Photocatalytic and Gas Sensitive Multiwalled Carbon Nanotube/TiO2-ZnO and ZnO-TiO2 Composites Prepared by Atomic Layer Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
3.1. TG/DTA
3.2. Raman Spectroscopy
3.3. Powder XRD
3.4. SEM and TEM
3.5. EDX and XPS
3.6. Nitrogen Adsorption
3.7. Photocatalysis
3.8. Gas Sensing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ahmmad, B.; Kusumoto, Y.; Somekawa, S.; Ikeda, M. Carbon nanotubes synergistically enhance photocatalytic activity of TiO2. Catal. Commun. 2008, 9, 1410–1413. [Google Scholar] [CrossRef]
- Baughman, R.H. Carbon Nanotubes--the Route Toward Applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tóth, A.; Voitko, K.V.; Bakalinska, O.; Prykhod’ko, G.P.; Bertóti, I.; Martínez-Alonso, A.; Tascón, J.M.D.; Gun’ko, V.M.; László, K. Morphology and adsorption properties of chemically modified MWCNT probed by nitrogen, n-propane and water vapor. Carbon N. Y. 2012, 50, 577–585. [Google Scholar] [CrossRef]
- Wang, H.; Jia, G.; Guo, Y.; Zhang, Y.; Geng, H.; Xu, J.; Mai, W.; Yan, Q.; Fan, H.J. Atomic Layer Deposition of Amorphous TiO2 on Carbon Nanotube Networks and Their Superior Li and Na Ion Storage Properties. Adv. Mater. Interfaces 2016, 3, 1600375. [Google Scholar] [CrossRef]
- Arash, B.; Wang, Q.; Varadan, V.K. Mechanical properties of carbon nanotube/polymer composites. Sci. Rep. 2015, 4, 6479. [Google Scholar] [CrossRef]
- Zaporotskova, I.V.; Boroznina, N.P.; Parkhomenko, Y.N.; Kozhitov, L.V. Carbon nanotubes: Sensor properties. A review. Mod. Electron. Mater. 2016, 2, 95–105. [Google Scholar] [CrossRef]
- Uemura, S. Carbon nanotube field emission display. In Perspectives of Fullerene Nanotechnology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 57–65. [Google Scholar]
- Parmee, R.J.; Collins, C.M.; Milne, W.I.; Cole, M.T. X-ray generation using carbon nanotubes. Nano Converg. 2015, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.M.; Yang, Q.H.; Liu, C. Hydrogen storage in carbon nanotubes. Carbon N. Y. 2001, 39, 1447–1454. [Google Scholar] [CrossRef]
- Yan, Y.; Miao, J.; Yang, Z.; Xiao, F.-X.; Yang, H.B.; Liu, B.; Yang, Y. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 2015, 44, 3295–3346. [Google Scholar] [CrossRef]
- Voitko, K.; Tóth, A.; Demianenko, E.; Dobos, G.; Berke, B.; Bakalinska, O.; Grebenyuk, A.; Tombácz, E.; Kuts, V.; Tarasenko, Y.; et al. Catalytic performance of carbon nanotubes in H2O2 decomposition: Experimental and quantum chemical study. J. Colloid Interface Sci. 2015, 437, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M.; Sabbaghi, S. Environmental Nanotechnology, Monitoring & Management Photo-catalytic degradation of 2, 4-DCP wastewater using MWCNT/TiO2 nano-composite activated by UV and solar light. Environ. Nanotechnology, Monit. Manag. 2014, 1–2, 24–29. [Google Scholar]
- Kondo, Y.; Yoshikawa, H.; Awaga, K.; Murayama, M.; Mori, T.; Sunada, K.; Bandow, S.; Iijima, S. Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres. Langmuir 2008, 24, 547–550. [Google Scholar] [CrossRef] [PubMed]
- Gönüllü, Y.; Rodríguez, G.C.M.; Saruhan, B.; Ürgen, M. Improvement of gas sensing performance of TiO2 towards NO2 by nano-tubular structuring. Sensors Actuators B Chem. 2012, 169, 151–160. [Google Scholar] [CrossRef]
