Epitaxial Stabilization of Single-Crystal Multiferroic YCrO3 Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manipatruni, S.; Nikonov, D.E.; Lin, C.-C.; Gosavi, T.A.; Liu, H.; Prasad, B.; Huang, Y.-L.; Bonturim, E.; Ramesh, R.; Young, I.A. Scalable Energy-Efficient Magnetoelectric Spin–Orbit Logic. Nature 2019, 565, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhou, Z.; Nan, T.; Gao, Y.; Yang, G.M.; Liu, M.; Sun, N.X. Recent Advances in Multiferroic Oxide Heterostructures and Devices. J. Mater. Chem. C 2015, 4, 234–243. [Google Scholar] [CrossRef]
- Tokura, Y.; Kawasaki, M.; Nagaosa, N. Emergent Functions of Quantum Materials. Nat. Phys. 2017, 13, 1056–1068. [Google Scholar] [CrossRef]
- Ramesh, R.; Spaldin, N.A. Multiferroics: Progress and Prospects in Thin Films. Nat. Mater. 2007, 6, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.W.; Chu, Y.-H.; Ramesh, R. Advances in the Growth and Characterization of Magnetic, Ferroelectric, and Multiferroic Oxide Thin Films. Mater. Sci. Eng. R Rep. 2010, 68, 89–133. [Google Scholar] [CrossRef] [Green Version]
- Manipatruni, S.; Nikonov, D.E.; Lin, C.-C.; Prasad, B.; Huang, Y.-L.; Damodaran, A.R.; Chen, Z.; Ramesh, R.; Young, I.A. Voltage Control of Unidirectional Anisotropy in Ferromagnet-Multiferroic System. Sci. Adv. 2018, 4, eaat4229. [Google Scholar] [CrossRef] [Green Version]
- Manipatruni, S.; Nikonov, D.E.; Young, I.A. Beyond CMOS Computing with Spin and Polarization. Nat. Phys. 2018, 14, 338–343. [Google Scholar] [CrossRef]
- Huang, Z.; Ariando; Renshaw Wang, X.; Rusydi, A.; Chen, J.; Yang, H.; Venkatesan, T. Interface Engineering and Emergent Phenomena in Oxide Heterostructures. Adv. Mater. 2018, 30, 1802439. [Google Scholar] [CrossRef]
- Schlom, D.G.; Chen, L.-Q.; Pan, X.; Schmehl, A.; Zurbuchen, M.A. A Thin Film Approach to Engineering Functionality into Oxides. J. Am. Ceram. Soc. 2008, 91, 2429–2454. [Google Scholar] [CrossRef]
- MacManus-Driscoll, J.L.; Wells, M.P.; Yun, C.; Lee, J.-W.; Eom, C.-B.; Schlom, D.G. New Approaches for Achieving More Perfect Transition Metal Oxide Thin Films. APL Mater. 2020, 8, 040904. [Google Scholar] [CrossRef] [Green Version]
- Blank, D.H.A.; Dekkers, M.; Rijnders, G. Pulsed Laser Deposition in Twente: From Research Tool towards Industrial Deposition. J. Phys. D Appl. Phys. 2013, 47, 034006. [Google Scholar] [CrossRef]
- Boschker, H.; Mannhart, J. Quantum-Matter Heterostructures. Annu. Rev. Condens. Matter Phys. 2017, 8, 145–164. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.-M.; Duan, C.-G.; Nan, C.-W.; Chen, L.-Q. Understanding and Designing Magnetoelectric Heterostructures Guided by Computation: Progresses, Remaining Questions, and Perspectives. Npj Comput. Mater. 2017, 3, 1–21. [Google Scholar] [CrossRef]
- Sharma, Y.; Agarwal, R.; Collins, L.; Zheng, Q.; Ievlev, A.V.; Hermann, R.P.; Cooper, V.R.; Kc, S.; Ivanov, I.N.; Katiyar, R.S.; et al. Self-Assembled Room Temperature Multiferroic BiFeO3-LiFe5O8 Nanocomposites. Adv. Funct. Mater. 2020, 30, 1906849. [Google Scholar] [CrossRef] [Green Version]
- Sahu, J.R.; Serrao, C.R.; Ray, N.; Waghmare, U.V.; Rao, C.N.R. Rare Earth Chromites: A New Family of Multiferroics. J. Mater. Chem. 2006, 17, 42–44. [Google Scholar] [CrossRef]
- Rajeswaran, B.; Khomskii, D.I.; Zvezdin, A.K.; Rao, C.N.R.; Sundaresan, A. Field-Induced Polar Order at the N\’eel Temperature of Chromium in Rare-Earth Orthochromites: Interplay of Rare-Earth and Cr Magnetism. Phys. Rev. B 2012, 86, 214409. [Google Scholar] [CrossRef] [Green Version]
