Reduction in Processing Time in Ca3Co4O9+δ Ceramics through Nanoprecursors Produced by an Easily Scalable and Environmentally Friendly Process
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Precursor Powders
3.2. Sintered Materials
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rowe, D.M. Thermoelectrics Handbook: Macro to Nano, 1st ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 1-3–1-7. [Google Scholar] [CrossRef]
- Santamaria, J.M.; Alkorta, J.; Sevillano, J.G. Mechanical properties of bismuth telluride (Bi2Te3) processed by high pressure torsion (HPT). Bol. Soc. Esp. Ceram. V. 2013, 52, 137–142. [Google Scholar] [CrossRef]
- Terasaki, I.; Sasago, Y.; Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 1997, 56, 12685–12687. [Google Scholar] [CrossRef]
- Yaroshevsky, A.A. Abundances of chemical elements in the Earth’s crust. Geochem. Int. 2006, 44, 48–55. [Google Scholar] [CrossRef]
- Sotelo, A.; Rasekh, S.; Constantinescu, G.; Torres, M.A.; Madre, M.A.; Diez, J.C. Improvement of textured Bi1.6Pb0.4Sr2Co1.8Ox thermoelectric performances by metallic Ag additions. Ceram. Int. 2013, 39, 1597–1602. [Google Scholar] [CrossRef]
- Masset, A.C.; Michel, C.; Maignan, A.; Hervieu, M.; Toulemonde, O.; Studer, F.; Raveau, B.; Hejtmanek, J. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B 2000, 62, 166–175. [Google Scholar] [CrossRef]
- Delorme, F.; Ovono Ovono, D.; Marudhachalam, P.; Fernandez Martin, C.; Fraboulet, O. Effect of precursors size on the thermoelectric properties of Ca3Co4O9 ceramics. Mater. Res. Bull. 2012, 47, 1169–1175. [Google Scholar] [CrossRef]
- Sotelo, A.; Costa, F.M.; Ferreira, N.M.; Kovalevsky, A.; Ferro, M.C.; Amaral, V.S.; Amaral, J.S.; Rasekh, S.; Torres, M.A.; Madre, M.A.; et al. Tailoring Ca3Co4O9 microstructure and performances using a transient liquid phase sintering additive. J. Eur. Ceram. Soc. 2016, 36, 1025–1032. [Google Scholar] [CrossRef]
- Delorme, F.; Diaz-Chao, P.; Giovannelli, F. Effect of Ca substitution by Fe on the thermoelectric properties of Ca3Co4O9 ceramics. J. Electroceram. 2018, 40, 107–114. [Google Scholar] [CrossRef]
- Diez, J.C.; Torres, M.A.; Rasekh, S.; Constantinescu, G.; Madre, M.A.; Sotelo, A. Enhancement of Ca3Co4O9 thermoelectric properties by Cr for Co substitution. Ceram. Int. 2013, 39, 6051–6056. [Google Scholar] [CrossRef]
- Woermann, E.; Muan, A. Phase equilibria in the system CaO-cobalt oxide in air. J. Inorg. Nucl. Chem. 1970, 32, 1455–1459. [Google Scholar] [CrossRef]
- Rivas-Murias, B.; Muguerra, H.; Traianidis, M.; Henrist, C.; Vertruyen, B.; Cloots, R. Enhancement of the power factor of [Bi1.68Ca2O4]RS[CoO2]1.69—Ag composites prepared by the spray-drying method. Solid State Sci. 2010, 12, 1490–1495. [Google Scholar] [CrossRef]
- Delorme, F.; Diaz-Chao, P.; Guilmeau, E.; Giovannelli, F. Thermoelectric properties of Ca3Co4O9–Co3O4 composites. Ceram. Int. 2015, 41, 10038–10043. [Google Scholar] [CrossRef]
- Kenfaui, D.; Gomina, M.; Noudem, J.G.; Chateigner, D. Anisotropy of transport properties correlated to grain boundary density and quantified texture in thick oriented Ca3Co4O9 ceramics. Materials 2018, 11, 1224. [Google Scholar] [CrossRef] [PubMed]
- Klyndyuk, A.I.; Matsukevich, I.V.; Janek, M.; Chizhova, E.A.; Lences, Z.; Hanzel, O.; Veteska, P. Thermoelectric properties of a phase-heterogeneous ceramic based on Ca3Co4O9+δ, prepared by hot pressing. Russ. J. Appl. Chem. 2020, 93, 1126–1131. [Google Scholar] [CrossRef]
- Torres, M.A.; Garcia, G.; Urrutibeascoa, I.; Madre, M.A.; Diez, J.C.; Sotelo, A. Fast preparation route to high-performances textured Sr-doped Ca3Co4O9 thermoelectric materials through precursor powder modification. Sci. China Mater. 2019, 62, 399–406. [Google Scholar] [CrossRef]
- Schulz, T.; Topfer, J. Thermoelectric properties of Ca3Co4O9 ceramics prepared by an alternative pressure-less sintering/annealing method. J. Alloys Compd. 2016, 659, 122–126. [Google Scholar] [CrossRef]
