Biomimetic Strategies for Bone Repair and Regeneration
Abstract
:1. Introduction
2. Bioactive Composite Scaffolds with Embedded Solid Signals
3. Fabrication of Tissue Engineering Scaffolds by Biomimetic Deposition
Ion concentration (mM) | Na+ | K+ | Ca2+ | Mg2+ | HCO3− | Cl− | HPO4− | SO42− |
---|---|---|---|---|---|---|---|---|
Blood plasma | 142 | 5 | 2.5 | 1.5 | 27 | 103 | 1 | 0.5 |
SBF | 142 | 5 | 2.5 | 1.5 | 4.2 | 148 | 1 | 0.5 |
3.1. Biomimetic Coating on Metals and Glass-Ceramics
3.2. Biomimetic Coating on Polymers
4. Conclusions
References
- Gunn, S.M.; Woolfolk, M.; Maxson, B. Dentists: Satisfaction and attitudes on the future. J. Am. Coll. Dent. 1990, 57, 12–15. [Google Scholar]
- Hutmacher, D.W.; Teoh, S.H.; Zein, I.; Ranawake, M.; Lau, S. Tissue engineering research: The engineer’s role. Med. Device Technol. 2000, 11, 33–39. [Google Scholar]
- Langer, R.S.; Vacanti, J.P. Tissue engineering: The challenges ahead. Sci. Am. 1999, 280, 86–89. [Google Scholar]
- Liu, Y.; Schoenaers, J.; de Groot, K.; de Wijn, J.R.; Schepers, E. Bone healing in porous implants. An experiment in sheep. J. Mater. Sci. Mater. Med. 2000, 11, 667–762. [Google Scholar] [CrossRef]
- Rosen, H.M.; McFarland, M.M. The biologic behavior of hydroxyapatite implanted into the maxillofacial skeleton. Plast. Reconstr. Surg. 1990, 85, 718–723. [Google Scholar]
- Schepers, E.; de Clercq, M.; Ducheyne, P.; Kempeneers, R. Bioactive glass particulate material as a filler for bone lesions. J. Oral. Rehabil. 1991, 18, 439–452. [Google Scholar]
- Nandi, S.K.; Roy, S.; Mukherjee, P.; Kundu, B.; De, D.K.; Basu, D. Orthopaedic applications of bone graft & graft substitutes: A review. Indian J. Med. Res. 2010, 132, 15–30. [Google Scholar]
- Schepers, E.J.; Ducheyne, P. Bioactive glass particles of narrow size range for the treatment of oral bone defects: A 1–24 month experiment with several materials and particle sizes and size ranges. J. Oral. Rehabil. 1997, 24, 171–181. [Google Scholar] [CrossRef]
- Dahlin, C.; Simion, M.; Nanmark, U.; Sennerby, L. Histological morphology of the e-PTFE/tissue interface in humans subjected to guided bone regeneration in conjunction with oral implant treatment. Clin. Oral Implants Res. 1998, 9, 100–106. [Google Scholar]
- Caulier, H.; van der Waerden, J.P.; Paquay, Y.C.; Wolke, J.G.; Kalk, W.; Naert, I.; Jansen, J.A. Effect of calcium phosphate (Ca-P) coatings on trabecular bone response: A histological study. J. Biomed. Mater. Res. 1995, 29, 1061–1069. [Google Scholar]
- Kim, H.W.; Kim, H.E.; Salih, V. Stimulation of osteoblast responses to biomimeticnanocomposites of gelatin—hydroxyapatite for tissue engineering scaffolds. Biomaterials 2005, 26, 5221–5230. [Google Scholar]
- Liu, Y.L.; de Groot, K.; Hunziker, E.B. Biomimetic mineral coatings in dental and orthopaedicimplantology. Front. Mater. Sci. China 2009, 3, 154–162. [Google Scholar]
- Kalita, S.J.; Bhardwaj, A.; Bhatt, H.A. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater. Sci. Eng. C 2007, 27, 441–449. [Google Scholar]
- Giavaresi, G.; Branda, F.; Causa, F.; Luciani, G.; Fini, M.; Aldini, N.N.; Rimondini, L.; Ambrosio, L.; Giardino, R. Poly(2-hydroxyethyl methacrylate) biomimetic coating to improve osseointegration of a PMMA/HA/Glass composite implant: In vivo mechanical and histomorphometric assessments. Int. J. Artif. Organs 2004, 27, 674–680. [Google Scholar]