- Kumar, R.; Al-Dossary, O.; Kumar, G.; Umar, A. Zinc oxide nanostructures for NO2 gas–sensor applications: A review. Nano-Micro Lett. 2015, 7, 97–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Li, W.; Wang, J.Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K.; Wang, L.; Fu, H.; Zhao, D. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280–9283. [Google Scholar] [CrossRef] [PubMed]
- Harinipriya, S.; Usmani, B.; Rogers, D.J.; Sandana, V.E.; Teherani, F.H.; Lusson, A.; Bove, P.; Drouhin, H.-J.; Razeghi, M. ZnO nanorod electrodes for hydrogen evolution and storage. Proc. SPIE 2012, 8263, 82631Y. [Google Scholar]
- Boyadjiev, S.I.; Georgieva, V.; Yordanov, R.; Raicheva, Z.; Szilágyi, I.M. Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors. Appl. Surf. Sci. 2016, 387, 1230–1235. [Google Scholar] [CrossRef] [Green Version]
- Sajó, I.E.; Bakos, L.P.; Szilágyi, I.M.; Lendvay, G.; Magyari, J.; Mohai, M.; Szegedi, Á.; Farkas, A.; Jánosity, A.; Klébert, S.; et al. Unexpected Sequential NH3/H2O Solid/Gas Phase Ligand Exchange and Quasi-Intramolecular Self-Protonation Yield [NH4Cu(OH)MoO4], a Photocatalyst Misidentified before as (NH4)2Cu(MoO4)2. Inorg. Chem. 2018, 57, 13679–13692. [Google Scholar] [CrossRef]
- Justh, N.; Bakos, L.P.; Hernádi, K.; Kiss, G.; Réti, B.; Erdélyi, Z.; Parditka, B.; Szilágyi, I.M. Photocatalytic hollow TiO2 and ZnO nanospheres prepared by atomic layer deposition. Sci. Rep. 2017, 7, 4337. [Google Scholar] [CrossRef] [Green Version]
- Justh, N.; Firkala, T.; László, K.; Lábár, J.; Szilágyi, I.M. Photocatalytic C60-amorphous TiO2 composites prepared by atomic layer deposition. Appl. Surf. Sci. 2017, 419, 497–502. [Google Scholar] [CrossRef]
- Coq, B.; Marc Planeix, J.; Brotons, V. Fullerene-based materials as new support media in heterogeneous catalysis by metals. Appl. Catal. A Gen. 1998, 173, 175–183. [Google Scholar] [CrossRef]
- Djoki, V.R.; Marinkovi, A.D.; Ersen, O.; Uskokovi, P.S.; Petrovi, R.D.; Radmilovi, V.R.; Jana, D.T. The dependence of the photocatalytic activity of TiO2/carbon nanotubes nanocomposites on the modification of the carbon nanotubes. Ceram. Int. 2014, 40, 4009–4018. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, J.C.; Yu, J.-G.; Kwok, Y.-C.; Che, Y.-K.; Zhao, J.-C.; Ding, L.; Ge, W.-K.; Wong, P.-K. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal. A Gen. 2005, 289, 186–196. [Google Scholar] [CrossRef]
- Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M. A New Detector for Gaseous Components Using Semiconductive Thin Films. Anal. Chem. 1962, 34, 1502–1503. [Google Scholar] [CrossRef]
- Wei, A.; Wang, Z.; Pan, L.-H.; Li, W.-W.; Xiong, L.; Dong, X.-C.; Huang, W. Room-Temperature NH3 Gas Sensor Based on Hydrothermally Grown ZnO Nanorods. Chinese Phys. Lett. 2011, 28, 080702. [Google Scholar] [CrossRef]
- Gong, J.; Li, Y.; Hu, Z.; Zhou, Z.; Deng, Y. Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers. J. Phys. Chem. C 2010, 114, 9970–9974. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Ye, Q.; Cinke, M.; Han, J.; Meyyappan, M. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 2003, 3, 929–933. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Saukko, S.; Mizsei, J.; Tóth, A.L.; Madarász, J.; Pokol, G. Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S. Solid State Sci. 2010, 12, 1857–1860. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Wang, L.; Gouma, P.I.; Balázsi, C.; Madarász, J.; Pokol, G. Preparation of hexagonal WO3 from hexagonal ammonium tungsten bronze for sensing NH3. Mater. Res. Bull. 2009, 44, 505–508. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Saukko, S.; Mizsei, J.; Király, P.; Tárkányi, G.; Tóth, A.L.; Szabó, A.; Varga-Josepovits, K.; Madarász, J.; Pokol, G. Controlling the Composition of Nanosize Hexagonal WO3 for Gas Sensing. Mater. Sci. Forum 2008, 589, 161–166. [Google Scholar] [CrossRef]