- Klyndyuk, A.; Chizhova, E.; Matsukevich, I.; Tugova, E. Thermoelectric properties of inhomogeneous ceramics based on the layered calcium cobaltate. Univ. J. Mater. Sci. 2019, 7, 43–53. [Google Scholar] [CrossRef][Green Version]
- Sedmidubsky, D.; Jakes, V.; Jankovsky, O.; Leitner, J.; Sofer, Z.; Hejtmanek, J. Phase equilibria in Ca–Co–O system. J. Solid State Chem. 2012, 194, 199–205. [Google Scholar] [CrossRef]
- Klyndyuk, A.I.; Matsukevich, I.V. Synthesis, structure, and properties of Ca3Co3.85M0.15O9+δ (M = Ti–Zn, Mo, W, Pb, Bi) layered thermoelectrics. Inorg. Mater. 2015, 51, 944–950. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Lan, J.; Shen, Z.; Liu, Y.; Nan, C.-W.; Li, J.-F. High-temperature electrical transport behaviors in textured Ca3Co4O9-based polycrystalline ceramics. Appl. Phys. Lett. 2009, 94, 072107. [Google Scholar] [CrossRef]
- Constantinescu, G.; Sarabando, A.R.; Rasekh, S.h.; Lopes, D.; Sergiienko, S.; Amirkhizi, P.; Frade, J.R.; Kovalevsky, A.V. Redox-promoted tailoring of the high-temperature electrical performance in Ca3Co4O9 thermoelectric materials by metallic cobalt addition. Materials 2020, 13, 1060. [Google Scholar] [CrossRef]
- Emerenciano, A.A.; Araujo, A.J.M.; Grilo, J.P.F.; Macedo, D.A.; Rasekh, S.; Kovalevsky, A.V.; Paskocimas, C.A.; Nascimento, R.M. Environmentally friendly synthesis methods to obtain the misfit [Ca2CoO3-δ]0.62[CoO2] thermoelectric material. Mater. Lett. 2019, 254, 286–289. [Google Scholar] [CrossRef]
- Sotelo, A.; Constantinescu, G.; Rasekh, S.; Torres, M.A.; Diez, J.C.; Madre, M.A. Improvement of thermoelectric properties of Ca3Co4O9 using soft chemistry synthetic methods. J. Eur. Ceram. Soc. 2012, 32, 2415–2422. [Google Scholar] [CrossRef]
- Madre, M.A.; Costa, F.M.; Ferreira, N.M.; Sotelo, A.; Torres, M.A.; Constantinescu, G.; Rasekh, S.; Diez, J.C. Preparation of high-performance Ca3Co4O9 thermoelectric ceramics produced by a new two-step method. J. Eur. Ceram. Soc. 2013, 33, 1747–1754. [Google Scholar] [CrossRef]
- Kenfaui, D.; Lenoir, B.; Chateigner, D.; Ouladdiaf, B.; Gomina, M.; Noudem, J.G. Development of multilayer textured Ca3Co4O9 materials for thermoelectric generators: Influence of the anisotropy on the transport properties. J. Eur. Ceram. Soc. 2012, 32, 2405–2414. [Google Scholar] [CrossRef]
- Wu, N.Y.; Holgate, T.C.; Nong, N.V.; Pryds, N.; Linderoth, S. High temperature thermoelectric properties of Ca3Co4O9+δ by auto-combustion synthesis and spark plasma sintering. J. Eur. Ceram. Soc. 2014, 34, 925–931. [Google Scholar] [CrossRef]
- Noudem, J.G.; Kenfaui, D.; Chateigner, D.; Gomina, M. Toward the enhancement of thermoelectric properties of lamellar Ca3Co4O9 by edge-free spark plasma texturing. Scr. Mater. 2012, 66, 258–260. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaveda, H.; Madre, M.A.; Mora, M.; Torres, M.A.; Sotelo, A. Reduction in Processing Time in Ca3Co4O9+δ Ceramics through Nanoprecursors Produced by an Easily Scalable and Environmentally Friendly Process. Nanomaterials 2020, 10, 2533. https://doi.org/10.3390/nano10122533
Amaveda H, Madre MA, Mora M, Torres MA, Sotelo A. Reduction in Processing Time in Ca3Co4O9+δ Ceramics through Nanoprecursors Produced by an Easily Scalable and Environmentally Friendly Process. Nanomaterials. 2020; 10(12):2533. https://doi.org/10.3390/nano10122533
Chicago/Turabian StyleAmaveda, Hippolyte, Maria A. Madre, Mario Mora, Miguel A. Torres, and Andres Sotelo. 2020. "Reduction in Processing Time in Ca3Co4O9+δ Ceramics through Nanoprecursors Produced by an Easily Scalable and Environmentally Friendly Process" Nanomaterials 10, no. 12: 2533. https://doi.org/10.3390/nano10122533
APA StyleAmaveda, H., Madre, M. A., Mora, M., Torres, M. A., & Sotelo, A. (2020). Reduction in Processing Time in Ca3Co4O9+δ Ceramics through Nanoprecursors Produced by an Easily Scalable and Environmentally Friendly Process. Nanomaterials, 10(12), 2533. https://doi.org/10.3390/nano10122533