Nanomaterial-Based CO2 Sensors
Abstract
:1. Introduction
2. Electrochemical CO2 Sensors
3. Optical Sensors
3.1. Surface Plasmon Resonance (SPR) Sensors
3.2. Colorimetric Sensing
3.3. Refractometric Fiber-Optic Sensors
3.4. Non-Dispersive Infrared Sensors
4. Challenges and Anticipated Future Trends
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Möller, D.; Decker, M.; Zosel, J.; Oelßner, W. Carbon dioxide in general. In Carbon Dioxide Sensing Fundamentals, Principles, and Applications; Wiley-VCH: Weinheim, Germany, 2019; pp. 39–40. [Google Scholar]
- CO2 and Ocean Acidification: Causes, Impacts, Solutions. Available online: https://www.ucsusa.org/resources/co2-and-ocean-acidification (accessed on 9 July 2020).
- Bezzon, V.D.N.; Montanheiro, T.L.A.; Menezes, B.R.C.D.; Ribas, R.G.; Righetti, V.A.N.; Rodrigues, K.F.; Thim, G.P. Carbon Nanostructure-based Sensors: A Brief Review on Recent Advances. Adv. Mater. Sci. Eng. 2019, 2019, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Starecki, F.; Charpentier, F.; Doualan, J.-L.; Quetel, L.; Michel, K.; Chahal, R.; Troles, J.; Bureau, B.; Braud, A.; Camy, P.; et al. Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers. Sens. Actuators B Chem. 2015, 207, 518–525. [Google Scholar] [CrossRef]
- Liu, L.; Morgan, S.P.; Correia, R.; Lee, S.-W.; Korposh, S. Multi-Parameter Optical Fiber Sensing of Gaseous Ammonia and Carbon Dioxide. J. Light. Technol. 2020, 38, 2037–2045. [Google Scholar] [CrossRef]
- Starecki, F.; Braud, A.; Doualan, J.-L.; Ari, J.; Boussard-Plédel, C.; Michel, K.; Nazabal, V.; Camy, P. All-optical carbon dioxide remote sensing using rare earth doped chalcogenide fibers. Opt. Lasers Eng. 2019, 122, 328–334. [Google Scholar] [CrossRef]
- Xiong, Y.; Xue, Q.; Ling, C.; Lu, W.; Ding, D.; Zhu, L.; Li, X. Effective CO2 detection based on LaOCl-doped SnO2 nanofibers: Insight into the role of oxygen in carrier gas. Sens. Actuators B Chem. 2017, 241, 725–734. [Google Scholar] [CrossRef]
- George, R.; Kumar, L.A.; Alagappan, M. Synthesis of nanotubular NiO-CNT composite and its application in temperature independent CO2 gas sensors fabricated using interdigitated silver electrode. Dig. J. Nanomater. Biostruct. 2019, 14, 213–224. [Google Scholar]
- Hammad, A.B.A.; Elnahrawy, A.M.; Youssef, A.M.; Youssef, A.M. Sol gel synthesis of hybrid chitosan/calcium aluminosilicate nanocomposite membranes and its application as support for CO2 sensor. Int. J. Biol. Macromol. 2019, 125, 503–509. [Google Scholar] [CrossRef]
- Stassen, I.; Dou, J.-H.; Hendon, C.; Dincă, M. Chemiresistive Sensing of Ambient CO2 by an Autogenously Hydrated Cu3(hexaiminobenzene)2 Framework. ACS Cent. Sci. 2019, 5, 1425–1431. [Google Scholar] [CrossRef] [Green Version]
- Ersöz, B.; Schmitt, K.; Wöllenstein, J. Electrolyte-gated transistor for CO2 gas detection at room temperature. Sens. Actuators B Chem. 2020, 317, 128201. [Google Scholar] [CrossRef]
- Santonico, M.; Zompanti, A.; Sabatini, A.; Vollero, L.; Grasso, S.; Mezza, C.D.; Pennazza, G. CO2 and O2 Detection by Electric Field Sensors. Sensors 2020, 20, 668. [Google Scholar] [CrossRef] [Green Version]
- Lv, A.; Pan, Y.; Chi, L. Gas Sensors Based on Polymer Field-Effect Transistors. Sensors 2017, 17, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.-J.; Aldous, L.; O’Mahony, A.M.; Campo, F.J.D.; Compton, R.G. Toward Membrane-Free Amperometric Gas Sensors: A Microelectrode Array Approach. Anal. Chem. 2010, 82, 5238–5245. [Google Scholar] [CrossRef] [PubMed]