- Bai, H.; Zan, X.; Zhang, L.; Sun, D.D. Multi-functional CNT/ZnO/TiO2 nanocomposite membrane for concurrent filtration and photocatalytic degradation. Sep. Purif. Technol. 2015, 156, 922–930. [Google Scholar] [CrossRef]
- Dong, Y.; Tang, D.; Li, C. Photocatalytic oxidation of methyl orange in water phase by immobilized TiO2-carbon nanotube nanocomposite photocatalyst. Appl. Surf. Sci. 2014, 296, 1–7. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Dai, L. Water-assisted growth of aligned carbon nanotube-ZnO heterojunction arrays. Adv. Mater. 2006, 18, 1740–1744. [Google Scholar] [CrossRef]
- Knez, M.; Nielsch, K.; Niinistö, L. Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition. Adv. Mater. 2007, 19, 3425–3438. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H.-B.-R.; Maeng, W.-J. Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 2009, 517, 2563–2580. [Google Scholar] [CrossRef]
- Parsons, G.N.; George, S.M.; Knez, M. Progress and future directions for atomic layer deposition and ALD-based chemistry. MRS Bull. 2011, 36, 865–871. [Google Scholar] [CrossRef] [Green Version]
- Marichy, C.; Pinna, N. Carbon-nanostructures coated/decorated by atomic layer deposition: Growth and applications. Coord. Chem. Rev. 2013, 257, 3232–3253. [Google Scholar] [CrossRef]
- Justh, N.; Berke, B.; László, K.; Bakos, L.P.; Szabó, A.; Hernádi, K.; Szilágyi, I.M. Preparation of graphene oxide/semiconductor oxide composites by using atomic layer deposition. Appl. Surf. Sci. 2018, 453, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Justh, N.; Mikula, G.J.; Bakos, L.P.; Nagy, B.; László, K.; Parditka, B.; Erdélyi, Z.; Takáts, V.; Mizsei, J.; Szilágyi, I.M. Photocatalytic properties of TiO2@polymer and TiO2@carbon aerogel composites prepared by atomic layer deposition. Carbon N. Y. 2019, 147, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Kéri, O.; Kocsis, E.; Nagy, Z.K.; Parditka, B.; Erdélyi, Z.; Szilágyi, I.M. Preparation of AL2O3 coated PVA and PVP nanofibers and AL2O3 nanotubes by electrospinning and atomic layer deposition. Rev. Roum. Chim. 2018, 63, 401–406. [Google Scholar]
- Lee, J.S.; Min, B.; Cho, K.; Kim, S.; Park, J.; Lee, Y.T.; Kim, N.S.; Lee, M.S.; Park, S.O.; Moon, J.T. Al2O3 nanotubes and nanorods fabricated by coating and filling of carbon nanotubes with atomic-layer deposition. J. Cryst. Growth 2003, 254, 443–448. [Google Scholar] [CrossRef]
- Willinger, M.-G.; Neri, G.; Bonavita, A.; Micali, G.; Rauwel, E.; Herntrich, T.; Pinna, N. The controlled deposition of metal oxides onto carbon nanotubes by atomic layer deposition: examples and a case study on the application of V2O4 coated nanotubes in gas sensing. Phys. Chem. Chem. Phys. 2009, 11, 3615. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Ionescu, M.; Banis, M.N.; Zhong, Y.; Liu, H.; Zhang, Y.; Sun, S.; Li, R.; Sun, X. Heterostructural coaxial nanotubes of CNT@Fe2O3 via atomic layer deposition: Effects of surface functionalization and nitrogen-doping. J. Nanoparticle Res. 2011, 13, 1207–1218. [Google Scholar] [CrossRef]