- Goodenough, J.B. Electronic and Ionic Transport Properties and Other Physical Aspects of Perovskites. Rep. Prog. Phys. 2004, 67, 1915–1993. [Google Scholar] [CrossRef]
- Meher, K.R.S.P.; Martin, C.; Caignaert, V.; Damay, F.; Maignan, A. Multiferroics and Magnetoelectrics: A Comparison between Some Chromites and Cobaltites. Chem. Mater. 2014, 26, 830–836. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Tsushima, K. Magnetic Symmetry of Rare-Earth Orthochromites and Orthoferrites. Phys. Rev. B 1973, 8, 5187–5198. [Google Scholar] [CrossRef]
- Zhao, H.J.; Bellaiche, L.; Chen, X.M.; Íñiguez, J. Improper Electric Polarization in Simple Perovskite Oxides with Two Magnetic Sublattices. Nat. Commun. 2017, 8, 14025. [Google Scholar] [CrossRef]
- Saha, R.; Sundaresan, A.; Rao, C.N. Novel Features of Multiferroic and Magnetoelectric Ferrites and Chromites Exhibiting Magnetically Driven Ferroelectricity. Mater. Horiz. 2014, 1, 20–31. [Google Scholar] [CrossRef]
- Mahana, S.; Manju, U.; Nandi, P.; Welter, E.; Priolkar, K.R.; Topwal, D. Role of Local Structural Distortion in Driving Ferroelectricity in ${\mathrm{GdCrO}}_{3}$. Phys. Rev. B 2018, 97, 224107. [Google Scholar] [CrossRef] [Green Version]
- Sharma, Y.; Sahoo, S.; Perez, W.; Mukherjee, S.; Gupta, R.; Garg, A.; Chatterjee, R.; Katiyar, R.S. Phonons and Magnetic Excitation Correlations in Weak Ferromagnetic YCrO3. J. Appl. Phys. 2014, 115, 183907. [Google Scholar] [CrossRef]
- McDannald, A.; Kuna, L.; Seehra, M.S.; Jain, M. Magnetic Exchange Interactions of Rare-Earth-Substituted ${\mathrm{DyCrO}}_{3}$ Bulk Powders. Phys. Rev. B 2015, 91, 224415. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Seehra, M.S.; Guild, C.J.; Suib, S.L.; Poudel, N.; Lorenz, B.; Jain, M. Magnetic and Magnetocaloric Properties of $\mathrm{HoCr}{\mathrm{O}}_{3}$ Tuned by Selective Rare-Earth Doping. Phys. Rev. B 2017, 95, 184421. [Google Scholar] [CrossRef] [Green Version]
- Sushko, P.V.; Qiao, L.; Bowden, M.; Varga, T.; Exarhos, G.J.; Urban, F.K.; Barton, D.; Chambers, S.A. Multiband Optical Absorption Controlled by Lattice Strain in Thin-Film LaCrO3. Phys. Rev. Lett. 2013, 110, 077401. [Google Scholar] [CrossRef] [Green Version]
- Subba Rao, G.V.; Wanklyn, B.M.; Rao, C.N.R. Electrical Transport in Rare Earth Ortho-Chromites, -Manganites and -Ferrites. J. Phys. Chem. Solids 1971, 32, 345–358. [Google Scholar] [CrossRef]
- Sharma, Y.; Misra, P.; Katiyar, R.S. Unipolar Resistive Switching Behavior of Amorphous YCrO3 Films for Nonvolatile Memory Applications. J. Appl. Phys. 2014, 116, 084505. [Google Scholar] [CrossRef]
- Gervacio-Arciniega, J.J.; Murillo-Bracamontes, E.; Contreras, O.; Siqueiros, J.M.; Raymond, O.; Durán, A.; Bueno-Baques, D.; Valdespino, D.; Cruz-Valeriano, E.; Enríquez-Flores, C.I.; et al. Multiferroic YCrO3 Thin Films: Structural, Ferroelectric and Magnetic Properties. Appl. Surf. Sci. 2018, 427, 635–639. [Google Scholar] [CrossRef]
- Serrao, C.R.; Kundu, A.K.; Krupanidhi, S.B.; Waghmare, U.V.; Rao, C.N.R. Biferroic $\mathrm{Y}\mathrm{Cr}{\mathrm{O}}_{3}$. Phys. Rev. B 2005, 72, 220101. [Google Scholar] [CrossRef] [Green Version]
- Ray, N.; Waghmare, U.V. Coupling between Magnetic Ordering and Structural Instabilities in Perovskite Biferroics: A First-Principles Study. Phys. Rev. B 2008, 77, 134112. [Google Scholar] [CrossRef] [Green Version]
