Synthesis, Characterization, and Optimization of Magnetoelectric BaTiO3–Iron Oxide Core–Shell Nanoparticles
Abstract
:1. Introduction
2. Experimental Methods
2.1. CSNP Synthesis
2.2. XPS
2.3. TEM
2.4. XRD
2.5. Magnetic Measurements
3. Results and Discussion
4. Magnetic Measurements
5. Implication of the Results
6. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mamun, M.A.-A.; Haque, A.; Pelton, A.; Paul, B.; Ghosh, K. Structural, Electronic, and Magnetic Analysis and Device Characterization of Ferroelectric-Ferromagnetic Heterostructure (BZT-BCT/LSMO/LAO) Devices for Multiferroic Applications. IEEE Trans. Magn. 2018, 1–8. [Google Scholar] [CrossRef]
- Vopson, M.M. Fundamentals of Multiferroic Materials and Their Possible Applications. Crit. Rev. Solid State Mater. Sci. 2015, 40, 223–250. [Google Scholar] [CrossRef] [Green Version]
- Haque, A.; Mahbub, A.R.; Abdullah-Al Mamun, M.; Reaz, M.; Ghosh, K. Fabrication and thickness-dependent magnetic studies of tunable multiferroic heterostructures (CFO/LSMO/LAO). Appl. Phys. A 2019, 125, 357. [Google Scholar] [CrossRef]
- Zhao, S. Advances in Multiferroic Nanomaterials Assembled with Clusters. J Nanomater. 2015, 1. [Google Scholar] [CrossRef]
- Mamun, M.A.-A.; Haque, A.; Pelton, A.; Paul, B.; Ghosh, K. Fabrication and ferromagnetic resonance study of BZT-BCT/LSMO heterostructure films on LAO and Pt. J. Magn. Magn. Mater. 2019, 478, 132–139. [Google Scholar] [CrossRef]
- Ali, T.; Gigli, L.; Ali, A.; Khan, M.N. Structural transformation and inverse magnetocaloric effect in Ni50Mn33In17. J. Magn. Magn. Mater. 2019, 473, 370–375. [Google Scholar] [CrossRef]
- Sreenivasulu, G.; Popov, M.; Chavez, F.A.; Hamilton, S.L.; Lehto, P.R.; Srinivasan, G. Controlled self-assembly of multiferroic core-shell nanoparticles exhibiting strong magneto-electric effects. Appl. Phys. Lett. 2014, 104, 052901. [Google Scholar] [CrossRef]
- Kukhar, V.G.; Pertsev, N.A.; Kholkin, A.L. Thermodynamic theory of strain-mediated direct magnetoelectric effect in multiferroic film–substrate hybrids. Nanotechnology 2010, 21, 265701. [Google Scholar] [CrossRef]
- Kobori, H.; Uzimoto, K.; Hoshino, A.; Yamasaki, A.; Sugimura, A.; Taniguchi, T.; Horie, T.; Naitoh, Y.; Shimizu, T. Magnetoresistance Intensification of Fe3O4/BaTiO3 Nanoparticle-Composite-Sinter Produced by Low Temperature Heat Treatment. J. Supercond. Nov. Magn. 2012, 25, 2809–2812. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, N.; Jha, A.; Sahni, M.; Sung, K.; Jung, J.H.; Chaubey, S. Study of magnetic, dielectric and magnetodielectric properties of BaTiO3/Fe3O4 core/shell nanocomposite. J. Mater. Sci. Mater. Electron. 2015, 26, 32–36. [Google Scholar] [CrossRef]
- Zhang, Q.; Cagin, T.; Goddard, W.A. The ferroelectric and cubic phases in BaTiO3 ferroelectrics are also antiferroelectric. Proc. Natl. Acad. Sci. USA 2006, 103, 14695–14700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. Appl. Phys. 2003, 36, R167. [Google Scholar] [CrossRef] [Green Version]
- Dronskowski, R. The Little Maghemite Story: A Classic Functional Material. Adv. Funct. Mater. 2001, 11, 27–29. [Google Scholar] [CrossRef]
- Haque, A.; Sumaiya, S. An Overview on the Formation and Processing of Nitrogen-Vacancy Photonic Centers in Diamond by Ion Implantation. J. Manuf. Mater. Process. 2017, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Antón, R.L.; González, J.A.; Andrés, J.P.; Canales-Vázquez, J.; Toro, J.A.D.; Riveiro, J.M. High-vacuum annealing reduction of Co/CoO nanoparticles. Nanotechnology 2014, 25, 105702. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.G.; Poornachandra, Y.; Chandrasekhar, C. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: Inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway). Nanoscale 2015, 7, 18738–18750. [Google Scholar] [CrossRef]
- Buscaglia, M.T.; Buscaglia, V.; Curecheriu, L.; Postolache, P.; Mitoseriu, L.; Ianculescu, A.C.; Vasile, B.S.; Zhe, Z.; Nanni, P. Fe2O3@BaTiO3 Core−Shell Particles as Reactive Precursors for the Preparation of Multifunctional Composites Containing Different Magnetic Phases. Chem. Mater. 2010, 22, 4740–4748. [Google Scholar] [CrossRef]
- Curecheriu, L.; Postolache, P.; Buscaglia, M.T.; Buscaglia, V.; Ianculescu, A.; Mitoseriu, L. Novel magnetoelectric ceramic composites by control of the interface reactions in Fe2O3@BaTiO3 core-shell structures. J. Appl. Phys. 2014, 116, 084102. [Google Scholar] [CrossRef]
