Plasmonic Gold Nanohole Arrays for Surface-Enhanced Sum Frequency Generation Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Fabrication of Au NHAs
2.3. Surface Characterization
2.4. Self-Assembled Monolayer (SAM) Fabrication
2.5. SFG Measurements
3. Results and Discussion
3.1. Characterization of the Au NHAs
3.2. Optical Properties of the Au NHAs
3.3. Plasmonic Enhanced SFG of 4-MBN on the Au NHAs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Johnson, C.M.; Baldelli, S. Vibrational sum frequency spectroscopy studies of the influence of solutes and phospholipids at vapor/water interfaces relevant to biological and environmental systems. Chem. Rev. 2014, 114, 8416–8446. [Google Scholar] [CrossRef]
- Nihonyanagi, S.; Yamaguchi, S.; Tahara, T. Ultrafast Dynamics at Water Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy. Chem. Rev. 2017, 117, 10665–10693. [Google Scholar] [CrossRef]
- Nihonyanagi, S.; Mondal, J.A.; Yamaguchi, S.; Tahara, T. Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation. Annu. Rev. Phys. Chem. 2013, 64, 579–603. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.; Premadasa, U.I.; Cimatu, K.L.A. Role of the cationic headgroup to conformational changes undergone by shorter alkyl chain surfactant and water molecules at the air-liquid interface. J. Colloid Interface Sci. 2020, 568, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Roiaz, M.; Pramhaas, V.; Rameshan, C.; Rupprechter, G. Polarization-Dependent SFG Spectroscopy of Near Ambient Pressure CO Adsorption on Pt(111) and Pd(111) Revisited. Top. Catal. 2018, 61, 751–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.; Zhang, J.; Li, C.; Luo, Y.; Ye, S. Ultrafast energy relaxation dynamics of amide I vibrations coupled with protein-bound water molecules. Nat. Commun. 2019, 10, 1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Fu, L.; Wang, Z.; Sohrabpour, Z.; Li, X.; Liu, Y.; Wang, H.F.; Yan, E.C.Y. Two dimensional crowding effects on protein folding at interfaces observed by chiral vibrational sum frequency generation spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 22421–22426. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, Y.; Han, H.L.; Ross, P.N.; Somorjai, G.A. In Situ Potentiodynamic Analysis of the Electrolyte/Silicon Electrodes Interface Reactions-A Sum Frequency Generation Vibrational Spectroscopy Study. J. Am. Chem. Soc. 2016, 138, 726–729. [Google Scholar]
- Peng, Q.; Chen, J.; Ji, H.; Morita, A.; Ye, S. Origin of the Overpotential for the Oxygen Evolution Reaction on a Well-Defined Graphene Electrode Probed by in Situ Sum Frequency Generation Vibrational Spectroscopy. J. Am. Chem. Soc. 2018, 140, 15568–15571. [Google Scholar] [CrossRef]
- Baldelli, S.; Eppler, A.S.; Anderson, E.; Shen, Y.R.; Somorjai, G.A. Surface enhanced sum frequency generation of carbon monoxide adsorbed on platinum nanoparticle arrays. J. Chem. Phys. 2000, 113, 5432–5438. [Google Scholar] [CrossRef]
- Lis, D.; Caudano, Y.; Henry, M.; Demoustier-Champagne, S.; Ferain, E.; Cecchet, F. Selective Plasmonic Platforms Based on Nanopillars to Enhance Vibrational Sum-Frequency Generation Spectroscopy. Adv. Opt. Mater. 2013, 1, 244–255. [Google Scholar] [CrossRef]
- Pluchery, O.; Humbert, C.; Valamanesh, M.; Lacaze, E.; Busson, B. Enhanced detection of thiophenol adsorbed on gold nanoparticles by SFG and DFG nonlinear optical spectroscopy. Phys. Chem. Chem. Phys. 2009, 11, 7729–7737. [Google Scholar] [CrossRef] [PubMed]
- Barbillon, G.; Noblet, T.; Busson, B.; Tadjeddine, A.; Humbert, C. Localised detection of thiophenol with gold nanotriangles highly structured as honeycombs by nonlinear sum frequency generation spectroscopy. J. Mater. Sci. 2017, 53, 4554–4562. [Google Scholar] [CrossRef]
- Humbert, C.; Noblet, T.; Dalstein, L.; Busson, B.; Barbillon, G. Sum-Frequency Generation Spectroscopy of Plasmonic Nanomaterials: A Review. Materials 2019, 12, 836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linke, M.; Hille, M.; Lackner, M.; Schumacher, L.; Schlücker, S.; Hasselbrink, E. Plasmonic Effects of Au Nanoparticles on the Vibrational Sum Frequency Spectrum of 4-Nitrothiophenol. J. Phys. Chem. C 2019, 123, 24234–24242. [Google Scholar] [CrossRef]
