Finite Element Analysis of Trabecular-Surfaced Implants and Implant Angulation in Different Mandibular Arch Forms
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Mandibular Arch Models and Selection
- Hyperbolic mandibular model: 50 mm anteroposterior length and 75 mm transverse width
- U-shaped mandibular model: 55 mm anteroposterior length and 70 mm transverse width
2.3. Implant Configurations
2.4. Implant Design
2.5. Prosthesis and Prosthetic Components
2.6. Finite Element Model
2.7. Loading Conditions
2.8. Boundary Conditions
2.9. Group Definitions
3. Results
4. Discussion
5. Conclusions
- Trabecular-surfaced implants may be preferred in cases with a hyperbolic arch form due to their superior ability to reduce localized stress concentrations, promote more favorable load transfer, and potentially minimize biological complications such as cortical microdamage and bone resorption; if possible, Configuration 2 or 4 should be selected, while Configuration 3 approached critical stress thresholds and may involve higher biological risks.
- The high stress levels observed in posterior implants indicate that this region should be prioritized during clinical planning. The primary reason for the higher von Mises stresses observed in posterior implants is that these regions are subjected to greater masticatory forces, with occlusal loads typically reaching their maximum in the posterior areas. Since such stresses can be reduced by distributing load transfer over a larger surface area, it is recommended in clinical practice to prefer the longest and widest implants possible within clinical limits. In patients with higher masticatory forces, the stress-reducing and load-distributing effects of trabecular-surfaced implants may become more clinically relevant. Additionally, in such patients, supplementary strategies such as increasing the number of implants or selecting alternative prosthetic materials may also be considered.
- Configuration 2 emerged as the most favorable configuration in terms of balanced load transfer and low stress levels; however, Configurations 3 and 4 may serve as effective alternatives in anatomically constrained cases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nascimento, G.G.; Alves-Costa, S.; Romandini, M. Burden of severe periodontitis and edentulism in 2021, with projections up to 2050: The Global Burden of Disease 2021 study. J. Periodontal Res. 2024, 59, 823–867. [Google Scholar] [CrossRef]
- Vemulapalli, A.; Mandapati, S.R.; Kotha, A.; Rudraraju, H.; Aryal, S. Prevalence of complete edentulism among US adults 65 years and older: A Behavioral Risk Factor Surveillance System study from 2012 through 2020. J. Am. Dent. Assoc. 2024, 155, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Schwartz-Arad, D.; Chaushu, G. Full-arch restoration of the jaw with fixed ceramometal prosthesis. Int. J. Oral Maxillofac. Implant. 1998, 13, 819–825. Available online: https://pubmed.ncbi.nlm.nih.gov/9857593/ (accessed on 12 June 2025).
- Soto-Peñaloza, D.; Zaragozí-Alonso, R.; Peñarrocha-Diago, M.; Peñarrocha-Diago, M. The all-on-four treatment concept: Systematic review. J. Clin. Exp. Dent. 2017, 9, e474. [Google Scholar] [CrossRef] [PubMed]
- Perdijk, F.B.; Meijer, G.J.; Bronkhorst, E.M.; Koole, R. Implants in the severely resorbed mandibles: Whether or not to augment? What is the clinician’s preference? Oral Maxillofac. Surg. 2011, 15, 225–231. [Google Scholar] [CrossRef]
- Kloss, F.R.; Kämmerer, P.W.; Kloss-Brandstätter, A. Risk factors for complications following staged alveolar ridge augmentation and dental implantation: A retrospective evaluation of 151 cases with allogeneic and 70 cases with autogenous bone blocks. J. Clin. Med. 2022, 12, 6. [Google Scholar] [CrossRef]
- Gaonkar, S.H.; Aras, M.A.; Chitre, V.; Mascarenhas, K.; Amin, B.; Rajagopal, P. Survival rates of axial and tilted implants in the rehabilitation of edentulous jaws using the All-on-four™ concept: A systematic review. J. Indian Prosthodont. Soc. 2021, 21, 3–10. [Google Scholar] [CrossRef]
- Maló, P.; Rangert, B.; Nobre, M. “All-on-Four” immediate-function concept with Brånemark System® implants for completely edentulous mandibles: A retrospective clinical study. Clin. Implant Dent. Relat. Res. 2003, 5, 2–9. [Google Scholar] [CrossRef]
- Resnik, R. Misch’s Contemporary Implant Dentistry E-Book; Mosby: St. Louis, MO, USA, 2020; ISBN 032347826. [Google Scholar]
- Krekmanov, L.; Kahn, M.; Rangert, B.; Lindström, H. Tilting of posterior mandibular and maxillary implants for improved prosthesis support. Int. J. Oral Maxillofac. Implant. 2000, 15, 405–414. Available online: https://pubmed.ncbi.nlm.nih.gov/10874806/ (accessed on 15 June 2025).