- Hutmacher, D.W. Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J. Biomat. Sci. Polym. Ed. 2001, 12, 107–124. [Google Scholar]
- Sachlos, E.; Czernuszka, J.T. Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cell Mater. 2003, 5, 29–40. [Google Scholar]
- Yang, F.; Wolke, J.G.C.; Jansen, J.A. Biomimetic calcium phosphate coating on electrospunpoly(å-caprolactone) scaffolds for bone tissue engineering. Chem. Eng. J. 2008, 137, 154–161. [Google Scholar]
- Yuan, X.; Mak, A.F.T.; Li, J. Formation of bone-like apatite on poly (L-lactic acid) fibers by a biomimetic process. J. Biomed. Mater. Res. 2001, 57, 140–150. [Google Scholar]
- Tuzlakoglu, K.; Reis, R.L. Formation of bone-like apatite layer on chitosanfiber mesh scaffolds by a biomimetic spraying process. J. Mater. Sci. Mater. Med. 2007, 18, 1279–1286. [Google Scholar]
- Grzesik, W.J.; Robey, P.G. Bone matrix RGD glycoproteins: Immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J. Bone Miner. Res. 1994, 9, 487–496. [Google Scholar] [CrossRef]
- Burg, K.J.L.; Porter, S.; Kellam, J.F. Biomaterial developments for bone tissue engineering. Biomaterials 2000, 21, 2347–2359. [Google Scholar]
- Boccaccini, A.R.; Maquet, V. Bioresorbable and bioactive polymer/bioglass composites with tailored pore structure for tissue engineering applications. Comp. Sci. Technol. 2003, 63, 2417–2429. [Google Scholar]
- Rizzi, S.C.; Heath, D.J.; Coombes, A.G.; Bock, N.; Textor, M.; Downes, S. Biodegradable polymer/hydroxyapatite composites: Surface analysis and initial attachment of human osteoblasts. J. Biomed. Mater. Res. 2001, 55, 475–486. [Google Scholar]
- Akoa, M.; Aoki, H.; Kato, K. Mechanical properties of sintered hydroxyapatite for prosthetic applications. J. Mater. Sci. 1981, 16, 809–812. [Google Scholar]
- Cheung, H.Y.; Lau, K.T.; Lu, T.P.; Hui, D. A critical review on polymer-based bio-engineered materials for scaffold development. Compos. Eng. Part B. 2007, 38, 291–300. [Google Scholar]
- Wei, G.; Ma, P.X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004, 25, 4749–4757. [Google Scholar]
- Ma, P.X.; Zhang, R.; Xiao, G.; Franceschi, R. Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J. Biomed. Mater. Res. 2001, 54, 284–293. [Google Scholar] [CrossRef]
- Kim, S.S.; Park, M.S.; Jeon, O.; Choi, C.Y.; Kim, B.S. Poly (lactide-co-glycolide) hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 1399–1409. [Google Scholar]
- Shor, L.; Guceri, S.; Wen, X.; Gandhi, M.; Sun, W. Fabrication and cell-matrix interaction study on three-dimensional polycaprolactone/hydroxypatite tissue scaffolds. Biomaterials 2007, 28, 5291–5297. [Google Scholar]
- Guarino, V.; Lewandowska, M.; Bil, M.; Polak, B.; Ambrosio, L. Morphology and degradation properties of PCL/Hyaff11® composite scaffolds with multiscale degradation rate. Comp. Sci. Tech. 2010, 70, 1826–1837. [Google Scholar]
- Guarino, V.; Ambrosio, L. The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly ε-caprolactone-based composite scaffolds. Acta Biomater. 2008, 4, 1778–1787. [Google Scholar] [CrossRef]
- Gloria, A.; de Santis, R.; Ambrosio, L. Polymer-based composite scaffolds for tissue engineering. J. Appl. Biomat. Biomech. 2010, 8, 57–67. [Google Scholar]
