Antibiofilm Activity of a Novel Calcium Phosphate Cement Doped with Two Antibiotics
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cement Preparation
2.3. Mechanical Properties
2.4. Scanning Electron Microscopy
2.5. Porosity
2.6. Injectability
2.7. X-Ray Diffraction (XRD)
2.8. Setting Time and Cohesiveness
2.9. Cytocompatibility
2.10. Release Kinetics
2.11. Antibacterial Activity
2.12. Biofilm Formation Under Microfluidic Conditions
2.13. Statistical Analysis
3. Results
3.1. Performance Characteristics of the Cements
3.2. Structural Properties
3.3. Antibiotics Release and Cytocompatibility
3.4. Antibacterial Activity on Agar Plates
3.5. Antibacterial Activity in Liquid Cultures
3.6. Effect on Bacterial Adhesion
3.7. Biofilm Formation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lima, A.L.L.; Oliveira, P.R.; Carvalho, V.C.; Cimerman, S.; Savio, E. Recommendations for the treatment of osteomyelitis. Braz. J. Infect. Dis. 2014, 18, 526–534. [Google Scholar] [CrossRef]
- Fritz, J.M.; McDonald, J.R. Osteomyelitis: Approach to Diagnosis and Treatment. Physician Sportsmed. 2008, 36, nihpa116823. [Google Scholar] [CrossRef]
- Benito, N.; Franco, M.; Ribera, A.; Soriano, A.; Rodriguez-Pardo, D.; Sorlí, L.; Fresco, G.; Fernández-Sampedro, M.; del Toro, M.D.; Guío, L.; et al. Time trends in the aetiology of prosthetic joint infections: A multicentre cohort study. Clin. Microbiol. Infect. 2016, 22, 732.e1–732.e8. [Google Scholar] [CrossRef]
- Potapova, I. Functional Imaging in Diagnostic of Orthopedic Implant-Associated Infections. Diagnostics 2013, 3, 356–371. [Google Scholar] [CrossRef]
- Graziani, A.L.; Lawson, L.A.; Gibson, G.A.; Steinberg, M.A.; MacGregor, R.R. Vancomycin concentrations in infected and noninfected human bone. Antimicrob. Agents Chemother. 1988, 32, 1320–1322. [Google Scholar] [CrossRef] [PubMed]
- Thabit, A.K.; Fatani, D.F.; Bamakhrama, M.S.; Barnawi, O.A.; Basudan, L.O.; Alhejaili, S.F. Antibiotic penetration into bone and joints: An updated review. Int. J. Infect. Dis. 2019, 81, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Carek, P.J.; Dickerson, L.M.; Sack, J.L. Diagnosis and Management of Osteomyelitis. Am. Fam. Physician 2001, 63, 2413–2421. [Google Scholar]
- Lee, J.; Kang, C.-I.; Lee, J.H.; Joung, M.; Moon, S.; Wi, Y.M.; Chung, D.R.; Ha, C.-W.; Song, J.-H.; Peck, K.R. Risk factors for treatment failure in patients with prosthetic joint infections. J. Hosp. Infect. 2010, 75, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Xiao, L.; Fu, H.; Bi, D.; Ma, H.; Tong, P. Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair. J. Mater. Sci. Mater. Med. 2010, 21, 627–634. [Google Scholar] [CrossRef]
- Chiang, C.-C.; Hsieh, M.-K.; Wang, C.-Y.; Tuan, W.-H.; Lai, P.-L. Cytotoxicity and cell response of preosteoblast in calcium sulfate-augmented PMMA bone cement. Biomed. Mater. 2021, 16, 055014. [Google Scholar] [CrossRef]
- Almeida, T.; Ferreira, B.J.M.L.; Loureiro, J.; Correia, R.N.; Santos, C. Preliminary evaluation of the in vitro cytotoxicity of PMMA-co-EHA bone cement. Mater. Sci. Eng. C 2011, 31, 658–662. [Google Scholar] [CrossRef]