- Boudaden, J.; Klumpp, A.; Hecker, C.; Eisele, I.; Joseph, Y. Functionalized nanoparticles for CO2 sensor. Funct. Nanostruct. Proc. 2018, 64–66. [Google Scholar]
- Deep, A.; Kumar, S.; Elsevier, S. Advances in Nanosensors for Biological and Environmental Analysis; Elsevier: St. Louis, MO, USA, 2019. [Google Scholar]
- Abdel-Karim, R.; Reda, Y.; Abdel-Fattah, A. Review—Nanostructured Materials-Based Nanosensors. J. Electrochem. Soc. 2020, 167, 037554. [Google Scholar] [CrossRef]
- Malik, R.; Tomer, V.K.; Mishra, Y.K.; Lin, L. Functional gas sensing nanomaterials: A panoramic view. Appl. Phys. Rev. 2020, 7, 021301. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.; Mu, X.; Tian, G.; Huang, Q.; Ahmed, J.; Hu, Z. Current Applications of Gas Sensor Based on 2-D Nanomaterial: A Mini Review. Front. Chem. 2019, 7, 839. [Google Scholar] [CrossRef]
- Rebber, M.; Willa, C.; Koziej, D. Organic–inorganic hybrids for CO2 sensing, separation and conversion. Nanoscale Horiz. 2020, 5, 431–453. [Google Scholar] [CrossRef]
- Ananikov, V.P. Organic–Inorganic Hybrid Nanomaterials. Nanomaterials 2019, 9, 1197. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, M. Advances in application potential of adsorptive-type solid state gas sensors: High-temperature semiconducting oxides and ambient temperature GasFET devices. Meas. Sci. Technol. 2008, 19, 042001. [Google Scholar] [CrossRef]
- Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 2007, 139, 1–23. [Google Scholar] [CrossRef]
- Lin, T.; Lv, X.; Hu, Z.; Xu, A.; Feng, C. Semiconductor Metal Oxides as Chemoresistive Sensors for Detecting Volatile Organic Compounds. Sensors 2019, 19, 233. [Google Scholar] [CrossRef] [Green Version]
- Capone, S.; Forleo, A.; Francioso, L.; Rella, R.; Siciliano, P.; Spadavecchia, J.; Presicce, D.S.; Taurino, A.M. Solid State Gas Sensors: State of the Art and Future Activities. ChemInform 2004, 35. [Google Scholar] [CrossRef]
- Wang, L.; Lou, Z.; Fei, T.; Zhang, T. Enhanced acetone sensing performances of hierarchical hollow Au-loaded NiO hybrid structures. Sens. Actuators B Chem. 2012, 161, 178–183. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, Q.; Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B. One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and Their Gas-Sensing Properties. Adv. Funct. Mater. 2007, 17, 2766–2771. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, T.; Zhang, R.; Lou, Z.; Deng, J.; Zhang, T. Comparison of toluene sensing performances of zinc stannate with different morphology-based gas sensors. Sens. Actuators B Chem. 2016, 227, 448–455. [Google Scholar] [CrossRef]
- Shinde, P.V.; Shinde, N.M.; Shaikh, S.F.; Lee, D.; Yun, J.M.; Woo, L.J.; Al-Enizi, A.M.; Mane, R.S.; Kim, K.H. Room-temperature synthesis and CO2-gas sensitivity of bismuth oxide nanosensors. RSC Adv. 2020, 10, 17217–17227. [Google Scholar] [CrossRef]
- Lin, T.; Lv, X.; Li, S.; Wang, Q. The Morphologies of the Semiconductor Oxides and Their Gas-Sensing Properties. Sensors 2017, 17, 2779. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, A.; Hashemi, B.; Janghorban, K. α-Fe2O3 based nanomaterials as gas sensors. J. Mater. Sci. Mater. Electron. 2015, 27, 3109–3144. [Google Scholar] [CrossRef]
- Son, M.; Pak, Y.; Chee, S.-S.; Auxilia, F.M.; Kim, K.; Lee, B.-K.; Lee, S.; Kang, S.K.; Lee, C.; Lee, J.S.; et al. Charge transfer in graphene/polymer interfaces for CO2 detection. Nano Res. 2018, 11, 3529–3536. [Google Scholar] [CrossRef]