- Vanderah, T.A.; Loezos, J.M.; Roth, R.S. Magnetic Dielectric Oxides: Subsolidus Phase Relations in the BaO:Fe2O3:TiO2 System. J. Solid State Chem. 1996, 121, 38–50. [Google Scholar] [CrossRef]
- Siegrist, T.; Vanderah, T.A. Combining Magnets and Dielectrics: Crystal Chemistry in the BaO−Fe2O3−TiO2 System. Eur. J. Inorg. Chem. 2003, 1483–1501. [Google Scholar] [CrossRef]
- Mornet, S.; Elissalde, C.; Bidault, O.; Weill, F.; Sellier, E.; Nguyen, O.; Maglione, M. Ferroelectric-Based Nanocomposites: Toward Multifunctional Materials. Chem. Mater. 2007, 19, 987–992. [Google Scholar] [CrossRef]
- Birkner, N.; Navrotsky, A. Thermodynamics of manganese oxides: Sodium, potassium, and calcium birnessite and cryptomelane. Proc. Natl. Acad. Sci. USA 2017, 201620427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Haque, A.; Mamun, M.A.-A.; Taufique, M.F.N.; Karnati, P.; Ghosh, K. Temperature Dependent Electrical Transport Properties of High Carrier Mobility Reduced Graphene Oxide Thin Film Devices. IEEE Trans. Semicond. Manuf. 2018, 31, 535–544. [Google Scholar] [CrossRef]
- Nakata, K.; Hu, Y.; Uzun, O.; Bakr, O.; Stellacci, F. Chains of Superparamagnetic Nanoparticles. Adv. Mater. 2008, 20, 4294–4299. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Q.; Gao, M. Preparation of Water-Soluble Magnetite Nanocrystals from Hydrated Ferric Salts in 2-Pyrrolidone: Mechanism Leading to Fe3O4. Angew. Chem. Int. Ed. 2005, 44, 123–126. [Google Scholar] [CrossRef]
- Yu, J.; Yu, X.; Huang, B.; Zhang, X.; Dai, Y. Hydrothermal Synthesis and Visible-light Photocatalytic Activity of Novel Cage-like Ferric Oxide Hollow Spheres. Cryst. Growth Des. 2009, 9, 1474–1480. [Google Scholar] [CrossRef]
- Mitov, I.; Cherkezova-Zheleva, Z.; Mitrov, V. Comparative Study of the Mechanochemical Activation of Magnetite (Fe3O4) and Maghemite (γ-Fe2O3). Phys. Status Solidi A 1997, 161, 475–482. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012, 7, 144. [Google Scholar] [CrossRef] [Green Version]
- Dormann, J.L.; Tronc, E.; Fiorani, D. Advances in Chemical Physics; Wiley: New York, NY, USA, 1997; Volume 98. [Google Scholar]
- Layek, S.; Pandey, A.; Pandey, A.; Verma, H.C. Synthesis of γ–Fe2O3 nanoparticles with crystallographic and magnetic texture. Int. J. Eng. Sci. Technol. 2010, 2, 8. [Google Scholar]
- Wang, L.-M.; Petracic, O.; Mattauch, S.; Koutsioumbas, A.; Wei, X.-K.; Heggen, M.; Leffler, V.; Ehlert, S.; Brückel, T. Magnetoelectric coupling in iron oxide nanoparticle—Barium titanate composites. J. Phys. Appl. Phys. 2018, 52, 065301. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses; John Wiley & Sons: New York, NY, USA, 2003. [Google Scholar]
- Reaz, M.; Haque, A.; Cornelison, D.M.; Wanekaya, A.; Delong, R.; Ghosh, K. Magneto-luminescent Zinc/Iron oxide core-shell nanoparticles with tunable magnetic properties. Phys. E Low-Dimens. Syst. Nanostructures 2020. accepted. [Google Scholar]
- Anupama, A.V.; Keune, W.; Sahoo, B. Thermally induced phase transformation in multi-phase iron oxide nanoparticles on vacuum annealing. J. Magn. Magn. Mater. 2017, 439, 156–166. [Google Scholar] [CrossRef]
Name | Position (eV) | Area | FWHM |
---|---|---|---|
Peak1 | 710.5126 | 352.9095 | 3.12362 |
Peak2 | 709.5909 | 260.5075 | 3.72701 |
Peak3 | 712.4837 | 41.63253 | 2.6034 |
Peak4 | 714.143 | 2.90822 | 2.90822 |
Peak5 | 723.4224 | 310.1352 | 4.91504 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reaz, M.; Haque, A.; Ghosh, K. Synthesis, Characterization, and Optimization of Magnetoelectric BaTiO3–Iron Oxide Core–Shell Nanoparticles. Nanomaterials 2020, 10, 563. https://doi.org/10.3390/nano10030563
Reaz M, Haque A, Ghosh K. Synthesis, Characterization, and Optimization of Magnetoelectric BaTiO3–Iron Oxide Core–Shell Nanoparticles. Nanomaterials. 2020; 10(3):563. https://doi.org/10.3390/nano10030563
Chicago/Turabian StyleReaz, Mahmud, Ariful Haque, and Kartik Ghosh. 2020. "Synthesis, Characterization, and Optimization of Magnetoelectric BaTiO3–Iron Oxide Core–Shell Nanoparticles" Nanomaterials 10, no. 3: 563. https://doi.org/10.3390/nano10030563
APA StyleReaz, M., Haque, A., & Ghosh, K. (2020). Synthesis, Characterization, and Optimization of Magnetoelectric BaTiO3–Iron Oxide Core–Shell Nanoparticles. Nanomaterials, 10(3), 563. https://doi.org/10.3390/nano10030563