- Bose, S.; Tarafder, S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomater. 2011, 8, 1401. [Google Scholar] [CrossRef] [PubMed]
- Ginebra, M.P.; Traykova, T.; Planell, J.A. Calcium phosphate cements as bone drug delivery systems: A review. J. Control. Release 2006, 113, 102–110. [Google Scholar] [CrossRef]
- Loca, D.; Locs, J.; Gulbis, J.; Salma, I.; Berzina-Cimdina, L. Lidocaine Loaded Ca/P Scaffolds for Bone Regeneration and Local Drug Delivery. Adv. Mater. Res. 2011, 222, 289–292. [Google Scholar] [CrossRef]
- Joosten, U.; Joist, A.; Gosheger, G.; Liljenqvist, U.; Brandt, B.; von Eiff, C. Effectiveness of hydroxyapatite-vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Biomaterials 2005, 26, 5251–5258. [Google Scholar] [CrossRef] [PubMed]
- Ginebra, M.-P.; Canal, C.; Espanol, M.; Pastorino, D.; Montufar, E.B. Calcium phosphate cements as drug delivery materials. Adv. Drug Deliv. Rev. 2012, 64, 1090–1110. [Google Scholar] [CrossRef]
- Urabe, K.; Naruse, K.; Hattori, H.; Hirano, M.; Uchida, K.; Onuma, K.; Park, H.J.; Itoman, M. In vitro comparison of elution characteristics of vancomycin from calcium phosphate cement and polymethylmethacrylate. J. Orthop. Sci. 2009, 14, 784–793. [Google Scholar] [CrossRef]
- Chen, G.; Liu, B.; Liu, H.; Zhang, H.; Yang, K.; Wang, Q.; Ding, J.; Chang, F. Calcium Phosphate Cement loaded with 10% vancomycin delivering high early and late local antibiotic concentration in vitro. Orthop. Traumatol. Surg. Res. 2018, 104, 1271–1275. [Google Scholar] [CrossRef]
- Lang, Z.-G.; Zhang, X.; Guo, Q.; Liang, Y.-X.; Yuan, F. Clinical observations of vancomycin-loaded calcium phosphate cement in the 1-stage treatment of chronic osteomyelitis: A randomized trial. Ann. Palliat. Med. 2021, 10, 6706–6714. [Google Scholar] [CrossRef]
- Su, W.-Y.; Chen, Y.-C.; Lin, F.-H. A New Type of Biphasic Calcium Phosphate Cement as a Gentamicin Carrier for Osteomyelitis. Evid.-Based Complement. Altern. Med. 2013, 2013, 801374. [Google Scholar] [CrossRef]
- Sasaki, T.; Ishibashi, Y.; Katano, H.; Nagumo, A.; Toh, S. In vitro elution of vancomycin from calcium phosphate cement. J. Arthroplast. 2005, 20, 1055–1059. [Google Scholar] [CrossRef] [PubMed]
- Vorndran, E.; Geffers, M.; Ewald, A.; Lemm, M.; Nies, B.; Gbureck, U. Ready-to-use injectable calcium phosphate bone cement paste as drug carrier. Acta Biomater. 2013, 9, 9558–9567. [Google Scholar] [CrossRef]
- Doadrio, J.C.; Arcos, D.; Cabañas, M.V.; Vallet-Regı, M. Calcium sulphate-based cements containing cephalexin. Biomaterials 2004, 25, 2629–2635. [Google Scholar] [CrossRef]
- Pelletier, M.H.; Malisano, L.; Smitham, P.J.; Okamoto, K.; Walsh, W.R. The Compressive Properties of Bone Cements Containing Large Doses of Antibiotics. J. Arthroplast. 2009, 24, 454–460. [Google Scholar] [CrossRef] [PubMed]
- De Mori, A.; Di Gregorio, E.; Kao, A.P.; Tozzi, G.; Barbu, E.; Sanghani-Kerai, A.; Draheim, R.R.; Roldo, M. Antibacterial PMMA Composite Cements with Tunable Thermal and Mechanical Properties. ACS Omega 2019, 4, 19664–19675. [Google Scholar] [CrossRef]