- Maló, P.; de Araújo Nobre, M.; Lopes, A.; Ferro, A.; Botto, J. The All-on-4 treatment concept for the rehabilitation of the completely edentulous mandible: A longitudinal study with 10 to 18 years of follow-up. Clin. Implant Dent. Relat. Res. 2019, 21, 565–577. [Google Scholar] [CrossRef]
- Ayali, A.; Altagar, M.; Ozan, O.; Kurtulmus-Yilmaz, S. Biomechanical comparison of the All-on-4, M-4, and V-4 techniques in an atrophic maxilla: A 3D finite element analysis. Comput. Biol. Med. 2020, 123, 103880. [Google Scholar] [CrossRef]
- Jensen, O.T.; Adams, M.W.; Cottam, J.R.; Parel, S.M.; Phillips, W.R., III. The all on 4 shelf: Mandible. J. Oral Maxillofac. Surg. 2011, 69, 175–181. [Google Scholar] [CrossRef]
- Misch, C.E. Dental Implant Prosthetics—E-Book; Mosby: St. Louis, MO, USA, 2014. [Google Scholar]
- Yadav, R.; Sonwal, S.; Sharma, R.P.; Saini, S.; Huh, Y.S.; Brambilla, E.; Ionescu, A.C. Ranking Analysis of Tribological, Mechanical, and Thermal Properties of Nano Hydroxyapatite Filled Dental Restorative Composite Materials Using the R-Method. Polym. Adv. Technol. 2024, 35, e70010. [Google Scholar] [CrossRef]
- Bencharit, S.; Byrd, W.C.; Altarawneh, S.; Hosseini, B.; Leong, A.; Reside, G.; Morelli, T.; Offenbacher, S. Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants. Clin. Implant Dent. Relat. Res. 2014, 16, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Lingam, M.A.; Balasubramanian, I. Tantalum: A transmogrifying material in dental implant. SRM J. Res. Dent. Sci. 2021, 12, 141–145. [Google Scholar] [CrossRef]
- Bilgin, T. Tam protezlerde kullanılan hazır ölçü kaşıkları için ülkemize uygun standartların araştırılması. In Protetik Diş Tedavisi Anabilim Dalı; İstanbul Üniversitesi: İstanbul, Turkey, 1989; p. 131. Available online: https://nek.istanbul.edu.tr/ekos/TEZ/21499.pdf (accessed on 2 January 2025).
- Bazyar, P.; Baumgart, A.; Altenbach, H.; Usbeck, A. An overview of selected material properties in finite element modeling of the human femur. Biomechanics 2023, 3, 124–135. [Google Scholar] [CrossRef]
- Kilic, E.; Doganay, O. Evaluation of Stress in Tilted Implant Concept with Variable Diameters in the Atrophic Mandible: Three-Dimensional Finite Element Analysis. J. Oral Implantol. 2020, 46, 19–26. [Google Scholar] [CrossRef]
- Karacan, Ö.; Keskin Yalcin, B.; Kocak Berberoglu, H. Evaluation of the Stress After Marginal Mandibular Resection With and Without Plates in Different Residual Bone Heights: A 3D Finite Element Analysis. 2025. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5205613 (accessed on 1 August 2025).