- Meng, X.; Zhong, Y.; Sun, Y.; Banis, M.N.; Li, R.; Sun, X. Nitrogen-doped carbon nanotubes coated by atomic layer deposited SnO2 with controlled morphology and phase. Carbon N. Y. 2011, 49, 1133–1144. [Google Scholar] [CrossRef]
- Huang, S.; Liao, S.-Y.; Wang, C.-C.; Kei, C.-C.; Gan, J.-Y.; Perng, T.-P. Direct formation of anatase TiO2 nanoparticles on carbon nanotubes by atomic layer deposition and their photocatalytic properties. Nanotechnology 2016, 27, 405702. [Google Scholar] [CrossRef]
- Li, X.L.; Li, C.; Zhang, Y.; Chu, D.P.; Milne, W.I.; Fan, H.J. Atomic layer deposition of ZnO on multi-walled carbon nanotubes and its Use for synthesis of CNT-ZnO heterostructures. Nanoscale Res. Lett. 2010, 5, 1836–1840. [Google Scholar] [CrossRef] [Green Version]
- Kayaci, F.; Vempati, S.; Ozgit-Akgun, C.; Donmez, I.; Biyikli, N.; Uyar, T. Selective isolation of the electron or hole in photocatalysis: ZnO-TiO2 and TiO2-ZnO core-shell structured heterojunction nanofibers via electrospinning and atomic layer deposition. Nanoscale 2014, 6, 5557–6188. [Google Scholar] [CrossRef] [Green Version]
- Boyadjiev, S.I.; Kéri, O.; Bárdos, P.; Firkala, T.; Gáber, F.; Nagy, Z.K.; Baji, Z.; Takács, M.; Szilágyi, I.M. Applied Surface Science TiO2/ZnO and ZnO/TiO2 core/shell nanofibers prepared by electrospinning and atomic layer deposition for photocatalysis and gas sensing. Appl. Surf. Sci. 2017, 424, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Šćepanović, M.J.; Grujić-Brojčin, M.; Dohčević-Mitrović, Z.D.; Popović, Z. V Characterization of anatase TiO2 nanopowder by variable-temperature Raman spectroscopy. Sci. Sinter. 2009, 41, 67–73. [Google Scholar] [CrossRef]
- Diebold, U. TiO2 by XPS. Surf. Sci. Spectra 1996, 4, 227. [Google Scholar] [CrossRef]
- Islam, M.N.; Ghosh, T.B.; Chopra, K.L.; Acharya, H.N. XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films 1996, 280, 20–25. [Google Scholar] [CrossRef]
- Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon N. Y. 2008, 46, 833–840. [Google Scholar] [CrossRef]
- Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic Carbon-Nanotube-TiO2 Composites. Adv. Mater. 2009, 21, 2233–2239. [Google Scholar] [CrossRef]
- Jiang, L.; Gao, L. Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity. Mater. Chem. Phys. 2005, 91, 313–316. [Google Scholar] [CrossRef]
- Sakthivel, S.; Neppolian, B.; Shankar, M.V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater. Sol. Cells 2003, 77, 65–82. [Google Scholar] [CrossRef]
- Pore, V.; Ritala, M.; Leskelä, M.; Areva, S.; Järn, M.; Järnström, J. H2S modified atomic layer deposition process for photocatalytic TiO2 thin films. J. Mater. Chem. 2007, 17, 1361–1371. [Google Scholar] [CrossRef]
- Pore, V.; Rahtu, A.; Leskelä, M.; Ritala, M.; Sajavaara, T.; Keinonen, J. Atomic Layer Deposition of Photocatalytic TiO2 Thin Films from Titanium Tetramethoxide and Water. Chem. Vap. Depos. 2004, 10, 143–148. [Google Scholar] [CrossRef]
- Park, J.Y.; Choi, S.W.; Lee, J.W.; Lee, C.; Kim, S.S. Synthesis and gas sensing properties of TiO2-ZnO core-shell nanofibers. J. Am. Ceram. Soc. 2009, 92, 2551–2554. [Google Scholar] [CrossRef]
Deposited Oxide | Temperature/°C | Number of Cycles | Pulse Times/s | |||
---|---|---|---|---|---|---|