- De Santis, R.; Gloria, A.; Russo, T.; D’Amora, U.; Zeppetelli, S.; Dionigi, C.; Sytcheva, A.; Herrmannsdorfer, T.; Dediu, V.; Ambrosio, L. A basic approach toward the development of nanocomposite magnetic scaffolds for advanced bone tissue engineering. J. Appl. Polym. Sci. 2011, 122, 3599–3605. [Google Scholar]
- Domingos, M.; Chiellini, F.; Gloria, A.; Ambrosio, L.; Bartolo, P.; Chiellini, E. Effect of process parameters on the morphological and mechanical properties of 3D bioextruded poly(ε-caprolactone) scaffolds. Rapid Prototyp. J. 2012, 18, 56–67. [Google Scholar]
- Wang, L.H.; Shi, S.; Guo, G.; Fu, S.Z.; Fan, M.; Luo, F.; Zhao, X.; Wei, Y.Q.; Qian, Z.Y. Preparation and characterization of a porous scaffold based on poly(D,L-Lactide) and N-Hydroxyapatite by Phase Separation. J. Biomat. Sci. Polym. Ed. 2011, 22, 1917–1929. [Google Scholar]
- Sultana, N.; Wang, M. Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds. J. Mater. Sci. Mater. Med. 2008, 19, 2555–2561. [Google Scholar]
- Goddard, J.M.; Hotchkiss, J.H. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 2007, 32, 698–725. [Google Scholar]
- Tirrell, M.; Kokkoli, E.; Biesalski, M. The role of surface science in bioengineered materials. Surf. Sci. 2002, 500, 61–83. [Google Scholar]
- Chen, H.; Yuan, L.; Song, W.; Wu, Z.; Li, D. Biocompatible polymer materials: Role of protein-surface interactions. Pro. Polym. Sci. 2008, 33, 1059–1087. [Google Scholar]
- Vandiver, J.; Dean, D.; Patel, N.; Bonfield, W.; Ortiz, C. Nanoscale variation in surface charge of synthetic hydroxyapatite detected by chemically and spatially specific high-resolution force spectroscopy. Biomaterials 2005, 26, 271–283. [Google Scholar] [CrossRef]
- De Aza, P.N.; Luklinska, Z.B.; Santos, C.; Guitian, F.; de Aza, S. Mechanism of bone-like formation on a bioactive implant in vivo. Biomaterials 2003, 24, 1437–1445. [Google Scholar] [CrossRef]
- De Groot, K.; Wolke, J.G.C.; Jansen, J.A. Calcium phosphate coatings for medical implants. Proc. Inst. Mech. Eng. H J. Eng. Med. 1998, 212, 137–147. [Google Scholar]
- Guarino, V.; Causa, F.; Netti, P.A.; Ciapetti, G.; Pagani, S.; Martini, D.; Baldini, N.; Ambrosio, L. The role of hydroxyapatite as solid signal on performance of PCL porous scaffolds for bone tissue regeneration. J Biomed. Mater. Res. B Appl. Biomater. 2008, 86B, 548–557. [Google Scholar] [CrossRef]
- Russias, J.; Saiz, E.; Nalla, R.K.; Gryn, K.; Ritchie, R.O.; Tomsia, A.P. Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation. Mater. Sci. Eng. C 2006, 26, 1289–1295. [Google Scholar] [CrossRef]
- Guarino, V.; Taddei, P.; Di Foggia, M.; Fagnano, C.; Ciapetti, G.; Ambrosio, L. The influence of hydroxyapatite particles on in vitro degradation behaviour of PCL based composite scaffolds. Tissue Eng. A 2009, 15, 3655–3668. [Google Scholar] [CrossRef]
- Khan, Y.M.; Katti, D.S.; Laurencin, C.T. Novel polymer-synthesized ceramic composite-based system for bone repair: An in vitro evaluation. J. Biomed. Mater. Res. A 2004, 69, 728–737. [Google Scholar]
- Kikuchi, M.; Cho, S.B.; Suetsugu, Y.; Tanaka, J. In vitro tests and in vivo tests developed TCP/CPLA composites. Bioceramics 1997, 10, 407–410. [Google Scholar]
- Mehrabanian, M.; Nasr-Esfahani, M. HA/nylon 6,6 porous scaffolds fabricated by salt leaching/solvent casting technique: Effect of nano-sized filler content on scaffold properties. Int. J. Nanomed. 2011, 6, 1651–1659. [Google Scholar] [CrossRef]