- Brum, J.R.; Macedo, F.R.; Oliveira, M.B.; Paranhos, L.R.; Brito-Júnior, R.B.; Ramacciato, J.C. Assessment of the stresses produced on the bone implant/tissue interface to the different insertion angulations of the implant- a three-dimensional analysis by the finite elements’ method. J. Clin. Exp. Dent. 2020, 12, e930–e937. [Google Scholar] [CrossRef]
- Salyut, A.; Akdeniz, S.; Ergezen, E.; Çetinşahin, C. Evaluation of the Relationship Between Marginal Bone Loss and Implant Angulation in All-on-Four System. EurAsian J. Oral Maxillofac. Surg. 2024, 3, 22–31. [Google Scholar]
- Sevinç Gül, S.N.; Murat, F.; Şensoy, A.T. Evaluation of Biomechanical Effects of Mandible Arch Types in All-on-4 and All-on-5 Dental Implant Design: A 3D Finite Element Analysis. J. Funct. Biomater. 2025, 16, 134. [Google Scholar] [CrossRef]
- Sagat, G.; Yalcin, S.; Gultekin, B.A.; Mijiritsky, E. Influence of arch shape and implant position on stress distribution around implants supporting fixed full-arch prosthesis in edentulous maxilla. Implant Dent. 2010, 19, 498–508. [Google Scholar] [CrossRef]
- Ulu, M.; Ercan, Y. Farklı Ark Formuna Sahip Maksillada Uygulanan All On Four Tedavilerinde, Anterior Bölgedeki İmplant İhtiyacının Sonlu Elemanlar Analizi ile Değerlendirilmesi. Celal Bayar Üniversitesi Sağlık Bilim. Enstitüsü Derg. 2025, 12, 134–142. [Google Scholar] [CrossRef]
- Battula, S.; Papanicolaou, S.; Lomicka, M.; Bassett, J.; Wen, H.B. Mechanical and Interfacial Strength Evaluations of a Trabecular Metal Dental Implant Assembly. In Academy of Osseointegration Annual Meeting; Academy of Osseointegration: Phoenix, AZ, USA, 2012. [Google Scholar]
- Bobyn, J.D.; Stackpool, G.J.; Hacking, S.A.; Tanzer, M.; Krygier, J.J. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J. Bone Jt. Surg. Br. Vol. 1999, 81, 907–914. [Google Scholar] [CrossRef]
- Lee, J.W.; Wen, H.B.; Gubbi, P.; Romanos, G.E. new bone formation and trabecular bone microarchitecture of highly porous tantalum compared to titanium implant threads: A pilot canine study. Clin. Oral Implant. Res. 2018, 29, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, K.; Pan, Q.; Chen, J.C.; Li, W.Y.; Lv, L.H.; Zhang, Y.S.; Guo, L. Biomechanical features of trabecular metal dental implants. Chin. J. Tissue Eng. Res. 2017, 21, 4137. [Google Scholar] [CrossRef]
- Carraro, F.; Bagno, A. Tantalum as trabecular metal for endosseous implantable applications. Biomimetics 2023, 8, 49. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Hemmati, Y.; Saleh-Saber, F. Evaluation of stress distribution of porous tantalum and solid titanium implant-assisted overdenture in the mandible: A finite element study. Dent. Res. J. 2021, 18, 108. [Google Scholar] [CrossRef]
- Gong, H.; Zhang, M.; Fan, Y. Micro-finite element analysis of trabecular bone yield behavior—Effects of tissue nonlinear material properties. J. Mech. Med. Biol. 2011, 11, 563–580. [Google Scholar] [CrossRef]
- Bevill, G.; Keaveny, T.M. Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution. Bone 2009, 44, 579–584. [Google Scholar] [CrossRef]
- Al Deeb, M.; Aldosari, A.A.; Anil, S. Osseointegration of tantalum trabecular metal in titanium dental implants: Histological and micro-CT study. J. Funct. Biomater. 2023, 14, 355. [Google Scholar] [CrossRef]
- Naguib, G.H.; Hashem, A.B.H.; Natto, Z.S.; Abougazia, A.O.; Mously, H.A.; Hamed, M.T. The Effect of Implant Length and Diameter on Stress Distribution of Tooth-Implant and Implant Supported Fixed Prostheses: An In Vitro Finite Element Analysis Study. J. Oral Implantol. 2023, 49, 46–54. [Google Scholar] [CrossRef]
Configuration | Implant 1 | Implant 2 | Implant 3 | Implant 4 |
---|---|---|---|---|
Configuration 1 | 0° | 0° | 0° | 0° |
Configuration 2 | 30° distal | 0° | 0° | 30° distal |
Configuration 3 | 30° distal | 30° distal | 30° distal | 30° distal |
Configuration 4 | 30° distal | 30° mesial | 30° mesial | 30° distal |
Group Code | Implant Type | Arch Type | Configuration | Node Count | Element Count |