- Abdelmounaïm, C.; Amara, Z.; Maha, A.; Mustapha, D. Effects of molarity on structural, optical, morphological and CO2 gas sensing properties of nanostructured copper oxide films deposited by spray pyrolysis. Mater. Sci. Semicond. Process. 2016, 43, 214–221. [Google Scholar] [CrossRef]
- Li, Y.; Li, G.; Wang, X.; Zhu, Z.; Ma, H.; Zhang, T.; Jin, J. Poly(ionic liquid)-wrapped single-walled carbon nanotubes for sub-ppb detection of CO2. Chem. Commun. 2012, 48, 8222. [Google Scholar] [CrossRef] [PubMed]
- Bhande, S.S.; Mane, R.S.; Ghule, A.V.; Han, S.-H. A bismuth oxide nanoplate-based carbon dioxide gas sensor. Scr. Mater. 2011, 65, 1081–1084. [Google Scholar] [CrossRef]
- Boudaden, J.; Klumpp, A.; Endres, H.-E.; Eisele, I. Towards Low Cost and Low Temperature Capacitive CO2 Sensors Based on Amine Functionalized Silica Nanoparticles. Nanomaterials 2019, 9, 1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viswanathan, P.; Patel, A.K.; Pawar, J.; Patwardhan, A.; Henry, R. Fabrication of Tin Oxide Nanoparticles for CO2 Gas Sensing Layer. IETE J. Res. 2018, 66, 460–465. [Google Scholar] [CrossRef]
- Kim, K.-M.; Jeong, H.-M.; Kim, H.-R.; Choi, K.-I.; Kim, H.-J.; Lee, J.-H. Selective Detection of NO2 Using Cr-Doped CuO Nanorods. Sensors 2012, 12, 8013–8025. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.; Zhang, H.; Gao, X.; Yang, J.; Wang, L. Brookite TiO2 decorated α-Fe2O3 nanoheterostructures with rod morphologies for gas sensor application. J. Mater. Chem. A 2014, 2, 7935. [Google Scholar] [CrossRef]
- Lee, J.-H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuators B Chem. 2009, 140, 319–336. [Google Scholar] [CrossRef]
- Boudaden, J.; Klumpp, A.; Endres, H.-E.; Eisele, I. Capacitive CO2 Sensor. Proceedings 2017, 1, 472. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Jiang, Y.; Xie, T.; Tai, H.; Xie, G. A novel sensing mechanism for resistive gas sensors based on layered reduced graphene oxide thin films at room temperature. Sens. Actuators B Chem. 2014, 203, 135–142. [Google Scholar] [CrossRef]
- Lorek, A.; Majewski, J. Humidity Measurement in Carbon Dioxide with Capacitive Humidity Sensors at Low Temperature and Pressure. Sensors 2018, 18, 2615. [Google Scholar] [CrossRef] [Green Version]
- Wei, P.; Ning, Z.; Ye, S.; Sun, L.; Yang, F.; Wong, K.; Westerdahl, D.; Louie, P. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring. Sensors 2018, 18, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agmon, N. Mechanism of hydroxide mobility. Chem. Phys. Lett. 2000, 319, 247–252. [Google Scholar] [CrossRef]
- Kreuer, K.-D. Proton Conductivity: Materials and Applications. Chem. Mater. 1996, 8, 610–641. [Google Scholar] [CrossRef]
- Fan, K.; Qin, H.; Wang, L.; Ju, L.; Hu, J. CO2 gas sensors based on La1−xSrxFeO3 nanocrystalline powders. Sens. Actuators B Chem. 2013, 177, 265–269. [Google Scholar] [CrossRef]
- Marsal, A.; Dezanneau, G.; Cornet, A.; Morante, J. A new CO2 gas sensing material. Sens. Actuators B Chem. 2003, 95, 266–270. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kang, H.; Choi, N.-J.; Park, K.H.; Lee, H.-K. A carbon dioxide gas sensor based on cobalt oxide containing barium carbonate. Sens. Actuators B Chem. 2017, 248, 987–992. [Google Scholar] [CrossRef]
- Dhahri, R.; Hjiri, M.; Mir, L.E.; Fazio, E.; Neri, F.; Barreca, F.; Donato, N.; Bonavita, A.; Leonardi, S.G.; Neri, G. ZnO:Ca nanopowders with enhanced CO2sensing properties. J. Phys. D Appl. Phys. 2015, 48, 255503. [Google Scholar] [CrossRef]
- Neethirajan, S.; Jayas, D.S.; Sadistap, S. Carbon Dioxide (CO2) Sensors for the Agri-food Industry—A Review. Food Bioprocess Technol. 2008, 2, 115–121. [Google Scholar] [CrossRef]