- Guarino, V.; Causa, F.; Ambrosio, L. Bioactive scaffolds for bone and ligament tissue. Exp. Rev. Med. Dev. 2007, 4, 405–418. [Google Scholar] [CrossRef]
- Huang, L.Y.; Xu, K.W.; Lu, J. A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings. J. Mater. Sci. Mater. Med. 2000, 11, 667–673. [Google Scholar] [CrossRef]
- Liu, Q.; de Wijn, R.J.; van Blitterswijk, A.C. Nano-apatite/polymer composites: Mechanical and physiochemical characteristics. Biomaterials 1997, 18, 1263–1270. [Google Scholar] [CrossRef]
- Raucci, M.G.; Guarino, V.; Ambrosio, L. Hybrid composite scaffolds prepared by sol-gel method for bone regeneration. Compos. Sci. Technol. 2010, 70, 1861–1868. [Google Scholar] [CrossRef]
- Raucci, M.G.; D’Antò, V.; Guarino, V.; Sardella, E.; Zeppetelli, S.; Favia, P.; Ambrosio, L. Biomineralized porous composite scaffolds prepared by chemical synthesis for bone tissue regeneration. ActaBiomater. 2010, 6, 4090–4099. [Google Scholar]
- Martin, C.; Winet, H.; Bao, J.Y. Acidity near eroding polylactide-polyglycolide in vitro and in vivo in rabbit tibial bone chamber. Biomaterials 1996, 17, 2373–2380. [Google Scholar] [CrossRef]
- El-Ghannam, A. Bone reconstruction: from bioceramics to tissue engineering. Exp. Rev. Med. Dev. 2005, 2, 87–101. [Google Scholar]
- Liu, Q.; de Wijn, R.J.; de Groot, K.; van Blitterswijk, A.C. Surface modification of nanoapatite by grafting organic polymer. Biomaterials 1998, 19, 1067–1072. [Google Scholar]
- Catauro, M.; Raucci, M.G.; Ausanio, G.; Ambrosio, L. Sol-gel synthesis, characterization and bioactivity of poly(ether-imide)/TiO2 hybrid materials. J. Appl. Biomat. Biomech. 2007, 5, 41–48. [Google Scholar]
- Catauro, M.; Raucci, M.G.; de Gaetano, F.; Buri, A.; Marotta, A.; Ambrosio, L. Sol-gel synthesis, structure and bioactivity of polycaprolactone/CaO·SiO2 hybrid materia. J. Mater. Sci. Mater. Med. 2004, 15, 991–995. [Google Scholar]
- Raucci, M.G.; Adesanya, K.; Di Silvio, L.; Catauro, M.; Ambrosio, L. The biocompatibility of Silver-containing Na2OCaO2SiO2 glass prepared by sol-gel method. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 92, 102–110. [Google Scholar]
- Rezwan, K.; Chen, Q.Z.; Blaker, J.J.; Boccaccini, A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3413–3431. [Google Scholar] [CrossRef]
- Vidigal, G.M.; Groisman, M., Jr.; de Sena, L.A.; Soares, G.A. Surface characterization of dental implants coated with hydroxyapatite by plasma spray and biomimetic process. Implant Dent. 2009, 18, 353–361. [Google Scholar]
- Zhang, Q.; Leng, Y. Electrochemical activation of titanium for biomimetic coatingof calcium phosphate. Biomaterials 2005, 26, 3853–3859. [Google Scholar]
- Kumar, R.R.; Wang, M. Functionally graded bioactive coatings of hydroxyapatite/titanium oxide composite system. Mater. Lett. 2002, 55, 133–137. [Google Scholar]
- Wang, C.X.; Chen, Z.Q.; Wang, M.; Liu, Z.Y.; Wang, P.L.; Zheng, S.X. Functionally graded calcium phosphate coatings produced by ion beam sputtering/mixing deposition. Biomaterials 2001, 22, 1619–1626. [Google Scholar]
- Wang, C.X.; Chen, Z.Q.; Guan, L.M.; Wang, M.; Liu, Z.Y.; Wang, P.L. Fabrication and characterisation of graded calcium phosphate coatings produced by ion beam sputtering/mixing deposition. Nucl. Instrum. Methods Phys. Res. Sec. B Beam Interact. Mater. At. 2001, 179, 364–372. [Google Scholar]