---|---|---|---|---|---|
STH4 | Standard | Hyperbolic | Configuration 4 | 263,606 | 1,368,172 |
TRH2 | Tr. surfaced | Hyperbolic | Configuration 2 | 329,923 | 1,746,265 |
STU1 | Standard | U-shaped | Configuration 1 | 222,738 | 1,134,275 |
TRU3 | Tr. surfaced | U-shaped | Configuration 3 | 343,629 | 1,832,555 |
Material | Young’s Modulus (MPa) | Poisson’s Ratio |
---|---|---|
Ti-6Al-4V | 113,763 | 0.35 |
PMMA | 2740 | 0.35 |
Titanium | 102,800 | 0.36 |
Cancellous bone | 1370 | 0.30 |
Cortical bone | 13,000 | 0.30 |
Group Name | Arch Type | Configuration | Implant Type |
---|---|---|---|
STH1 | Hyperbolic | Configuration 1 | Standard |
STH2 | Hyperbolic | Configuration 2 | Standard |
STH3 | Hyperbolic | Configuration 3 | Standard |
STH4 | Hyperbolic | Configuration 4 | Standard |
STU1 | U-shaped | Configuration 1 | Standard |
STU2 | U-shaped | Configuration 2 | Standard |
STU3 | U-shaped | Configuration 3 | Standard |
STU4 | U-shaped | Configuration 4 | Standard |
TRH1 | Hyperbolic | Configuration 1 | Trabecular-surfaced |
TRH2 | Hyperbolic | Configuration 2 | Trabecular-surfaced |
TRH3 | Hyperbolic | Configuration 3 | Trabecular-surfaced |
TRH4 | Hyperbolic | Configuration 4 | Trabecular-surfaced |
TRU1 | U-shaped | Configuration 1 | Trabecular-surfaced |
TRU2 | U-shaped | Configuration 2 | Trabecular-surfaced |
TRU3 | U-shaped | Configuration 3 | Trabecular-surfaced |
TRU4 | U-shaped | Configuration 4 | Trabecular-surfaced |
Group | Cortical Max σ1 (MPa) | Cortical Min σ3 (MPa) | Cancellous Max σ1 (MPa) | Cancellous Min σ3 (MPa) |
---|---|---|---|---|
STH1 | 44.097 | −70.26 | 10.201 | −5.772 |
STH2 | 47.433 | −88.425 | 11.73 | −9.399 |
STH3 | 50.227 | −70.642 | 11.709 | −9.659 |
STH4 | 50.658 | −76.729 | 10.278 | −9.553 |
STU1 | 44.593 | −70.761 | 34.594 | −9.704 |
STU2 | 29.24 | −71.386 | 14.533 | −5.365 |
STU3 | 46.296 | −82.069 | 11.824 | −6.501 |
STU4 | 42.871 | −75.639 | 15.78 | −6.678 |
TRH1 | 24.752 | −55.689 | 12.364 | −7.023 |
TRH2 | 43.391 | −57.731 | 8.271 | −7.625 |
TRH3 | 55.382 | −73.635 | 0.877 | −9.829 |
TRH4 | 45.41 | −57.747 | 10.556 | −8.238 |
TRU1 | 44.575 | −61.401 | 15.453 | −10.205 |
TRU2 | 36.604 | −73.719 | 8.568 | −7.322 |
TRU3 | 30.49 | −60.419 | 4.768 | −4.371 |
TRU4 | 42.695 | −62.039 | 6.922 | −5.044 |
Group | Implant Ant. (MPa) | Implant Post. (MPa) | Framework VM (MPa) |
---|---|---|---|
STH1 | 153.927 | 383.382 | 144.315 |
STH2 | 150.936 | 325.555 | 153.419 |
STH3 | 220.914 | 371.418 | 152.383 |
STH4 | 110.852 | 355.695 | 153.961 |
STU1 | 134.401 | 382.83 | 190.248 |
STU2 | 119.949 | 273.372 | 167.762 |
STU3 | 180.231 | 279.906 | 172.729 |
STU4 | 166.093 | 283.229 | 174.661 |
TRH1 | 137.687 | 324.55 | 135.095 |
TRH2 | 100.559 | 267.999 | 129.467 |
TRH3 | 201.9 | 303.208 | 127.433 |
TRH4 | 92.031 | 312.39 | 134.159 |
TRU1 | 203.678 | 330.45 | 176.16 |
TRU2 | 185.666 | 280.227 | 130.778 |
TRU3 | 144.127 | 237.93 | 130.022 |
TRU4 | 239.602 | 194.959 | 165.714 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atay, A.İ.; Gültekin, B.A.; Yalçın, S. Finite Element Analysis of Trabecular-Surfaced Implants and Implant Angulation in Different Mandibular Arch Forms. J. Funct. Biomater. 2025, 16, 333. https://doi.org/10.3390/jfb16090333
Atay Aİ, Gültekin BA, Yalçın S. Finite Element Analysis of Trabecular-Surfaced Implants and Implant Angulation in Different Mandibular Arch Forms. Journal of Functional Biomaterials. 2025; 16(9):333. https://doi.org/10.3390/jfb16090333
Chicago/Turabian StyleAtay, Ahmet İlter, Bahattin Alper Gültekin, and Serdar Yalçın. 2025. "Finite Element Analysis of Trabecular-Surfaced Implants and Implant Angulation in Different Mandibular Arch Forms" Journal of Functional Biomaterials 16, no. 9: 333. https://doi.org/10.3390/jfb16090333
APA StyleAtay, A. İ., Gültekin, B. A., & Yalçın, S. (2025). Finite Element Analysis of Trabecular-Surfaced Implants and Implant Angulation in Different Mandibular Arch Forms. Journal of Functional Biomaterials, 16(9), 333. https://doi.org/10.3390/jfb16090333