- Tricoli, A.; Nasiri, N.; De, S. Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Adv. Funct. Mater. 2017, 27, 1605271. [Google Scholar] [CrossRef]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, G.; Carotta, M.C.; Ferroni, M.; Sadaoka, Y.; Traversa, E. Screen-printed perovskite-type thick films as gas sensors for environmental monitoring. Sens. Actuators B Chem. 1999, 55, 99–110. [Google Scholar] [CrossRef]
- Tanvir, N.B.; Yurchenko, O.; Wilbertz, C.; Urban, G. Investigation of CO2 reaction with copper oxide nanoparticles for room temperature gas sensing. J. Mater. Chem. A 2016, 4, 5294–5302. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.; Ram Kumar, C.B.; Jones, L.A.; Mayes, E.L.H.; Ippolito, S.J.; Sunkara, M.V. Modulating interleaved ZnO assembly with CuO nanoleaves for multifunctional performance: Perdurable CO2 gas sensor and visible light catalyst. Inorg. Chem. Front. 2017, 4, 1848–1861. [Google Scholar] [CrossRef]
- Michel, C.R.; Martínez-Preciado, A.H.; Rivera-Tello, C.D. CO2 gas sensing response of YPO4 nanobelts produced by a colloidal method. Sens. Actuators B Chem. 2015, 221, 499–506. [Google Scholar] [CrossRef]
- Star, A.; Han, T.-R.; Joshi, V.; Gabriel, J.-C.P.; Grüner, G. Nanoelectronic Carbon Dioxide Sensors. Adv. Mater. 2004, 16, 2049–2052. [Google Scholar] [CrossRef]
- Willa, C.; Schmid, A.; Briand, D.; Yuan, J.; Koziej, D. Lightweight, Room-Temperature CO2Gas Sensor Based on Rare-Earth Metal-Free Composites—An Impedance Study. ACS Appl. Mater. Interfaces 2017, 9, 25553–25558. [Google Scholar] [CrossRef] [Green Version]
- Klar, T.; Perner, M.; Grosse, S.; Plessen, G.V.; Spirkl, W.; Feldmann, J. Surface-Plasmon Resonances in Single Metallic Nanoparticles. Phys. Rev. Lett. 1998, 80, 4249–4252. [Google Scholar] [CrossRef]
- Chan, G.H.; Zhao, J.; Schatz, G.C.; Duyne, R.P.V. Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles. J. Phys. Chem. C 2008, 112, 13958–13963. [Google Scholar] [CrossRef]
- Shabaninezhad, M.; Ramakrishna, G. Theoretical Investigation of Plasmonic Properties of Quantum-Sized Silver Nanoparticles. Plasmonics 2019, 15, 783–795. [Google Scholar] [CrossRef]
- Leong, H.-S.; Guo, J.; Lindquist, R.G.; Liu, Q.H. Surface plasmon resonance in nanostructured metal films under the Kretschmann configuration. J. Appl. Phys. 2009, 106, 124314. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Zhuo, X.; Wang, J. Active Plasmonics: Principles, Structures, and Applications. Chem. Rev. 2017, 118, 3054–3099. [Google Scholar] [CrossRef] [PubMed]
- Willets, K.A.; Duyne, R.P.V. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.-S.; Fan, S.-K. Microfluidic Surface Plasmon Resonance Sensors: From Principles to Point-of-Care Applications. Sensors 2016, 16, 1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jana, J.; Ganguly, M.; Pal, T. Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv. 2016, 6, 86174–86211. [Google Scholar] [CrossRef]
- Sadrolhosseini, A.R.; Noor, A.S.M.; Moksin, M.M. Application of Surface Plasmon Resonance Based on Metal Nanoparticle. In Plasmonics—Principles and Applications; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Patil, P.O.; Pandey, G.R.; Patil, A.G.; Borse, V.B.; Deshmukh, P.K.; Patil, D.R.; Tade, R.S.; Nangare, S.N.; Khan, Z.G.; Patil, A.M.; et al. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review. Biosens. Bioelectron. 2019, 139, 111324. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, M.; Singh, J.K.; Babu, D.J.; Schneider, J.J.; Müller-Plathe, F. Understanding Carbon Dioxide Adsorption in Carbon Nanotube Arrays: Molecular Simulation and Adsorption Measurements. J. Phys. Chem. C 2013, 117, 13492–13501. [Google Scholar] [CrossRef]
