Scholar] [CrossRef]
- Jung, H.; Yu, J.; Lee, H.; Kim, J.; Park, J.; Kim, D. A scalable fabrication of highly transparent and conductive thin films using fluorosurfactant-assisted single-walled carbon nanotube dispersions. Carbon 2013, 52, 259–266. [Google Scholar] [CrossRef]
- Koutsioukis, A.; Georgakilas, V.; Belessi, V.; Zboril, R. Highly conductive water-based polymer/graphene nanocomposites for printed electronics. Chem. Eur. J. 2017, 23, 8268–8274. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, R.; Wang, H.; Ye, S.; Zhou, Y.; Ma, T.; Zhu, J.; Pfefferle, L.; Qian, J. Highly conductive carbon-based aqueous inks toward electroluminescent devices, printed capacitive sensors and flexible wearable electronics. RSC Adv. 2019, 9, 15184–15189. [Google Scholar] [CrossRef] [Green Version]
- Garate, O.; Veiga, L.; Medrano, A.; Longinotti, G.; Ybarra, G.; Monsalve, L. Waterborne carbon nanotube ink for the preparation of electrodes with applications in electrocatalysis and enzymatic biosensing. Mater. Res. Bull. 2018, 106, 137–143. [Google Scholar] [CrossRef]
- Molinari, J.; Florez, L.; Medrano, A.; Monsalve, L.; Ybarra, G. Electrochemical determination of beta-lactoglobulin employing a polystyrene bead-modified carbon nanotube ink. Biosensors 2018, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Ansón-Casaos, A.; Mis-Fernández, R.; López-Alled, C.M.; Almendro-López, E.; Hernández-Ferrer, J.; González-Domínguez, J.M.; Martínez, M.T. Transparent conducting films made of different carbon nanotubes, processed carbon nanotubes, and graphene nanoribbons. Chem. Eng. Sci. 2015, 138, 566–574. [Google Scholar] [CrossRef]
- Ansón-Casaos, A.; Ciria, J.C.; Sanahuja, O.; Víctor-Román, S.; González-Domínguez, J.M.; García-Bordejé, E.; Benito, A.M.; Maser, W.K. The viscosity of dilute carbon nanotube (1D) and graphene oxide (2D) nanofluids. Phys. Chem. Chem. Phys. 2020. [Google Scholar] [CrossRef]
- Halelfadl, S.; Estelle, P.; Aladag, B.; Doner, N.; Mare, T. Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature. Int. J. Therm. Sci. 2013, 71, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Bian, Y.; Liu, Y.; Xu, X. Experimental investigation on rheological properties of water based nanofluids with low MWCNT concentrations. Int. J. Heat Mass Trans. 2019, 135, 175–185. [Google Scholar] [CrossRef]
- Wang, T.; Lei, C.; Dalton, A.; Creton, C.; Lin, Y.; Fernando, K.; Sun, Y.; Manea, M.; Asua, J.; Keddie, J. Waterborne, nanocomposite pressure-sensitive adhesives with high tack energy, optical transparency, and electrical conductivity. Adv. Mater. 2006, 18, 2730–2734. [Google Scholar] [CrossRef]
- Anson-Casaos, A.; Pascual, F.J.; Ruano, C.; Fernandez-Huerta, N.; Fernandez-Pato, I.; Otero, J.C.; Puertolas, J.A.; Martinez, M.T. Electrical conductivity and tensile properties of block-copolymer-wrapped single-walled carbon nanotube/poly(methyl methacrylate) composites. J. Appl. Polym. Sci. 2015, 132, 41547. [Google Scholar] [CrossRef] [Green Version]
- Itkis, M.; Pekker, A.; Tian, X.; Bekyarova, E.; Haddon, R. Networks of semiconducting SWNTs: Contribution of midgap electronic states to the electrical transport. Acc. Chem. Res. 2015, 48, 2270–2279. [Google Scholar] [CrossRef]
- Stern, A.; Azoubel, S.; Sachyani, E.; Livshits, G.; Rotem, D.; Magdassi, S.; Porath, D. Conductivity enhancement of transparent 2D carbon nanotube networks occurs by resistance reduction in all junctions. J. Phys. Chem. C 2018, 122, 14872–14876. [Google Scholar] [CrossRef]
