Influence of Design Parameters on Implant Abutment Performance: A Scoping Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruhstorfer, M.; Güth, J.F.; Stimmelmayr, M.; Waltenberger, L.; Schubert, O.; Graf, T. Systematic review of peri-implant conditions and aesthetic outcomes of customized versus conventional healing abutments. Int. J. Implant. Dent. 2024, 10, 61. [Google Scholar] [CrossRef]
- Schweiger, J.; Edelhoff, D.; Güth, J.F. 3D Printing in Digital Prosthetic Dentistry: An Overview of Recent Developments in Additive Manufacturing. J. Clin. Med. 2021, 10, 2010. [Google Scholar] [CrossRef] [PubMed]
- Schubert, O.; Schweiger, J.; Stimmelmayr, M.; Nold, E.; Güth, J.F. Digital implant planning and guided implant surgery–Workflow and reliability. Br. Dent. J. 2019, 226, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Graf, T.; Keul, C.; Wismeijer, D.; Güth, J.F. Time and costs related to computer-assisted versus non-computer-assisted implant planning and surgery. A systematic review. Clin. Oral Implants Res. 2021, 32, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Yağır, M.O.; Şen, Ş.; Şen, U. Examination of Various Abutment Designs Behavior Depending on Load Using Finite Element Analysis. Biomimetics 2024, 9, 498. [Google Scholar] [CrossRef]
- Saghiri, M.A.; Freag, P.; Fakhrzadeh, A.; Saghiri, A.M.; Eid, J. Current technology for identifying dental implants: A narrative review. Bull. Natl. Res. Cent. 2021, 45, 7. [Google Scholar] [CrossRef]
- Smojver, I.; Bjelica, R.; Vuletić, M.; Gerbl, D.; Budimir, A.; Gabrić, D. Antimicrobial Efficacy and Permeability of Various Sealing Materials in Two Different Types of Implant-Abutment Connections. Int. J. Mol. Sci. 2022, 23, 8031. [Google Scholar] [CrossRef]
- Nicholson, J. Titanium alloys for dental implants: A review. Prosthesis 2020, 2, 11. [Google Scholar] [CrossRef]
- Totou, D.; Naka, O.; Mehta, S.B.; Banerji, S. Aesthetic, mechanical, and biological outcomes of various implant abutments for single-tooth replacement in the anterior region: A systematic review of the literature. Int. J. Implant. Dent. 2021, 7, 85. [Google Scholar] [CrossRef]
- Shah, K.K.; Sivaswamy, V. A Literature Review on Implant Abutment Types, Materials, and Fabrication Processes. J. Long Term Eff. Med. Implant. 2023, 33, 57–66. [Google Scholar] [CrossRef]
- Strasding, M.; Marchand, L.; Merino, E.; Zarauz, C.; Pitta, J. Material and abutment selection for CAD/CAM implant-supported fixed dental prostheses in partially edentulous patients–A narrative review. Clin. Oral Implants Res. 2024, 35, 984–999. [Google Scholar] [CrossRef]
- Alsaadi, M.N.; Morad, M.L.; Darwich, K.; Kanout, S.; Husein, H.A. A Comparative Study Between Hybrid Abutments and Standard Abutments in Implant-Supported Prosthesis: A Split-Mouth Clinical Trial. Cureus 2022, 14, e31993. [Google Scholar] [CrossRef]
- Obădan, M.E.; Mitruț, I.; Ionescu, M.; Obădan, F.; Târtea, D.A.; Popescu, M.A.; Popescu, S.M.; Smarandache, A.M.; Manolea, H.O. Clinical Efficacy Analysis of the Personalization of Prosthetic Abutments in Implant Supported Restorations in Comparison to Available Standard Titanium Abutments. J. Pers. Med. 2023, 13, 1402. [Google Scholar] [CrossRef]
- Çeken, A.; Kılınç, H.; Turgut, S. Effect of abutment types and resin cements on the aesthetics of implant-supported restorations. J. Adv. Prosthodont. 2023, 15, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Kilinc, H.; Sanal, F.A.; Turgut, S. Evaluation of the effect of different abutment materials on the final color of implant supported full ceramic restorations. Turkiye Klinikleri J. Dent. Sci. 2020, 26, 426–433. [Google Scholar] [CrossRef]