- Cinke, M.; Li, J.; Bauschlicher, C.W.; Ricca, A.; Meyyappan, M. CO2 adsorption in single-walled carbon nanotubes. Chem. Phys. Lett. 2003, 376, 761–766. [Google Scholar] [CrossRef]
- Kumar, G.S.; Rao, J.V.R. Detection of NH3 & CO2 using carbon nanotubes at room temperature. Int. J. Nanotechnol. Appl. 2013, 3, 11–18. [Google Scholar]
- Nuryadi, R.; Mayasari, R.D. ZnO/Au-based surface plasmon resonance for CO2 gas sensing application. Appl. Phys. A 2015, 122, 33. [Google Scholar] [CrossRef]
- Dostálek, J.; Ladd, J.; Jiang, S.; Homola, J. SPR Biosensors for Detection of Biological and Chemical Analytes. In Surface Plasmon Resonance Based Sensors; Springer: Berlin/Heidelberg, Germany, 2006; pp. 177–190. [Google Scholar] [CrossRef]
- Olaru, A.; Bala, C.; Jaffrezic-Renault, N.; Aboul-Enein, H.Y. Surface Plasmon Resonance (SPR) Biosensors in Pharmaceutical Analysis. Crit. Rev. Anal. Chem. 2015, 45, 97–105. [Google Scholar] [CrossRef]
- Guo, Z.; Song, N.R.; Moon, J.H.; Kim, M.; Jun, E.J.; Choi, J.; Lee, J.Y.; Bielawski, C.W.; Sessler, J.L.; Yoon, J. A Benzobisimidazolium-Based Fluorescent and Colorimetric Chemosensor for CO2. J. Am. Chem. Soc. 2012, 134, 17846–17849. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.; Lee, J.-Y.; Chung, H. Highly efficient colorimetric CO2 sensors for monitoring CO2 leakage from carbon capture and storage sites. Sci. Total Environ. 2020, 729, 138786. [Google Scholar] [CrossRef] [PubMed]
- Aldewachi, H.; Chalati, T.; Woodroofe, M.N.; Bricklebank, N.; Sharrack, B.; Gardiner, P. Gold nanoparticle-based colorimetric biosensors. Nanoscale 2018, 10, 18–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathfon, J.M.; Al-Badri, Z.M.; Shunmugam, R.; Berry, S.M.; Pabba, S.; Keynton, R.S.; Cohn, R.W.; Tew, G.N. Fluorimetric Nerve Gas Sensing Based on Pyrene Imines Incorporated into Films and Sub-Micrometer Fibers. Adv. Funct. Mater. 2009, 19, 689–695. [Google Scholar] [CrossRef]
- Chu, C.-S.; Lo, Y.-L. Highly sensitive and linear optical fiber carbon dioxide sensor based on sol–gel matrix doped with silica particles and HPTS. Sens. Actuators B Chem. 2009, 143, 205–210. [Google Scholar] [CrossRef]
- Barroso, M.M. Quantum Dots in Cell Biology. J. Histochem. Cytochem. 2011, 59, 237–251. [Google Scholar] [CrossRef] [Green Version]
- Hussain, C.M. Handbook of Nanomaterials for Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Ke, J. Semiconductor Nanocrystal–Based Nanosensors and Metal Ions Sensing. Adv. Nanomater. Pollut. Sens. Environ. Catal. 2020, 79–117. [Google Scholar] [CrossRef]
- Chung, E.J.; Leon, L.; Rinaldi, C. Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Jin, T.; Fujii, F.; Yamada, E.; Nodasaka, Y.; Kinjo, M. Control of the Optical Properties of Quantum Dots by Surface Coating with Calix[n]arene Carboxylic Acids. J. Am. Chem. Soc. 2006, 128, 9288–9289. [Google Scholar] [CrossRef]
- Joo, S.-Y.; Park, H.-S.; Kim, D.-Y.; Kim, B.-S.; Lee, C.G.; Kim, W.-B. An investigation into the effective surface passivation of quantum dots by a photo-assisted chemical method. AIP Adv. 2018, 8, 015017. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Sarkar, P. Controlling the electronic energy levels of ZnO quantum dots using mixed capping ligands. Rsc. Adv. 2014, 4, 1640–1645. [Google Scholar] [CrossRef]
