Two-Step Synthesis of CuS/C@PANI Nanocomposite as Advanced Electrode Materials for Supercapacitor Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the CuS/C-80/120/160 Materials
2.3. Fabrication of the CuS/C-120@PANI Electrode Electrodes
2.4. Morphological and Structural Characterization
2.5. Electrochemical Analysis
3. Results Discussion
3.1. Morphological and Structural Characterization
3.2. Electrochemical Performance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Xia, Y. Recent progress in supercapacitors: From materials design to system construction. Adv. Mater. 2013, 25, 5336–5342. [Google Scholar] [CrossRef] [PubMed]
- El-Kady, M.F.; Strong, V.; Dubin, S.; Dubiin, S.; Kaner, B.R. Laser scribing of high performance and flexible graphene-based electrochemical capacitors. Science 2011, 335, 1326–1330. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Li, X.; Fan, L. Biomass derivative/graphene aerogels for binder-free supercapacitors. Energy Storage Mater. 2016, 3, 113–122. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, J.; Cheng, C.; Li, H.; Zhang, J.; Gong, H.; Fan, H. Energy Storage: Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High-Performance Pseudocapacitive Materials. Adv. Mater. 2011, 23, 2076–2081. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Shi, Y.; Wong, J.; Yang, H. CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 2014, 3, 46–54. [Google Scholar] [CrossRef]
- Song, W.; Song, K.; Fan, L. A Versatile Strategy toward Binary Three-Dimensional Architectures Based on Engineering Graphene Aerogels with Porous Carbon Fabrics for Supercapacitors. ACS Appl. Mater. Inter. 2015, 7, 4257–4264. [Google Scholar] [CrossRef]
- Yang, B.; She, Y.; Zhang, C.; Kang, S.; Zhou, J.; Hu, W. Nitrogen Doped Intercalation TiO2/TiN/Ti3C2TxNanocomposite Electrodes with Enhanced Pseudocapacitance. Nanomaterials 2020, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Liu, J.; Horn, M.; Motta, N.; Hu, M.; Li, Y. Recent advancements in metal organic framework based electrodes for supercapacitors. Sci. China Mater. 2018, 61, 159–184. [Google Scholar] [CrossRef] [Green Version]
- Tan, P.; Wu, Z.; Chen, B.; Xu, H.; Cai, W.; Ni, M. Exploring oxygen electrocatalytic activity and pseudocapacitive behavior of Co3O4 nanoplates in alkaline solutions. Electrochim. Acta 2019, 310, 86–95. [Google Scholar] [CrossRef]
- Ju, H.; Song, W.; Fan, L. Rational design of graphene/porous carbon aerogels for high-performance flexible all-solid-state supercapacitors. J. Mater. Chem. A 2014, 2, 10895–10903. [Google Scholar] [CrossRef]
- Dai, K.; Lv, L.; Lu, H.; Liang, C.; Geng, L.; Zhu, G. Large-scale synthesis of cobalt sulfide/carbon nanotube hybrid and its excellent electrochemical capacitance performance. Mater. Lett. 2016, 176, 42–45. [Google Scholar] [CrossRef]
- Yang, Y.; Fei, H.; Ruan, G.; Xiang, C.; Tour, J. Edge-oriented MoS2 nanoporouse films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 2014, 26, 8163–8168. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, K.; Zhou, J.; Shen, J.; Ye, M. CuS nanoplatelets arrays grown on graphene nanosheets as advanced electrode materials for supercapacitor applications. J. Mater. Sci. Technol. 2018, 34, 2342–2349. [Google Scholar] [CrossRef]
- Liang, H.; Shuang, W.; Zhang, Y.; Chao, S.; Han, H.; Wang, X.; Zhang, H.; Yang, L. Graphene-like Multilayered CuS Nanosheets Assembled into Flower-like Microspheres and Their Electrocatalytic Oxygen Evolution Properties. ChemElectroChem 2018, 3, 494–500. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, J.; Xing, K. One-step synthesis of layered CuS/multi-walled carbon nanotube nanocomposites for supercapacitor electrode material with ultrahigh specific capacitance. Electrochim. Acta 2014, 149, 28–33. [Google Scholar] [CrossRef]