- Arif, R.; Yilmaz, B.; Mortazavi, A.; Ozcelik, T.B.; Johnston, W.M. Effect of metal opaquer on the final color of 3 ceramic crown types on 3 abutment configurations. J. Prosthet. Dent. 2018, 120, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, M.; Dąbrowski, W.; Ordyniec-Kwaśnica, I. The Fracture Resistance Comparison between Titanium and Zirconia Implant Abutments with and without Ageing: Systematic Review and Meta-Analysis. Dent. J. 2024, 12, 274. [Google Scholar] [CrossRef]
- Laleman, I.; Lambert, F. Implant connection and abutment selection as a predisposing and/or precipitating factor for peri-implant diseases: A review. Clin. Implant. Dent. Relat. Res. 2023, 25, 723–733. [Google Scholar] [CrossRef]
- Del Amo, F.S.; Romero-Bustillos, M.; Catena, A.; Galindo-Moreno, P.; Sánchez-Suárez, J.M.; Sánchez, R.; Garaicoa-Pazmino, C. Effect of Abutment Height on Marginal Bone Loss Around Dental Implants: A Systematic Review. Int. J. Prosthodont. 2024, 37, 95–102. [Google Scholar] [CrossRef]
- Yang, F.; Du, Y.; Zhang, Z.; Wang, M.; Yin, W.; Zhou, Z.; Li, S.; Hu, Y.; Chen, J.; Li, J.; et al. Evaluation of microgaps and microleakage at the implant-abutment interface of individualized abutments in the maxillary anterior region under functional loading: A pragmatic clinical trial. J. Prosthodont. Res. 2025, 69, 58–67. [Google Scholar] [CrossRef]
- Molinero-Mourelle, P.; Cascos-Sanchez, R.; Yilmaz, B.; Lam, W.Y.H.; Pow, E.H.N.; Del Río Highsmith, J.; Gómez-Polo, M. Effect of Fabrication Technique on the Microgap of CAD/CAM Cobalt-Chrome and Zirconia Abutments on a Conical Connection Implant: An In Vitro Study. Materials 2021, 14, 2348. [Google Scholar] [CrossRef] [PubMed]
- Târtea, D.A.; Ionescu, M.; Manolea, H.O.; Mercuț, V.; Obădan, E.; Amărăscu, M.O.; Mărășescu, P.C.; Dăguci, L.; Popescu, S.M. Comparative Study of Dental Custom CAD-CAM Implant Abutments and Dental Implant Stock Abutments. J. Clin. Med. 2023, 12, 2128. [Google Scholar] [CrossRef] [PubMed]
- Elshiyab, S.H.; Nawafleh, N.; Khan, U.; Öchsner, A.; George, R. Impact of Coping Veneering Techniques on the Survival of Implant-Supported Zirconia-Based-Crowns Cemented to Hybrid-Abutments: An-In-Vitro Study. Bioengineering 2020, 7, 117. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, A.S.; Mojtahedi, H.; Javanmard, A. Hybrid Implant Abutments: A Literature Review. Eur. J. Gen. Dent. 2021, 10, 106–115. [Google Scholar] [CrossRef]
- Takano, R.; Honda, J.; Kobayashi, T.; Kubochi, K.; Takata, H.; Komine, F. Fracture strength of implant-supported hybrid abutment crowns in premolar region fabricated using different restorative CAD/CAM materials. Dent. Mater. J. 2023, 42, 187–192. [Google Scholar] [CrossRef]
- Caetano, I.; Santos, L.; Leitão, A. Computational design in architecture: Defining parametric, generative, and algorithmic design. Front. Arch. Res. 2020, 9, 287–300. [Google Scholar] [CrossRef]
- Li, H.; Ye, Y.; Zhang, Z.; Yu, W.; Zhu, W. A comparative analysis of CAD modeling approaches for design solution space exploration. Adv. Mech. Eng. 2024, 16, 16878132241238088. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Misch, J.; Abu-Reyal, S.; Lohana, D.; Mandil, O.; Saleh, M.H.A.; Li, J.; Wang, H.L.; Ravidà, A. Combined Effect of Abutment Height and Restoration Emergence Angle on Peri-Implant Bone Loss Progression: A Retrospective Analysis. Clin. Oral Implants Res. 2025, 36, 600–612. [Google Scholar] [CrossRef]
- Galindo-Moreno, P.; Ravidà, A.; Catena, A.; O’Valle, F.; Padial-Molina, M.; Wang, H.L. Limited marginal bone loss in implant-supported fixed full-arch rehabilitations after 5 years of follow-up. Clin. Oral Implants Res. 2022, 33, 1224–1232. [Google Scholar] [CrossRef]
- Gehrke, S.A.; Scarano, A.; Lorusso, F.; Balduino, T.Y.; Bianchini, M.A. Effects of Different Patient and Prosthetic Variables on Marginal Bone Behavior in Dental Implants: A Clinical Retrospective Study. Medicina 2025, 61, 1041. [Google Scholar] [CrossRef] [PubMed]
- Quispe-López, N.; Guadilla, Y.; Gómez-Polo, C.; López-Valverde, N.; Flores-Fraile, J.; Montero, J. The influence of implant depth, abutment height and mucosal phenotype on peri-implant bone levels: A 2-year clinical trial. J. Dent. 2024, 148, 105264. [Google Scholar] [CrossRef] [PubMed]