- Bera, D.; Qian, L.; Tseng, T.-K.; Holloway, P.H. Quantum Dots and Their Multimodal Applications: A Review. Materials 2010, 3, 2260–2345. [Google Scholar] [CrossRef] [Green Version]
- Balogh, K.; Jesus, J.M.; Gouveia, C.; Domingues, J.O.; Markovics, A.; Baptista, J.M.; Kovacs, B.; Pereira, C.M.; Borges, M.-T.; Jorge, P.A.S. Characterization of a novel dissolved CO2sensor for utilization in environmental monitoring and aquaculture industry. In Proceedings of the 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications, Porto, Portugal, 22–26 July 2013. International Society for Optics and Photonics. [Google Scholar] [CrossRef]
- Klantsataya, E.; Jia, P.; Ebendorff-Heidepriem, H.; Monro, T.; François, A. Plasmonic Fiber Optic Refractometric Sensors: From Conventional Architectures to Recent Design Trends. Sensors 2016, 17, 12. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.K.; Jha, R.; Gupta, B.D. Fiber-Optic Sensors Based on Surface Plasmon Resonance: A revie Review. IEEE Sens. J. 2007, 7, 1118–1129. [Google Scholar] [CrossRef]
- Kim, K.-J.; Lu, P.; Culp, J.T.; Ohodnicki, P.R. Metal–Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform. ACS Sens. 2018, 3, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Herminjard, S.; Sirigu, L.; Herzig, H.P.; Studemann, E.; Crottini, A.; Pellaux, J.-P.; Gresch, T.; Fischer, M.; Faist, J. Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range. Opt. Express 2009, 17, 293. [Google Scholar] [CrossRef] [PubMed]
- Shivananju, B.N.; Yamdagni, S.; Fazuldeen, R.; Kumar, A.K.S.; Hegde, G.M.; Varma, M.M.; Asokan, S. CO2 sensing at room temperature using carbon nanotubes coated core fiber Bragg grating. Rev. Sci. Instrum. 2013, 84, 065002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, X.; Kim, K.-J.; Li, E.; Zhang, Y.; Ohodnicki, P.R.; Chang, C.-H.; Wang, A.X. Near-infrared absorption gas sensing with metal-organic framework on optical fibers. Sens. Actuators B Chem. 2016, 232, 43–51. [Google Scholar] [CrossRef]
- Allsop, T.; Arif, R.; Neal, R.; Kalli, K.; Kundrát, V.; Rozhin, A.; Culverhouse, P.; Webb, D.J. Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures. Light Sci. Appl. 2016, 5, e16036. [Google Scholar] [CrossRef] [Green Version]
- Njegovec, M.; Donlagic, D. A Fiber-Optic Gas Sensor and Method for the Measurement of Refractive Index Dispersion in NIR. Sensors 2020, 20, 3717. [Google Scholar] [CrossRef]
- Wysokiński, K.; Napierała, M.; Stańczykski, T.; Lipiński, S.; Nasiłowski, T. Study on the Sensing Coating of the Optical Fibre CO2 Sensor. Sensors 2015, 15, 31888–31903. [Google Scholar]
- Yi, S.; Park, Y.; Han, S.; Min, N.; Kim, E.; Ahn, T. Novel NDIR CO/sub 2/ sensor for indoor air quality monitoring. In Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS ‘05, Seoul, Korea, 5–9 June 2005. [Google Scholar] [CrossRef]
- Frodl, R.; Tille, T. A High-Precision NDIR CO2 Gas Sensor for Automotive Applications. IEEE Sens. J. 2006, 6, 1697–1705. [Google Scholar] [CrossRef]
- Gibson, D.; Macgregor, C. A Novel Solid State Non-Dispersive Infrared CO2 Gas Sensor Compatible with Wireless and Portable Deployment. Sensors 2013, 13, 7079–7103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Shi, Y.; Wang, T. Design of a six-gas NDIR gas sensor using an integrated optical gas chamber. Opt. Express 2020, 28, 11451. [Google Scholar] [CrossRef] [PubMed]
- International Light Technology. Subminiature T-¾ and T-1 NDIR Lamps. Available online: https://www.intl-lighttech.com/instrumentation-sensor-light-sources/subminiature-t-34-and-t-1-ndir-lamps (accessed on 28 August 2020).