- Esenwein, S.A.; Esenwein, S.; Herr, G.; Muhr, G.; Kusswetter, W.; Hartwig, C.H. Osteogenetic activity of BMP-3-coated titanium specimens of different surface texture at the orthotopic implant bed of giant rabbits. Chirurgia 2001, 72, 1360–1368. [Google Scholar]
- Ono, I.; Gunji, H.; Suda, K.; Kaneko, F.; Murata, M.; Saito, T.; Kuboki, Y. Bone induction of hydroxyapatite combined with bone morphogenetic protein and covered with periosteum. Plast. Reconstr. Surg. 1995, 95, 1265–1272. [Google Scholar]
- Endo, K. Chemical modification of metallic implant surfaces with biofunctional proteins (Part 1). Molecular structure and biological activity of a modified NiTi alloy surface. Dent. Mater. J. 1995, 14, 185–198. [Google Scholar] [CrossRef]
- Kim, H.M.; Miyaji, F.; Kokubo, T.; Nakamura, T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J. Biomed. Mater. Res. 1996, 32, 409–417. [Google Scholar] [CrossRef]
- Liu, Y.; Hunziker, E.B.; de Groot, K.; Layrolle, P. Introduction of ectopic bone formation by BMP-2 incorporated biomimetically into calcium phosphate coatings of titanium alloy implants. In Bioceramics; Ben-Nissan, B., Sher, D., Walsh, W., Eds.; Trans Tech Publications Limited: Sydney, Australia, 2002; Volume 15, pp. 667–670. [Google Scholar]
- Loty, C.; Sautier, J.M.; Boulekbache, H.; Kokubo, T.; Kim, H.M.; Forest, N. In vitro bone formation on a bonelike apatite layer prepared by a biomimetic process on a bioactive glass-ceramic. J. Biomed. Mater. Res. 2000, 49, 423–434. [Google Scholar] [CrossRef]
- Cochran, D.L.; Schenk, R.; Buser, D.; Wozney, J.M.; Jones, A.A. Recombinant human bone morphogenetic protein-2 stimulation of bone formation around endosseous dental implants. J. Periodontol. 1999, 70, 139–150. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.P.; Hunzinker, E.B.K.; de Groot, K. Incorporation of growth factors into medical devices via biomimetic coatings. Phil. Trans. R. Soc. 2006, 364 A, 233–248. [Google Scholar]
- Liu, Y.; Layrolle, P.; de Bruijn, J.; van Blitterswijk, C.A.; de Groot, K. Biomimeticcoprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. J. Biomed. Mater. Res. 2001, 57, 327–335. [Google Scholar] [CrossRef]
- Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T. Solutions able to reproduce in vivo surface structure changes in bioactive glass-ceramic A-W. J. Biomed. Mater. Res. 1990, 24, 721–734. [Google Scholar] [CrossRef]
- Barrére, F.; van Blitterswijk, C.A.; de Groot, K.; Layrolle, P. Influence of ionic strength and carbonate on the Ca-P coating formation from SBFx5 solution. Biomaterials 2002, 23, 1921–1930. [Google Scholar] [CrossRef]
- Barrére, F.; van Der Valk, C.M.; Dalmeijer, R.A.; van Blitterswijk, C.A.; de Groot, K.; Layrolle, P. In vitro and in vivo degradation of biomimeticoctacalcium phosphate and carbonate apatite coatings on titanium implants. J. Biomed. Mater. Res. 2003, 64A, 378–387. [Google Scholar] [CrossRef]
- Stigter, M.; de Groot, K.; Layrolle, P. Incorporation of tobramycin into biomimetichydroxyapatite coating on titanium. Biomaterials 2002, 23, 4143–4153. [Google Scholar] [CrossRef]
- Barrere, F.; Layrolle, P.; van Blitterswijk, C. A.; de Groot, K. Biomimetic coatings on titanium: A crystal growth study of octacalcium phosphate. J. Mater. Sci. Mater. Med. 2001, 12, 529–534. [Google Scholar] [CrossRef]