Metallic Precursor | N2 Purge | Water | N2 Purge | |||
TiO2 | 250 | 250 | 1.5 | 30 | 3 | 30 |
ZnO | 200 | 120 | 3 | 30 | 3 | 30 |
Sample | EDX | XPS | ||||||
---|---|---|---|---|---|---|---|---|
Atomic % | ||||||||
C | O | Ti | Zn | C | O | Ti | Zn | |
CNT-OH | 96.0 | 4.0 | 96.3 | 3.7 | ||||
CNT-TiO2 | 82.0 | 16.2 | 1.8 | 74.7 | 18.8 | 6.5 | ||
CNT-ZnO | 92.2 | 7.0 | 0.7 | 82.4 | 8.6 | 9.0 | ||
CNT-TiO2-ZnO | 73.5 | 21.1 | 4.8 | 0.5 | 71.1 | 16.7 | 5.0 | 7.2 |
CNT-ZnO-TiO2 | 58.2 | 34.3 | 6.6 | 0.9 | 60.0 | 26.2 | 8.4 | 5.4 |
Deconvolution of the O1s Peak | |||||||||
CNT-OH | CNT-TiO2 | CNT-TiO2-ZnO | CNT-ZnO | CNT-ZnO-TiO2 | |||||
Position/eV | At. % | Position/eV | At. % | Position/eV | At. % | Position/eV | At. % | Position/eV | At. % |
530.3 | 18.5 | 530.8 | 72.5 | 530.9 | 65.2 | 531.2 | 43.7 | 530.9 | 73.5 |
533.0 | 81.5 | 532.3 | 27.5 | 532.3 | 34.8 | 532.7 | 56.3 | 532.2 | 26.5 |
Deconvolution of the C1s Peak | |||||||||
CNT-OH | CNT-TiO2 | CNT-TiO2-ZnO | CNT-ZnO | CNT-ZnO-TiO2 | |||||
Position/eV | At. % | Position/eV | At. % | Position/eV | At. % | Position/eV | At. % | Position/eV | At. % |
284.0 | 72.6 | 284.0 | 61.8 | 284.0 | 66.8 | 284.0 | 63.5 | 284 | 61.1 |
285.3 | 19.7 | 285.1 | 30.8 | 285.3 | 25.1 | 285.2 | 27.6 | 285.2 | 29.5 |
289.4 | 7.7 | 289.5 | 7.4 | 289.6 | 8.1 | 289.8 | 8.9 | 289.5 | 9.4 |
Sample | CNT-OH | CNT-TiO2 | CNT-ZnO | CNT-TiO2-ZnO | CNT-ZnO-TiO2 |
---|---|---|---|---|---|
SBET/m2 g−1 | 94 | 54 | 75 | 43 | 31 |
Samples | Decomposition | kapp | R2 |
---|---|---|---|
% | 10−4 min−1 | - | |
Photolysis | 1.7 | 0.9 | 0.9485 |
P25 TiO2 | 22.4 | 10.6 | 0.9989 |
CNT-TiO2 | 19.9 | 10.8 | 0.9355 |
CNT-ZnO | 41.5 | 26.0 | 0.9759 |
CNT-TiO2-ZnO | 27.8 | 16.3 | 0.9592 |
CNT-ZnO-TiO2 | 11.1 | 6.4 | 0.8844 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakos, L.P.; Justh, N.; Moura da Silva Bezerra da Costa, U.C.; László, K.; Lábár, J.L.; Igricz, T.; Varga-Josepovits, K.; Pasierb, P.; Färm, E.; Ritala, M.; et al. Photocatalytic and Gas Sensitive Multiwalled Carbon Nanotube/TiO2-ZnO and ZnO-TiO2 Composites Prepared by Atomic Layer Deposition. Nanomaterials 2020, 10, 252. https://doi.org/10.3390/nano10020252
Bakos LP, Justh N, Moura da Silva Bezerra da Costa UC, László K, Lábár JL, Igricz T, Varga-Josepovits K, Pasierb P, Färm E, Ritala M, et al. Photocatalytic and Gas Sensitive Multiwalled Carbon Nanotube/TiO2-ZnO and ZnO-TiO2 Composites Prepared by Atomic Layer Deposition. Nanomaterials. 2020; 10(2):252. https://doi.org/10.3390/nano10020252
Chicago/Turabian StyleBakos, László Péter, Nóra Justh, Ulisses Carlo Moura da Silva Bezerra da Costa, Krisztina László, János László Lábár, Tamás Igricz, Katalin Varga-Josepovits, Pawel Pasierb, Elina Färm, Mikko Ritala, and et al. 2020. "Photocatalytic and Gas Sensitive Multiwalled Carbon Nanotube/TiO2-ZnO and ZnO-TiO2 Composites Prepared by Atomic Layer Deposition" Nanomaterials 10, no. 2: 252. https://doi.org/10.3390/nano10020252
APA StyleBakos, L. P., Justh, N., Moura da Silva Bezerra da Costa, U. C., László, K., Lábár, J. L., Igricz, T., Varga-Josepovits, K., Pasierb, P., Färm, E., Ritala, M., Leskelä, M., & Szilágyi, I. M. (2020). Photocatalytic and Gas Sensitive Multiwalled Carbon Nanotube/TiO2-ZnO and ZnO-TiO2 Composites Prepared by Atomic Layer Deposition. Nanomaterials, 10(2), 252. https://doi.org/10.3390/nano10020252