- Müller, L.; Käpplinger, I.; Biermann, S.; Brode, W.; Hoffmann, M. Infrared emitting nanostructures for highly efficient microhotplates. J. Micromech. Microeng. 2014, 24, 035014. [Google Scholar] [CrossRef]
- Koppens, F.H.L.; Mueller, T.; Avouris, P.; Ferrari, A.C.; Vitiello, M.S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793. [Google Scholar] [CrossRef]
- Pusch, A.; Luca, A.D.; Oh, S.S.; Wuestner, S.; Roschuk, T.; Chen, Y.; Boual, S.; Ali, Z.; Phillips, C.C.; Hong, M.; et al. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices. Sci. Rep. 2015, 5, 17451. [Google Scholar] [CrossRef] [PubMed]
- Comini, E.; Faglia, G.; Sberveglieri, G. Solid State Gas Sensing; Springer: New York, NY, USA, 2009. [Google Scholar]
- Korotcenkov, G. Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- Dinh, T.-V.; Choi, I.-Y.; Son, Y.-S.; Kim, J.-C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B Chem. 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Xu, Q.; Lee, S.; Cho, Y.; Kim, M.H.; Bouffard, J.; Yoon, J. Polydiacetylene-Based Colorimetric and Fluorescent Chemosensor for the Detection of Carbon Dioxide. J. Am. Chem. Soc. 2013, 135, 17751–17754. [Google Scholar] [CrossRef]
- Bültzingslöwen, C.V.; Mcevoy, A.K.; Mcdonagh, C.; Maccraith, B.D.; Klimant, I.; Krause, C.; Wolfbeis, O.S. Sol–gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology. Analyst 2002, 127, 1478–1483. [Google Scholar] [CrossRef]
- Chu, C.-S.; Hsieh, M.-W. Optical fiber carbon dioxide sensor based on colorimetric change of α-naphtholphthalein and CIS/ZnS quantum dots incorporated with a polymer matrix. Opt. Mater. Express 2019, 9, 2937. [Google Scholar] [CrossRef]
- Hung, S.-S.; Chang, H.-C.; Chang, I.-N. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection. Sensors 2016, 16, 2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kole, K.; Halder, A.; Singh, S.; Samanta, A.; Das, S.; Kundu, A.K.; Bhattacharyya, D.; Pal, S.K.; Jana, S. Chromogenic-Functionalized Silica Nanoflower Composites for the Detection of Carbon Dioxide. ACS Appl. Nano Mater. 2020, 3, 4321–4328. [Google Scholar] [CrossRef]
- Álvarez-Ramos, M.E.; Necochea-Chamorro, J.I.; Carrillo-Torres, R.C.; Sánchez-Zeferino, R. Room temperature CO2 sensing using Au-decorated ZnO nanorods deposited on an optical fiber. Mater. Sci. Eng. B 2020, 262, 114720. [Google Scholar] [CrossRef]
- Ali, R.; Saleh, S.M.; Meier, R.J.; Azab, H.A.; Abdelgawad, I.I.; Wolfbeis, O.S. Upconverting nanoparticle based optical sensor for carbon dioxide. Sens. Actuators B Chem. 2010, 150, 126–131. [Google Scholar] [CrossRef]
- Chong, X.; Kim, K.-J.; Ohodnicki, P.R.; Li, E.; Chang, C.-H.; Wang, A.X. Ultrashort Near-Infrared Fiber-Optic Sensors for Carbon Dioxide Detection. IEEE Sens. J. 2015, 15, 5327–5332. [Google Scholar] [CrossRef]
- Smith, D. CO2 Sensors: Which Type Should You Be Looking For? Available online: https://learn.kaiterra.com/en/air-academy/carbon-dioxide-sensors (accessed on 14 September 2020).