- Quintas-Hijós, J.; Pérez-Pevida, E. Influence of intermediate abutment height and timing of placement on marginal bone loss in single implant-supported crowns: A 12-month follow-up randomized clinical trial. Clin. Oral Investig. 2025, 29, 291. [Google Scholar] [CrossRef] [PubMed]
- Tajti, P.; Solyom, E.; Váncsa, S.; Mátrai, P.; Hegyi, P.; Varga, G.; Hermann, P.; Borbély, J.; Sculean, A.; Mikulás, K. Less marginal bone loss around bone-level implants restored with long abutments: A systematic review and meta-analysis. Periodontol. 2000 2024, 94, 627–638. [Google Scholar] [CrossRef]
- Ríos-Santos, J.V.; Tello-González, G.; Lázaro-Calvo, P.; Gil Mur, F.J.; Ríos-Carrasco, B.; Fernández-Palacín, A.; Herrero-Climent, M. One Abutment One Time: A Multicenter, Prospective, Controlled, Randomized Study. Int. J. Environ. Res. Public Health 2020, 17, 9453. [Google Scholar] [CrossRef]
- Arai, Y.; Takashima, M.; Matsuzaki, N.; Takada, S. Marginal bone loss in dental implants: A literature review of risk factors and treatment strategies for prevention. J. Prosthodont. Res. 2025, 69, 12–20. [Google Scholar] [CrossRef]
- Galindo-Moreno, P.; Catena, A.; Pérez-Sayáns, M.; Fernández-Barbero, J.E.; O’Valle, F.; Padial-Molina, M. Early marginal bone loss around dental implants to define success in implant dentistry: A retrospective study. Clin. Implant. Dent. Relat. Res. 2022, 24, 630–642. [Google Scholar] [CrossRef]
- Alseddiek, A.; Al-Zordk, W.; Attia, A. Retention of hybrid-abutment-crowns with offset implant placement: Influence of Crown materials and Ti-base height. BMC Oral Health 2023, 23, 784. [Google Scholar] [CrossRef]
- Müller, L.; Rauch, A.; Reissmann, D.R.; Schierz, O. Impact of cement type and abutment height on pull-off force of zirconia reinforced lithium silicate crowns on titanium implant stock abutments: An in vitro study. BMC Oral Health 2021, 21, 592. [Google Scholar] [CrossRef]
- Song, S.R.; Park, K.M.; Jung, B.Y. Fracture strength analysis of titanium insert-reinforced zirconia abutments according to the axial height of the titanium insert with an internal connection. PLoS ONE 2021, 16, e0249208. [Google Scholar] [CrossRef]
- Hendi, A.; Mirzaee, S.; Falahchai, M. The effect of different implant-abutment types and heights on screw loosening in cases with increased crown height space. Clin. Exp. Dent. Res. 2024, 10, e894. [Google Scholar] [CrossRef]
Authors, Year | Title | Type of the Study | Sample Size | Conclusion |
---|---|---|---|---|
Misch et al. (2025) [29] | Combined Effect of Abutment Height and Restoration Emergence Angle on Peri-Implant Bone Loss Progression: A Retrospective Analysis | Retrospective study | 192 implants 119 patients | Abutment height > 2 mm may play a role in reducing peri-implantitis and marginal bone loss |
Galindo-Moreno et al. (2022) [30] | Limited marginal bone loss in implant-supported fixed full-arch rehabilitations after 5 years of follow-up | Retrospective study | 160 implants 19 patients | Implants with transmucosal abutments longer than 2 mm show less than 0.5 mm from the implant shoulder to the marginal bone |
Gehrke et al. (2025) [31] | Effects of Different Patient and Prosthetic Variables on Marginal Bone Behavior in Dental Implants: A Clinical Retrospective Study | Retrospective study | 111 implants 50 patients | Transmucosal abutment height (>2.5 mm) was associated with reduced bone loss |
Authors, Year | Title | Type of the Study | Sample Size | Conclusion |
---|---|---|---|---|
Quispe-López et al. (2024) [32] | The influence of implant depth, abutment height and mucosal phenotype on peri-implant bone levels: A 2-year clinical trial | Clinical trial | 71 implants 26 patients | Long abutments (>2 mm) result in the lowest level of marginal bone loss |