- Xue, G.; Huang, N.; Zhao, N.; Xiao, F.; Wei, W. Hollow Al2O3 spheres prepared by a simple and tunable hydrothermal method. RSC Adv. 2015, 5, 13385–13391. [Google Scholar] [CrossRef]
- Yang, J.; Xiong, P.; Zheng, C.; Qiu, H.; Wei, M. Metal-organic frameworks: A new promising class of materials for a high-performance supercapacitor electrode. J. Mater. Chem. A 2014, 2, 16640–16644. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, Z.; Yan, Z.; Zhou, R.; Wang, Z.; Chen, C. Facile synthesis of MOF-derived porous spinel zinc manganese oxide/carbon nanorods hybrid materials for supercapacitor application. Ceram. Int. 2018, 44, 20163–20169. [Google Scholar] [CrossRef]
- Gambou-Bosca, A.; Bélanger, D. Effect of the formulation of the electrode on the pore texture and electrochemical performance of the manganese dioxide-based electrode for application in a hybrid electrochemical capacitor. J. Mater. Chem. A 2014, 2, 6463–6473. [Google Scholar] [CrossRef]
- Masarapu, C.; Zeng, H.; Hung, K.; Wei, B. Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 2009, 3, 2199–2206. [Google Scholar] [CrossRef]
- Ren, L.; Zhang, Z.; Kang, L.; Xu, H.; Shi, F.; Lei, Z.; Liu, Z. Three-dimensional tubular MoS2/PANI hybrid electrode for high rate performance supercapacitor. ACS Appl. Mater. Inter. 2015, 7, 28294–28302. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, S.; Wang, H. Binary NiCu layered double hydroxide nanosheets for enhanced energy storage performance as supercapacitor electrode. Sci. China Mater. 2018, 61, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.; Yoon, H. Recent advances in nanostructured conducting polymers: From synthesis to practical applications. Polymers 2016, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; He, Y.; Liu, Y.; Kazantseva, N.; Saha, P.; Cheng, Q. ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes. J. Energy Chem. 2019, 25, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Jafari, E.; Moradi, M.; Borhani, S.; Bigdeli, H.; Hajati, S. Fabrication of hybrid supercapacitor based on rod-like HKUST-1@polyaniline as cathode and reduced graphene oxide as anode. Phys. E 2018, 99, 16–23. [Google Scholar] [CrossRef]
- Wang, L.; Feng, X.; Ren, L.; Piao, Q.; Zhong, J.; Wang, Y.; LI, H.; Chen, Y.; Wang, B.L.; Wang, X.; et al. Flexible Solid-State Supercapacitor Based on a Metal–Organic Framework Interwoven by Electrochemically-Deposited PANI. J. Am. Chem. Soc. 2015, 137, 4920–4923. [Google Scholar] [CrossRef]
- Sevillano, G.; Luna, J.; Dubbeldam, D.; Calero, S. Molecular Mechanisms for Adsorption in Cu-BTC Metal Organic Framework. J. Phys. Chem. C 1999, 117, 11357–11366. [Google Scholar] [CrossRef]
- Hao, X.; Pritzker, M. Pulsed electrodeposition of nickel hexacyanoferrate films for electrochemically switched ion exchange. Sep. Purif. Technol. 2018, 63, 407–414. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Thiagarajan, K.; Senthilkumar, B.; Khan, Z.; Senthil, R.A.; Arunachalam, P.; Madhavan, J.; Ashokkumar, M. Synthesis of Hierarchical Cobalt Phosphate Nanoflakes and their Enhanced Electrochemical Performances for Supercapacitor Applications. ChemistrySelect 2017, 2, 201–210. [Google Scholar] [CrossRef]
- Yasin, A.; Jeong, J.; Mohamed, I.; Park, C.; Kim, C. Fabrication of N-doped&SnO2-incorporated activated carbon to enhance desalination and bio-decontamination performance for capacitive deionization. J. Alloy. Comp. 2017, 729, 764–775. [Google Scholar]
- Ji, D.; Zhou, Y.; Tong, J.; Wang, J.; Zhu, M.; Chen, T.; Yuan, A. Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries. Chem. Eng. J. 2017, 313, 1623–1632. [Google Scholar] [CrossRef]