- Dalstein, L.; Humbert, C.; Ben Haddada, M.; Boujday, S.; Barbillon, G.; Busson, B. The Prevailing Role of Hotspots in Plasmon-Enhanced Sum-Frequency Generation Spectroscopy. J. Phys. Chem. Lett. 2019, 10, 7706–7711. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.W.; Chen, S.; Zhang, J.C.; Yao, X.; Zhong, J.H.; Lin, H.X.; Huang, T.X.; Yang, Z.L.; Zhu, J.F.; Liu, S.; et al. A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm. Adv. Mater. 2018, 30, 1706031. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, Z.; Qin, M.; Zhang, D.; Fan, L. SPPs characteristics of Ag/SiO2 sinusoidal nano-grating in SERS application. Optik 2018, 168, 650–659. [Google Scholar] [CrossRef]
- De Angelis, F.; Das, G.; Candeloro, P.; Patrini, M.; Galli, M.; Bek, A.; Lazzarino, M.; Maksymov, I.; Liberale, C.; Andreani, L.C.; et al. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat. Nanotechnol. 2010, 5, 67–72. [Google Scholar] [CrossRef]
- Shalabney, A.; Abdulhalim, I. Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev. 2011, 5, 571–606. [Google Scholar] [CrossRef]
- De Leon, I.; Berini, P. Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics 2010, 4, 382–387. [Google Scholar] [CrossRef]
- Makarenko, K.S.; Hoang, T.X.; Duffin, T.J.; Radulescu, A.; Kalathingal, V.; Lezec, H.J.; Chu, H.S.; Nijhuis, C.A. Efficient Surface Plasmon Polariton Excitation and Control over Outcoupling Mechanisms in Metal–Insulator–Metal Tunneling Junctions. Adv. Sci. 2020, 7, 1900291. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, Z.; Wang, X.; Wang, T.; Liu, H.; Yang, H.; Gong, Y.; Gao, J. Structurally tunable plasmonic absorption bands in a self-assembled nano-hole array. Nanoscale 2018, 10, 19117–19124. [Google Scholar] [CrossRef] [PubMed]
- Alieva, E.V.; Petrov, Y.E.; Yakovlev, V.A.; Eliel, E.R.; van der Ham, E.W.M.; Vrehen, Q.H.F.; van der Meer, A.F.G.; Sychugov, V.A. Giant enhancement of sum-frequency generation upon excitation of a surface plasmon-polariton. JETP Lett. 1997, 66, 609–613. [Google Scholar] [CrossRef]
- van der Ham, E.W.M.; Vrehen, Q.H.E.; Eliel, E.R.; Yakovlev, V.A.; Valieva, E.V.; Kuzik, L.A.; Petrov, J.E.; Sychugov, V.A.; van der Meer, A.F.G. Giant enhancement of sum-frequency yield by surface-plasmon excitation. J. Opt. Soc. Am. B 1999, 16, 1146–1152. [Google Scholar] [CrossRef] [Green Version]
- Brincker, M.; Pedersen, K.; Skovsen, E. Tunable local excitation of surface plasmon polaritons by sum-frequency generation in ZnO nanowires. Opt. Commun. 2015, 356, 109–112. [Google Scholar] [CrossRef]
- Kirilyuk, A.; Knippels, G.M.H.; van der Meer, A.F.G.; Renard, S.; Rasing, T.; Heskamp, I.R.; Lodder, J.C. Observation of strong magnetic effects in visible-infrared sum frequency generation from magnetic structures. Phys. Rev. B 2000, 62, 783–786. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Chen, Z.; Qin, M.; Zhang, D.; Wu, H. Two dimensional sinusoidal Ag nanograting exhibits polarization-independent surface-enhanced Raman spectroscopy and its surface plasmon polariton and localized surface plasmon coupling with Au nanospheres colloids. J. Raman Spectrosc. 2018, 50, 306–313. [Google Scholar] [CrossRef]
- Kalachyova, Y.; Mares, D.; Jerabek, V.; Zaruba, K.; Ulbrich, P.; Lapcak, L.; Svorcik, V.; Lyutakov, O. The Effect of Silver Grating and Nanoparticles Grafting for LSP–SPP Coupling and SERS Response Intensification. J. Phys. Chem. C 2016, 120, 10569–10577. [Google Scholar] [CrossRef]
- Liu, B.-W.; Yao, X.; Zhang, L.; Lin, H.-X.; Chen, S.; Zhong, J.-H.; Liu, S.; Wang, L.; Ren, B. Efficient Platform for Flexible Engineering of Superradiant, Fano-Type, and Subradiant Resonances. ACS Photonics 2015, 2, 1725–1731. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, J.; Liu, T.; Tao, Y.; Jiang, R.; Liu, M.; Xiao, G.; Zhu, J.; Zhou, Z.K.; Wang, X.; et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 2013, 4, 2381. [Google Scholar] [CrossRef] [PubMed]
- Ekşioğlu, Y.; Cetin, A.E.; Petráček, J. Optical Response of Plasmonic Nanohole Arrays: Comparison of Square and Hexagonal Lattices. Plasmonics 2016, 11, 851–856. [Google Scholar] [CrossRef] [Green Version]