- Oliveira, A.L.; Malafaya, P.B.; Reis, R.L. Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures. Biomaterials 2003, 24, 2575–2584. [Google Scholar] [CrossRef]
- Leonor, I.B.; Kim, H.M.; Balas, F.; Kawashita, M.; Reis, R.L.; Kokubo, T.; Nalamura, T. Functionalization of different polymers with sulfonic groups as a way to coat them with a biomimetic apatite layer. J. Mater. Sci. Mater. Med. 2007, 18, 1923–1930. [Google Scholar] [CrossRef] [Green Version]
- Ohtsuki, C.; Kamitakahara, M.; Miyazaki, T. Coating bone-like apatite onto organic substrates using solutions mimicking body fluid. J. Tissue Eng. Regenerative Med. 2007, 1, 33–38. [Google Scholar] [CrossRef]
- Tate, M.L.K. Whither flows the fluid in bone? An osteocyte’s perspective. J. Biomech. 2003, 36, 1409–1424. [Google Scholar] [CrossRef]
- Meinel, L.; Karageorgiou, V.; Fajardo, R.; Snyder, B.; Shinde-Patil, V.; Zichner, L.; Kaplan, D.; Langer, R.; Vunjak-Novakovic, G. Bone tissue engineering using human mesenchymal stem cells: Effects of scaffold material and medium flow. Ann. Biomed. Eng. 2004, 32, 112–122. [Google Scholar]
- Eglin, D.; Sam, A.; Perry, C.C. Comparative study of the in vitro apatite-forming ability of poly(epsilon-caprolactone)-silica sol-gels using three osteoconductivity tests (static, dynamic, and alternate soaking process). J. Biomed. Mater. Res. 2004, 69A, 718–727. [Google Scholar] [CrossRef]
- Siriphannon, P.; Kameshima, Y.; Yasumori, A.; Okada, K.; Hayashi, S. Comparative study of the formation of hydroxyapatite in simulated body fluid under static and flowing systems. J. Biomed. Mater. Res. 2002, 60, 175–185. [Google Scholar] [CrossRef]
- Yan, W.Q.; Nakamura, T.; Kawanabe, K.; Nishigochi, S.; Oka, M.; Kokubo, T. Apatite layer- coated titanium for use as bone bonding implants. Biomaterials 1997, 18, 1185–1190. [Google Scholar] [CrossRef]
- Li, P. Biomimeticnano-apatite coating capable of promoting bone in growth. J. Biomed. Mater. Res. 2003, 66A, 79–85. [Google Scholar] [CrossRef]
- Ramila, A.; Vallet-Regi, M. Static and dynamic in vitro study of a sol-gel glass bioactivity. Biomaterials 2001, 22, 2301–2306. [Google Scholar] [CrossRef]
- Habibovic, P.; Barrére, F.; van Blitterswijk, C.A.; de Groot, K.; Layrolle, P. Biomimetichydroxyapatite coating on metal implants. J. Am. Ceram. Soc. 2002, 85, 517–522. [Google Scholar]
- Barrére, F.; Layrolle, P.; van Blitterswijk, C.A.; de Groot, K. Fast formation of biomimetic Ca-P coatings on Ti6Al4V. Mater. Res. Soc. Symp. Proc. 2000, 599, 135–140. [Google Scholar]
- Newesely, H. Changes in crystal types of low solubility calcium phosphates in presence of accompanying ions. Arch. Oral Biol. 1961, 6, S174–S180. [Google Scholar] [CrossRef]
- Tomazic, B.; Tomson, M.; Nancollas, G.H. Growth of calcium phosphates on hydroxyapatite crystals: The effect of magnesium. Arch. Oral Biol. 1975, 20, 803–808. [Google Scholar] [CrossRef]
- Salimi, M.H.; Heughbaert, J.C.; Nancollas, G.H. Crystal growth of calcium phosphates in the presence of magnesium ions. Langmuir 1985, 1, 119–122. [Google Scholar] [CrossRef]
- Eanes, E.D.; Rattner, S.L. The effect of magnesium on apatite formation in seeded supersaturated solutions at pH 7.4. J. Dent. Res. 1980, 60, 1719–1723. [Google Scholar]