- Pal, B.; Liu, X.; Wen, F.; Kareev, M.; N’Diaye, A.T.; Shafer, P.; Arenholz, E.; Chakhalian, J. Electronic Properties of Ultra-Thin YCrO3 Films. Appl. Phys. Lett. 2018, 112, 252901. [Google Scholar] [CrossRef]
- Sardar, K.; Lees, M.R.; Kashtiban, R.J.; Sloan, J.; Walton, R.I. Direct Hydrothermal Synthesis and Physical Properties of Rare-Earth and Yttrium Orthochromite Perovskites. Chem. Mater. 2011, 23, 48–56. [Google Scholar] [CrossRef]
- Chen, A.; Su, Q.; Han, H.; Enriquez, E.; Jia, Q. Metal Oxide Nanocomposites: A Perspective from Strain, Defect, and Interface. Adv. Mater. 2019, 31, 1803241. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Droubay, T.C.; Bowden, M.E.; Shutthanandan, V.; Kaspar, T.C.; Chambers, S.A. LaCrO3 Heteroepitaxy on SrTiO3(001) by Molecular Beam Epitaxy. Appl. Phys. Lett. 2011, 99, 061904. [Google Scholar] [CrossRef] [Green Version]
- Theil, C.; van Elp, J.; Folkmann, F. Ligand Field Parameters Obtained from and Chemical Shifts Observed at the Cr L2,3 Edges. Phys. Rev. B 1999, 59, 7931–7936. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Venkatesan, M.; Stamenov, P. Surface Magnetism of Strontium Titanate. J. Phys. Condens. Matter. 2016, 28, 485001. [Google Scholar] [CrossRef] [Green Version]
- McDannald, A.; Vijayan, S.; Shi, J.; Chen, A.; Jia, Q.X.; Aindow, M.; Jain, M. Magnetic and Tunable Dielectric Properties of DyCrO3 Thin Films. J. Mater. Sci. 2019, 54, 8984–8994. [Google Scholar] [CrossRef]
- Hemberger, J.; Lunkenheimer, P.; Fichtl, R.; Krug von Nidda, H.-A.; Tsurkan, V.; Loidl, A. Relaxor Ferroelectricity and Colossal Magnetocapacitive Coupling in Ferromagnetic CdCr2S4. Nature 2005, 434, 364–367. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Sharma, Y.; Chang, S.; Pitike, K.C.; Sohn, C.; Nakhmanson, S.M.; Takoudis, C.G.; Lee, H.N.; Tonelli, R.; Gardner, J.; et al. Room-Temperature Relaxor Ferroelectricity and Photovoltaic Effects in Tin Titanate Directly Deposited on a Silicon Substrate. Phys. Rev. B 2018, 97, 054109. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Xiao, H.Y.; Heald, S.M.; Bowden, M.E.; Varga, T.; Exarhos, G.J.; Biegalski, M.D.; Ivanov, I.N.; Weber, W.J.; Droubay, T.C.; et al. The Impact of Crystal Symmetry on the Electronic Structure and Functional Properties of Complex Lanthanum Chromium Oxides. J. Mater. Chem. C 2013, 1, 4527–4535. [Google Scholar] [CrossRef]
- Arima, T.; Tokura, Y.; Torrance, J.B. Variation of Optical Gaps in Perovskite-Type 3d Transition-Metal Oxides. Phys. Rev. B 1993, 48, 17006–17009. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, Y.; Skoropata, E.; Paudel, B.; Kang, K.T.; Yarotski, D.; Ward, T.Z.; Chen, A. Epitaxial Stabilization of Single-Crystal Multiferroic YCrO3 Thin Films. Nanomaterials 2020, 10, 2085. https://doi.org/10.3390/nano10102085
Sharma Y, Skoropata E, Paudel B, Kang KT, Yarotski D, Ward TZ, Chen A. Epitaxial Stabilization of Single-Crystal Multiferroic YCrO3 Thin Films. Nanomaterials. 2020; 10(10):2085. https://doi.org/10.3390/nano10102085
Chicago/Turabian StyleSharma, Yogesh, Elizabeth Skoropata, Binod Paudel, Kyeong Tae Kang, Dmitry Yarotski, T. Zac Ward, and Aiping Chen. 2020. "Epitaxial Stabilization of Single-Crystal Multiferroic YCrO3 Thin Films" Nanomaterials 10, no. 10: 2085. https://doi.org/10.3390/nano10102085
APA StyleSharma, Y., Skoropata, E., Paudel, B., Kang, K. T., Yarotski, D., Ward, T. Z., & Chen, A. (2020). Epitaxial Stabilization of Single-Crystal Multiferroic YCrO3 Thin Films. Nanomaterials, 10(10), 2085. https://doi.org/10.3390/nano10102085