- Neut, D.; Van De Belt, H.; Van Horn, J.R.; Van Der Mei, H.C.; Busscher, H.J. Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation. Biomaterials 2003, 24, 1829–1831. [Google Scholar] [CrossRef] [PubMed]
- García-García, J.; Azuara, G.; Fraile-Martinez, O.; García-Montero, C.; Álvarez-Mon, M.A.; Ruíz-Díez, S.; Álvarez-Mon, M.; Buján, J.; García-Honduvilla, N.; Ortega, M.A.; et al. Modification of the Polymer of a Bone Cement with Biodegradable Microspheres of PLGA and Loading with Daptomycin and Vancomycin Improve the Response to Bone Tissue Infection. Polymers 2022, 14, 888. [Google Scholar] [CrossRef]
- Wahl, P.; Guidi, M.; Benninger, E.; Rönn, K.; Gautier, E.; Buclin, T.; Magnin, J.-L.; Livio, F. The levels of vancomycin in the blood and the wound after the local treatment of bone and soft-tissue infection with antibiotic-loaded calcium sulphate as carrier material. Bone Jt. J. 2017, 99, 1537–1544. [Google Scholar] [CrossRef]
- Karr, J.C.; Lauretta, J.; Keriazes, G. In Vitro Antimicrobial Activity of Calcium Sulfate and Hydroxyapatite (Cerament Bone Void Filler) Discs Using Heat-Sensitive and Non–Heat-sensitive Antibiotics Against Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa. J. Am. Podiatr. Med. Assoc. 2011, 101, 146–152. [Google Scholar] [CrossRef]
- Jiang, N.; Dusane, D.H.; Brooks, J.R.; Delury, C.P.; Aiken, S.S.; Laycock, P.A.; Stoodley, P. Antibiotic loaded β-tricalcium phosphate/calcium sulfate for antimicrobial potency, prevention and killing efficacy of Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Sci. Rep. 2021, 11, 1446. [Google Scholar] [CrossRef]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef]
- Etebu, E.; Arikekpar, I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int. J. Appl. Microbiol. Biotechnol. Res. 2016, 4, 90–101. [Google Scholar]
- Yoshizawa, S.; Fourmy, D.; Puglisi, J.D. Structural origins of gentamicin antibiotic action. EMBO J. 1998, 17, 6437–6448. [Google Scholar] [CrossRef] [PubMed]
- Snydman, D.R.; Jacobus, N.V.; McDermott, L.A.; Lonks, J.R.; Boyce, J.M. Comparative In Vitro Activities of Daptomycin and Vancomycin against Resistant Gram-Positive Pathogens. Antimicrob. Agents Chemother. 2000, 44, 3447–3450. [Google Scholar] [CrossRef] [PubMed]
- Watanakunakorn, C. Mode of action and in-vitro activity of vancomycin. J. Antimicrob. Chemother. 1984, 14, 7–18. [Google Scholar] [CrossRef]
- Hammes, W.P.; Neuhaus, F.C. On the Mechanism of Action of Vancomycin: Inhibition of Peptidoglycan Synthesis in Gaffkya homari. Antimicrob. Agents Chemother. 1974, 6, 722–728. [Google Scholar] [CrossRef]
- Deresinski, S. Vancomycin in Combination with Other Antibiotics for the Treatment of Serious Methicillin-Resistant Staphylococcus aureus Infections. Clin. Infect. Dis. 2009, 49, 1072–1079. [Google Scholar] [CrossRef]
- Summary of Preclinical Data for Calcium Phosphate Products: Graftys® HBS and Graftys® QuickSet. Available online: http://www.mititalia.it/wp-content/uploads/2017/01/Summary-of-Preclinical-data-Graftys-HBS-and-Quickset.pdf (accessed on 10 August 2025).
- Graftys|Our Products|Quickset & HBS; Graftys. Available online: https://graftys.com/our-products/ (accessed on 19 December 2024).