Nanomaterial Used | Dynamic Range (ppm) | Response/Recovery Time (s) | Measurand | Temperature (°C) | Remarks |
---|---|---|---|---|---|
CuO nanoparticles [55] | 400–4000 | 720 @ 0% R.H 500 @ 20% R.H | Surface charge Surface species | 25 | R.H ↑ – CO2 diff ↓ |
Bi2O3 nanostructures [29] | 10–100 | 132/82 | Resistance | 25 | S.A/porosity ↑ –adsorption/desorption of CO2 ↑ |
Inorganic silica nanoparticles [15] | 400–2000 | >60/>150 | Capacitance | 30, 42, 58 | Amine groups ↑–recovery time ↓ |
p-CuO/n-ZnO hetero-surfaces [56] | 1000 | 76/265 | Resistance | 100–400 Optimum = 320 | lattice mismatch ↑–electron transfer ↑ |
La1−xSrxFeO3 (O9XS0.3) [47] | 2000, 4000 | 660/300 | Resistance | 200–500 Optimum = 380 | R.H ↑– sensitivity ↓ |
YPO4 nanobelts [57] | 200–800 | 136/N/A | Impedance | 350, 400 | T > 400 °C–NS ↓ |
100 nm fumed silica [36] | 500–3000 | >120 | Capacitance | 38–65 | R.H < 60%, T > 46 °C–response/recovery time, C ↓ |
200–400 nm SnO nanoparticles [37] | N/A | 5/5 | Resistance | 25 | S/V ↑ – response time ↓ |
LaOCI-doped SnO2 nanofibers [7] | 100–2000 | 24/92 | Resistance | 300 | Porosity ↑ –response/recovery time↓ Doping ↑ 0–8% –response/recovery time ↓ |
Carbon nanotubes [58] | 500–100,000 | A few seconds | Conductance | 25 | CO2 ↑ – pH ↓–I ↑ |
Poly(ionicliquid) alumina composite [59] | 300–3200 | 420/2400 | Impedance | 25 | CO2 ↑ – proton diff ↓ |
Nanomateiral Used | Sensing Principle | Dynamic Range | Response Time/Recovery Time | Remarks |
---|---|---|---|---|
polydiacetylene nanofibers [110] | Col | 400 ppm | instantaneous/NA | Naked eye detection for CO2 using green laser pointers. |
Ru nano beads doped HPTS in ormosil matrix. [111] | Col | 0–100% | 30 s/<60 s | T ↑ – sensitivity ↓ LOD = 0.08% |
CuInS2/ZnS quantum dots. [112] | Col | 0–100% | 23/71 s | T ↑ – sensitivity ↓ |
Silica nanoparticles porous [113] | Ref | 2–5% | 48/76 s | porosity ↑–sensitivity ↓ |
CNTs. [94] | Ref | 1000–4000 ppm | 3.07/2.95 min | LOD = 75 ppm |
Silica nanoflower [114] | Col | 400–70,000 ppm | Instananuous/NA | CO2 conc. ↑–color intensity ↑ |
Au-decorated ZnO nanorods [115] | Ref | 0–2000 sccm | 50/110 s | CO2 sensitivity for ZnO–Au lower compared to ZnO |
NaYF4:Yb,Er nanoparticles [116] | Col | 0–3% | 10/180 s | LOD = 0.11% |
Cu-benzene-1,3, 5-tricarboxylate [117] | Ref | >500 ppm | 40/75 s | Sensing length = 8 cm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezk, M.Y.; Sharma, J.; Gartia, M.R. Nanomaterial-Based CO2 Sensors. Nanomaterials 2020, 10, 2251. https://doi.org/10.3390/nano10112251
Rezk MY, Sharma J, Gartia MR. Nanomaterial-Based CO2 Sensors. Nanomaterials. 2020; 10(11):2251. https://doi.org/10.3390/nano10112251
Chicago/Turabian StyleRezk, Marwan Y., Jyotsna Sharma, and Manas Ranjan Gartia. 2020. "Nanomaterial-Based CO2 Sensors" Nanomaterials 10, no. 11: 2251. https://doi.org/10.3390/nano10112251
APA StyleRezk, M. Y., Sharma, J., & Gartia, M. R. (2020). Nanomaterial-Based CO2 Sensors. Nanomaterials, 10(11), 2251. https://doi.org/10.3390/nano10112251