- Cras, F.; Pecquenard, B.; Martinez, H.; Martin, L. Comprehensive X-ray Photoelectron Spectroscopy Study of the Conversion Reaction Mechanism of CuO in Lithiated Thin Film Electrodes. J. Phys. Chem. C 2013, 117, 4421–4430. [Google Scholar]
- Ung, T.; Nguyen, Q.; Christopher, M.; Georgi, M.; Karen, W. Synthesis of CuS and CuS/ZnS core/shell nanocrystals for photocatalytic degradation of dyes under visible light. Catal. Commun. 2014, 44, 62–67. [Google Scholar]
- Yi, X.; Riedinger, A.; Prato, M.; Casu, A.; Genovese, A.; Guardia, P.; Sottini, S.; Sangregorio, C.; Miszta, K.; Ghosh, S.; et al. Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu\r+\r Ions. J. Am. Chem. Soc. 2013, 135, 17630–17637. [Google Scholar]
- Li, L.; Li, R.; Gai, S.; Ding, S.; He, F.; Zhang, M.; Yang, P. MnO2 Nanosheets Grown on Nitrogen-Doped Hollow Carbon Shells as a High-Performance Electrode for Asymmetric Supercapacitors. Carbon 2015, 21, 7119–7126. [Google Scholar]
- Kar, P.; Farsinezhad, S.; Zhang, X.; Shankar, K. Anodic Cu2S and CuS nanorod and nanowall arrays: Preparation, properties and application in CO2 photoreduction. Nanoscale 2014, 6, 14305–14318. [Google Scholar] [CrossRef]
- Yu, B.; Fang, J.; Huang, E. Characteristics of the Raman spectra of archaeological malachites. J. Raman. Spectrosc. 2013, 44, 630–636. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, S.; Kulandainathan, M. Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction. Micropor. Mesopor. Mater. 2013, 168, 57–64. [Google Scholar] [CrossRef]
- Li, L.; Duan, W.; Yuan, Q. Hierarchical γ-Al2O3 monoliths with highly ordered 2D hexagonal mesopores in microporous walls. Chem. Commun. 2009, 41, 6174–6176. [Google Scholar] [CrossRef]
- Chen, L.; Ji, T.; Mu, L.; Zhu, J. Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon 2017, 111, 839–848. [Google Scholar] [CrossRef]
- Feng, D.; Lv, Y.; Wu, Z.; Dou, Y.; Han, L.; Sun, Z.; Xia, Y.; Zheng, G.; Zhao, D. Freestanding mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J. Am. Chem. Soc. 2011, 133, 15148–15156. [Google Scholar] [CrossRef] [PubMed]
No. | 2θ° | FWHM | Area (cts × 2θ°) | d-Spacing (Å) | Height (cts) | Rel. Int. (%) | HKL |
---|---|---|---|---|---|---|---|
1 | 27.738 | 2.473 | 75,853 | 3.2204 | 578 | 37.2 | 101 |
2 | 29.323 | 0.842 | 50,740 | 3.0524 | 1134 | 24.9 | 102 |
3 | 31.914 | 1.948 | 203,710 | 2.8050 | 1670 | 100 | 103 |
4 | 38.915 | 2.550 | 15,645 | 2.3132 | 15,645 | 7.7 | 105 |
5 | 48.016 | 0.774 | 113,625 | 1.8963 | 2049 | 55.8 | 110 |
6 | 52.777 | 2.352 | 34,255 | 1.7383 | 249 | 16.8 | 108 |
7 | 59.428 | 1.947 | 73,385 | 1.5635 | 564 | 36.0 | 116 |
Current Density (Ag−1) | 0.5 | 1 | 2 | 3 | 4 | 5 |
IR Drop (V) | 0.03 | 0.05 | 0.11 | 0.15 | 0.20 | 0.26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Zhang, S.; Xu, Y. Two-Step Synthesis of CuS/C@PANI Nanocomposite as Advanced Electrode Materials for Supercapacitor Applications. Nanomaterials 2020, 10, 1034. https://doi.org/10.3390/nano10061034
Liu Q, Zhang S, Xu Y. Two-Step Synthesis of CuS/C@PANI Nanocomposite as Advanced Electrode Materials for Supercapacitor Applications. Nanomaterials. 2020; 10(6):1034. https://doi.org/10.3390/nano10061034
Chicago/Turabian StyleLiu, Qing, Shihang Zhang, and Yan Xu. 2020. "Two-Step Synthesis of CuS/C@PANI Nanocomposite as Advanced Electrode Materials for Supercapacitor Applications" Nanomaterials 10, no. 6: 1034. https://doi.org/10.3390/nano10061034
APA StyleLiu, Q., Zhang, S., & Xu, Y. (2020). Two-Step Synthesis of CuS/C@PANI Nanocomposite as Advanced Electrode Materials for Supercapacitor Applications. Nanomaterials, 10(6), 1034. https://doi.org/10.3390/nano10061034