- Boskey, A.L.; Posner, A.S. Magnesium stabilization of amorphous calcium phosphate: A kinetic study. Mater. Res. Bull. 1974, 9, 907–916. [Google Scholar] [CrossRef]
- Nancollas, G.H.; Tomazic, B.; Tomson, M. The precipitation of calcium phosphate in the presence of magnesium. Croat. Chem. Acta 1976, 48, 431–438. [Google Scholar]
- Chikerur, N.S.; Tung, M.S.; Brown, W.E. A mechanism for incorporation of carbonate into apatite. Calcif. Tissue Int. 1980, 32, 55–62. [Google Scholar]
- Barrère, F.; Layrolle, P.; van Blitterswijk, C.A.; de Groot, K. Biomimetic calcium phosphate coatings on Ti6Al4V: A crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO3−. Bone 1999, 25, 1075–1115. [Google Scholar]
- Cao, W.; Hench, L.L. Bioactive materials. Ceram. Int. 1996, 22, 493–523. [Google Scholar]
- Verné, E.; Bretcanu, O.; Balagna, C.; Bianchi, C.L.; Cannas, M.; Gatti, S.; Vitale-Brovarone, C. Early stage reactivity and in vitro behavior of silica-based bioactive glasses and glass-ceramics. J. Mater. Sci. Mater. Med. 2009, 20, 75–87. [Google Scholar]
- Kokubo, T. Novel bioactive materials derived from glasses. In Proceedings of the XVI International Congress on Glass, Madrid, Spain, 1992; pp. 119–137.
- Teoli, D.; Parisi, L.; Realdon, N.; Guglielmi, M.; Rosato, A.; Morpurgo, M. Wet sol-gel derived silica for controlled release of proteins. J. Controll. Release. 2006, 116, 295–303. [Google Scholar]
- Ohtsuki, C.; Kokubo, T.; Yamamuro, T. Mechanism of apatite formation on CaOSiO2P2O5 glasses in a simulated body fluid. J. Non-cryst. Solids 1992, 143, 84–92. [Google Scholar] [CrossRef]
- Radin, S.; Ducheyne, P.; Kamplain, T.; Tan, B.H. Silica sol-gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release. J. Biomed. Mater. Res. 2001, 57, 313–320. [Google Scholar]
- Catauro, M.; Raucci, M.G.; Ausanio, G. Sol-gel processing of drug delivery zirconia/polycaprolactone hybrid materials. J. Mater. Sci. Mater. Med. 2008, 19, 531–540. [Google Scholar] [CrossRef]
- Khor, H.L.; Ng, K.W.; Schantz, J.T.; Phan, T.T.; Lim, T.C.; Teoh, S.H.; Hutmacher, D.W. Poly(å-caprolactone) films as a potential substrate for tissue engineering an epidermal equivalent. Mater. Sci. Eng. C 2002, 20, 71–75. [Google Scholar] [CrossRef]
- Catauro, M.; Raucci, M.G.; De Gaetano, F.; Marotta, A. Antibacterial and bioactive silver-containingNa2O-CaO-2SiO2 glass prepared by sol-gel method. J. Mater. Sci. Mater. Med. 2004, 15, 831–837. [Google Scholar] [CrossRef]
- Ohtsuki, C.; Inada, H.; Tanihara, M.; Kamitakahara, M.; Miyazaki, T. Fabrication of bioactive glass-ceramics containing zinc oxide. Key Eng. Mater. 2004, 254-256, 59–62. [Google Scholar] [CrossRef]
- Branda, F.; Costantini, A.; Luciani, G.; Rosso, F.; Peluso, G.; Barbarisi, A. Hydroxyapatite coating of polyelectrolitehydrogels by means of the biomimetic method. Mater. Sci. Eng. C. 2003, 23, 367–370. [Google Scholar] [CrossRef]
- Taguchi, T.; Kishida, A.; Akashi, M. Hydroxyapatite formation on/in hydrogels using a novel alternate soaking process. Chem. Lett. 1998, 8, 711–712. [Google Scholar] [CrossRef]
- Taguchi, T.; Muraoka, Y.; Matsuyama, H.; Kishida, A.; Akashi, M. Apatite coating on hydrophilic polymer-grafted poly(ethylene) films using an alternate soaking process. Biomaterials 2001, 22, 53–58. [Google Scholar]