Quintas-Hijós et al. (2025) [33] | Influence of intermediate abutment height and timing of placement on marginal bone loss in single implant-supported crowns: a 12-month follow-up randomized clinical trial | Randomized clinical trial | 60 implants 54 patients | Immediate abutments of 2–3 mm resulted in lower marginal bone loss compared to 1.5 mm immediate abutments or any delayed abutments |
Tajti et al. (2024) [34] | Less marginal bone loss around bone-level implants restored with long abutments: A systematic review and meta-analysis | Systematic review and meta-analysis | / | It can be tentatively concluded that longer abutments for bone-level implants appear to be a favorable treatment option for reducing early marginal bone loss |
Ríos-Santos et al. (2020) [35] | One Abutment One Time: A Multicenter, Prospective, Controlled, Randomized Study | Controlled randomized study | 231 implants 147 patients | Height of the prosthetic abutment has a statistically significant influence on bone loss, concluding that there is greater peri-implant bone loss using 1 mm high abutments compared to using 2 mm high abutments |
Arai et al. (2025) [36] | Marginal bone loss in dental implants: A literature review of risk factors and treatment strategies for prevention | Literature review | / | Abutment with a height of at least 2 mm should be selected |
Galindo-Moreno et al. (2022) [37] | Early marginal bone loss around dental implants to define success in implant dentistry: A retrospective study | Retrospective study | 590 implants 176 patients | A minimum of 2 mm abutment height is recommended to get adequate protection against peri-implant bone resorption |
Alseddiek et al. (2023) [38] | Retention of hybrid-abutment-crowns with offset implant placement: influence of Crown materials and Ti-base height | In vitro study | 42 hybrid-abutment crowns | The retention of the three different hybrid-abutment crown types is greatly improved by the height of the abutment evaluated |
Müller et al. (2021) [39] | Impact of cement type and abutment height on pull-off force of zirconia reinforced lithium silicate crowns on titanium implant stock abutments: an in vitro study | In vitro study | 64 abutments | The abutment height had a subordinate impact |
Song et al. (2021) [40] | Fracture strength analysis of titanium insert-reinforced zirconia abutments according to the axial height of the titanium insert with an internal connection | In vitro study | 60 implants | Axial height of the titanium insert should be designed not to be less than 3 mm to increase the fracture strength and promote the long-term stability of implant-supported fixed prostheses with titanium insert-reinforced zirconia abutments |
Hendi et al. (2024) [41] | The effect of different implant—abutment types and heights on screw loosening in cases with increased crown height space | In vitro study | 64 abutments | 4 mm post-height abutment is more effective than 7 or 10 mm in maintaining screw torque |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prpic, V.; Kosec, P.; Skec, S.; Catic, A. Influence of Design Parameters on Implant Abutment Performance: A Scoping Review. J. Funct. Biomater. 2025, 16, 342. https://doi.org/10.3390/jfb16090342
Prpic V, Kosec P, Skec S, Catic A. Influence of Design Parameters on Implant Abutment Performance: A Scoping Review. Journal of Functional Biomaterials. 2025; 16(9):342. https://doi.org/10.3390/jfb16090342
Chicago/Turabian StylePrpic, Vladimir, Petar Kosec, Stanko Skec, and Amir Catic. 2025. "Influence of Design Parameters on Implant Abutment Performance: A Scoping Review" Journal of Functional Biomaterials 16, no. 9: 342. https://doi.org/10.3390/jfb16090342
APA StylePrpic, V., Kosec, P., Skec, S., & Catic, A. (2025). Influence of Design Parameters on Implant Abutment Performance: A Scoping Review. Journal of Functional Biomaterials, 16(9), 342. https://doi.org/10.3390/jfb16090342