- Sorenson, S.A.; Patrow, J.G.; Dawlaty, J.M. Solvation Reaction Field at the Interface Measured by Vibrational Sum Frequency Generation Spectroscopy. J. Am. Chem. Soc. 2017, 139, 2369–2378. [Google Scholar] [CrossRef] [PubMed]
- Patrow, J.G.; Wang, Y.; Dawlaty, J.M. Interfacial Lewis Acid-Base Adduct Formation Probed by Vibrational Spectroscopy. J. Phys. Chem. Lett. 2018, 9, 3631–3638. [Google Scholar] [CrossRef] [PubMed]
- Lagutchev, A.; Lozano, A.; Mukherjee, P.; Hambir, S.A.; Dlott, D.D. Compact broadband vibrational sum-frequency generation spectrometer with nonresonant suppression. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2010, 75, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Cetin, A.E.; Etezadi, D.; Galarreta, B.C.; Busson, M.P.; Eksioglu, Y.; Altug, H. Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing. ACS Photonics 2015, 2, 1167–1174. [Google Scholar] [CrossRef]
- Ding, S.-Y.; Yi, J.; Li, J.-F.; Ren, B.; Wu, D.-Y.; Panneerselvam, R.; Tian, Z.-Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rew. Mater. 2016, 1, 1–16. [Google Scholar]
- Meyer, S.A.; Le Ru, E.C.; Etchegoin, P.G. Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS). Anal. Chem. 2011, 83, 2337–2344. [Google Scholar] [CrossRef]
- Kuttner, C. Plasmonics in Sensing From Colorimetry to SERS Analytics. In Plasmonics; Gric, T., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Zeng, Z.; Qi, X.; Li, X.; Zhang, L.; Wang, P.; Fang, Y. Nano-scale image rendering via surface plasmon-driven reaction controlled by tip-enhanced Raman spectroscopy. Appl. Surf. Sci. 2019, 480, 497–504. [Google Scholar]
- Toma, M.; Tawa, K. Polydopamine Thin Films as Protein Linker Layer for Sensitive Detection of Interleukin-6 by Surface Plasmon Enhanced Fluorescence Spectroscopy. ACS Appl. Mater. Interfaces 2016, 8, 22032–22038. [Google Scholar] [CrossRef]
- Yu, Q.; Guan, P.; Qin, D.; Golden, G.; Wallace, P.M. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett. 2008, 8, 1923–1928. [Google Scholar] [CrossRef] [PubMed]
- Le Ru, E.C.; Meyer, M.; Blackie, E.; Etchegoin, P.G. Advanced aspects of electromagnetic SERS enhancement factors at a hot spot. J. Raman Spectrosc. 2008, 39, 1127–1134. [Google Scholar] [CrossRef]
- Magno, G.; Bélier, B.; Barbillon, G. Gold thickness impact on the enhancement of SERS detection in low-cost Au/Si nanosensors. J. Mater. Sci. 2017, 52, 13650–13656. [Google Scholar] [CrossRef]
- Kats, M.A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2013, 12, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.R.S.; Gong, C.; Benson, Z.A.; Leite, M.S. Lithography-Free, Omnidirectional, CMOS-Compatible AlCu Alloys for Thin-Film Superabsorbers. Adv. Opt. Mater. 2018, 6, 1700830. [Google Scholar] [CrossRef]
- Fang, Y.; Seong, N.H.; Dlott, D.D. Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering. Science 2008, 321, 388–392. [Google Scholar]
Sample | ANR | An | ωn/cm−1 | Γn/cm−1 | ϕn/° |
---|---|---|---|---|---|
Au NHAs | 37.0 | 119.3 | 2229 | 13.5 | 277.7 |
Au film | 44.4 | 42.4 | 2230 | 8.2 | 288.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Liu, B.; He, Y.; You, E.; Zhang, Y.; Huang, S.; Wang, J.; Wang, Z. Plasmonic Gold Nanohole Arrays for Surface-Enhanced Sum Frequency Generation Detection. Nanomaterials 2020, 10, 2557. https://doi.org/10.3390/nano10122557
Guo W, Liu B, He Y, You E, Zhang Y, Huang S, Wang J, Wang Z. Plasmonic Gold Nanohole Arrays for Surface-Enhanced Sum Frequency Generation Detection. Nanomaterials. 2020; 10(12):2557. https://doi.org/10.3390/nano10122557
Chicago/Turabian StyleGuo, Wei, Bowen Liu, Yuhan He, Enming You, Yongyan Zhang, Shengchao Huang, Jingjing Wang, and Zhaohui Wang. 2020. "Plasmonic Gold Nanohole Arrays for Surface-Enhanced Sum Frequency Generation Detection" Nanomaterials 10, no. 12: 2557. https://doi.org/10.3390/nano10122557
APA StyleGuo, W., Liu, B., He, Y., You, E., Zhang, Y., Huang, S., Wang, J., & Wang, Z. (2020). Plasmonic Gold Nanohole Arrays for Surface-Enhanced Sum Frequency Generation Detection. Nanomaterials, 10(12), 2557. https://doi.org/10.3390/nano10122557