- Oyane, A.; Minoda, M.; Miyamoto, T.; Takahashi, R.; Nakanishi, K.; Kim, H.M.; Kokubo, T.; Nakamura, T. Apatite formation on ethylene-vinyl alcohol copolymer modified with silanol groups. J. Biomed. Mater. Res. 1999, 47, 367–373. [Google Scholar] [CrossRef]
- Oyane, A.; Kawashita, M.; Nakanishi, K.; Kokubo, T.; Minoda, M.; Miyamoto, T.; Nakamura, T. Bonelike apatite formation on ethylene-vinyl alcohol copolymer modified with silane coupling agent and calcium silicate solutions. Biomaterials 2003, 24, 1729–1735. [Google Scholar] [CrossRef]
- Kawashita, M.; Nakao, M.; Minoda, M.; Kim, H.M.; Beppu, T.; Miyamoto, T.; Kokubo, T.; Nakamura, T. Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials 2003, 24, 2477–2484. [Google Scholar] [CrossRef]
- Oyane, A.; Kawashita, M.; Kokubo, T.; Minoda, M.; Miyamoto, T.; Nakamura, T. Apatite Coating on Organic Polymers by a Biomimetic Process. J. Am. Ceram. Soc. Jpn. 2002, 110, 248–254. [Google Scholar] [CrossRef]
- Tanahashi, M.; Matsuda, T. Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J. Biomed. Mater. Res. 1997, 34, 305–315. [Google Scholar]
- Kim, H.M.; Kishimoto, K.; Miyaji, F.; Kokubo, T.; Yao, T.; Suetsugu, Y.; Tanaka, J.; Nakamura, T. Composition and structure of the apatite formed on PET substrate in SBF modified with various ionic activity products. J. Biomed. Mater. Res. 1999, 46, 228–235. [Google Scholar]
- Oyane, A.; Uchida, M.; Choong, C.; Triffitt, J.; Jones, J.; Ito, A. Simple surface modification of poly(e-caprolactone) for apatite deposition from simulated body fluid. Biomaterials 2005, 26, 2407–2413. [Google Scholar]
- Murphy, W.L.; Mooney, D.J. Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata. J. Am. Chem. Soc. 2002, 124, 1910–1917. [Google Scholar]
- Tanahashi, M.; Yao, T.; Kokubo, T.; Minoda, M.; Miyamoto, T.; Nakamura, T.; Yamamuto, T. Apatite coated on organic polymers by biomimetic process: improvement in its adhesion to substrate by NaOH treatment. J. Appl. Biomater. 1994, 5, 339–347. [Google Scholar]
- Manferdini, C.; Guarino, V.; Zini, N.; Raucci, M.G.; Ferrari, A.; Grassi, F.; Gabusi, E.; Squarzoni, S.; Facchini, A.; Ambrosio, L.; Lisignoli, G. Mineralization behavior with mesenchymalstromal cells in a biomimetichyaluronic acid-based scaffold. Biomaterials 2010, 31, 3986–3996. [Google Scholar]
- Costantini, A.; Luciani, G.; Branda, F.; Ambrosio, L.; Mattogno, G.; Pandolfi, L. Hydroxyapatite coating of titanium by biomimetic method. J. Mater. Sci. Mater. Med. 1992, 13, 891–894. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Raucci, M.G.; Guarino, V.; Ambrosio, L. Biomimetic Strategies for Bone Repair and Regeneration. J. Funct. Biomater. 2012, 3, 688-705. https://doi.org/10.3390/jfb3030688
Raucci MG, Guarino V, Ambrosio L. Biomimetic Strategies for Bone Repair and Regeneration. Journal of Functional Biomaterials. 2012; 3(3):688-705. https://doi.org/10.3390/jfb3030688
Chicago/Turabian StyleRaucci, Maria G., Vincenzo Guarino, and Luigi Ambrosio. 2012. "Biomimetic Strategies for Bone Repair and Regeneration" Journal of Functional Biomaterials 3, no. 3: 688-705. https://doi.org/10.3390/jfb3030688
APA StyleRaucci, M. G., Guarino, V., & Ambrosio, L. (2012). Biomimetic Strategies for Bone Repair and Regeneration. Journal of Functional Biomaterials, 3(3), 688-705. https://doi.org/10.3390/jfb3030688