- Pico, F.; Rojo, J.; Sanjuan, M.; Anson, A.; Benito, A.; Callejas, M.; Maser, W.; Martinez, M.T. Single-walled carbon nanotubes as electrodes in supercapacitors. J. Electrochem. Soc. 2004, 151, A831–A837. [Google Scholar] [CrossRef]
- Pico, F.; Pecharroman, C.; Anson, A.; Martinez, M.T.; Rojo, J.M. Understanding carbon-carbon composites as electrodes of supercapacitors—A study by AC and DC measurements. J. Electrochem. Soc. 2007, 154, A579–A586. [Google Scholar] [CrossRef]
- Zhou, J.; Cheiftz, J.; Li, R.; Wang, F.; Zhou, X.; Sham, T.; Sun, X.; Ding, Z. Tailoring multi-wall carbon nanotubes for smaller nanostructures. Carbon 2009, 47, 829–838. [Google Scholar] [CrossRef]
- Sieben, J.M.; Anson-Casaos, A.; Montilla, F.; Martinez, M.T.; Morallon, E. Electrochemical behaviour of different redox probes on single wall carbon nanotube buckypaper-modified electrodes. Electrochim. Acta 2014, 135, 404–411. [Google Scholar] [CrossRef]
- Martín, A.; Hernández-Ferrer, J.; Vazquez, L.; Martínez, M.T.; Escarpa, A. Controlled chemistry of tailored graphene nanoribbons for electrochemistry: A rational approach to optimizing molecule detection. RSC Adv. 2014, 4, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, R.S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 1965, 37, 1351–1355. [Google Scholar] [CrossRef]
- Mahe, E.; Devilliers, D.; Comninellis, C. Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes. Electrochim. Acta 2005, 50, 2263–2277. [Google Scholar] [CrossRef]
Label | MWCNT/SDBS | Hycar® | Water |
---|---|---|---|
MSH-0 | 100 | 0 | 0 |
MSH-1 | 50 | 1.6 | 48.4 |
MSH-2 | 50 | 3.1 | 46.9 |
MSH-3 | 50 | 6.3 | 43.8 |
MSH-4 | 50 | 12.5 | 37.5 |
Label | MWCNT | SDBS | Hycar® |
---|---|---|---|
MSH-0 | 61.5 | 38.5 | 0.0 |
MSH-1 | 30.0 | 18.7 | 51.3 |
MSH-2 | 19.8 | 12.4 | 67.8 |
MSH-3 | 11.8 | 7.4 | 80.8 |
MSH-4 | 6.5 | 4.1 | 89.4 |
Label | t (mm) | m (mg·cm−2) | Rs (Ω·sq−1) | σ (S·cm−1) | C (mF·cm−2) | Cs (F·g−1) |
---|---|---|---|---|---|---|
MSH-0 | 0.01 | 0.874 | 12 | 83 | 8.0 | 14.88 |
MSH-1 | 0.07 | 6.492 | 4.7 | 30 | 8.6 | 4.41 |
MSH-2 | 0.06 | 5.959 | 11 | 16 | 0.41 | 0.35 |
MSH-3 | 0.07 | 7.817 | 48 | 3.0 | - | - |
MSH-4 | 0.18 | 18.41 | 120 | 0.47 | - | - |
Label | Redox Probe | ΔEp (mV) | k0 (cm·s−1) |
---|---|---|---|
MSH-0 | ferricyanide | 151 | 1.84 × 10−3 |
MSH-0 | hydroquinone | 164 | 9.63 × 10−3 |
MSH-1 | ferricyanide | 350 | 1.62 × 10−4 |
MSH-1 | hydroquinone | 706 | 3.82 × 10−6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansón-Casaos, A.; Sanahuja-Parejo, O.; Hernández-Ferrer, J.; Benito, A.M.; Maser, W.K. Carbon Nanotube Film Electrodes with Acrylic Additives: Blocking Electrochemical Charge Transfer Reactions. Nanomaterials 2020, 10, 1078. https://doi.org/10.3390/nano10061078
Ansón-Casaos A, Sanahuja-Parejo O, Hernández-Ferrer J, Benito AM, Maser WK. Carbon Nanotube Film Electrodes with Acrylic Additives: Blocking Electrochemical Charge Transfer Reactions. Nanomaterials. 2020; 10(6):1078. https://doi.org/10.3390/nano10061078
Chicago/Turabian StyleAnsón-Casaos, Alejandro, Olga Sanahuja-Parejo, Javier Hernández-Ferrer, Ana M. Benito, and Wolfgang K. Maser. 2020. "Carbon Nanotube Film Electrodes with Acrylic Additives: Blocking Electrochemical Charge Transfer Reactions" Nanomaterials 10, no. 6: 1078. https://doi.org/10.3390/nano10061078
APA StyleAnsón-Casaos, A., Sanahuja-Parejo, O., Hernández-Ferrer, J., Benito, A. M., & Maser, W. K. (2020). Carbon Nanotube Film Electrodes with Acrylic Additives: Blocking Electrochemical Charge Transfer Reactions. Nanomaterials, 10(6), 1078. https://doi.org/10.3390/nano10061078