- Petrelli, D.; Zampaloni, C.; D’Ercole, S.; Prenna, M.; Ballarini, P.; Ripa, S.; Vitali, L.A. Analysis of different genetic traits and their association with biofilm formation in Staphylococcus epidermidis isolates from central venous catheter infections. Eur. J. Clin. Microbiol. Infect. Dis. 2006, 25, 773–781. [Google Scholar] [CrossRef]
- Morgenstern, M.; Post, V.; Erichsen, C.; Hungerer, S.; Bühren, V.; Militz, M.; Richards, R.G.; Moriarty, T.F. Biofilm formation increases treatment failure in Staphylococcus epidermidis device-related osteomyelitis of the lower extremity in human patients. J. Orthop. Res. 2016, 34, 1905–1913. [Google Scholar] [CrossRef]
- Standard Test Method for Time of Setting of Hydraulic-Cement Paste by Gillmore Needles. Available online: https://store.astm.org/c0266-21.html (accessed on 10 August 2025).
- Stravinskas, M.; Horstmann, P.; Ferguson, J.; Hettwer, W.; Nilsson, M.; Tarasevicius, S.; Petersen, M.M.; McNally, M.A.; Lidgren, L. Pharmacokinetics of gentamicin eluted from a regenerating bone graft substitute: In vitro and clinical release studies. Bone Jt. Res. 2016, 5, 427–435. [Google Scholar] [CrossRef]
- Frutos, P.; Torrado, S.; Perez-Lorenzo, M.E.; Frutos, G. A validated quantitative colorimetric assay for gentamicin. J. Pharm. Biomed. Anal. 2000, 21, 1149–1159. [Google Scholar] [CrossRef]
- Ciments Avec ou Sans Antibiotiques Pour la Fixation des Implants Articulaires, Haute Autorité de Santé. Available online: https://www.has-sante.fr/jcms/c_2607290/fr/ciments-avec-ou-sans-antibiotiques-pour-la-fixation-des-implants-articulaires (accessed on 22 January 2025).
- Kavarthapu, V.; Giddie, J.; Kommalapati, V.; Casey, J.; Bates, M.; Vas, P. Evaluation of Adjuvant Antibiotic Loaded Injectable Bio-Composite Material in Diabetic Foot Osteomyelitis and Charcot Foot Reconstruction. J. Clin. Med. 2023, 12, 3239. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, J.; Porter, R.; Boulton, Z.; Brown, L.; Knight, B.; Romanczuk, L.; Aiken, S.; Delury, C.; Michell, S. In vitro efficacy of antibiotic loaded calcium sulfate beads (Stimulan Rapid Cure) against polymicrobial communities and individual bacterial strains derived from diabetic foot infections. J. Med. Microbiol. 2022, 71, 001517. [Google Scholar] [CrossRef]
- Liu, S.-M.; Chen, W.-C.; Ko, C.-L.; Chang, H.-T.; Chen, Y.-S.; Haung, S.-M.; Chang, K.-C.; Chen, J.-C. In Vitro Evaluation of Calcium Phosphate Bone Cement Composite Hydrogel Beads of Cross-Linked Gelatin-Alginate with Gentamicin-Impregnated Porous Scaffold. Pharmaceuticals 2021, 14, 1000. [Google Scholar] [CrossRef]
- Chen, C.-H.D.; Chen, C.-C.; Shie, M.-Y.; Huang, C.-H.; Ding, S.-J. Controlled release of gentamicin from calcium phosphate/alginate bone cement. Mater. Sci. Eng. C 2011, 31, 334–341. [Google Scholar] [CrossRef]
- He, Z.; Zhai, Q.; Hu, M.; Cao, C.; Wang, J.; Yang, H.; Li, B. Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: Current status and future developments. J. Orthop. Transl. 2015, 3, 1–11. [Google Scholar] [CrossRef]
- Ratier, A.; Freche, M.; Lacout, J.L.; Rodriguez, F. Behaviour of an injectable calcium phosphate cement with added tetracycline. Int. J. Pharm. 2004, 274, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Ratier, A.; Gibson, I.R.; Best, S.M.; Freche, M.; Lacout, J.L.; Rodriguez, F. Setting characteristics and mechanical behaviour of a calcium phosphate bone cement containing tetracycline. Biomaterials 2001, 22, 897–901. [Google Scholar] [CrossRef]
- Bohner, M.; Lemaître, J.; Landuyt, P.V.; Zambelli, P.-Y.; Merkle, H.P.; Gander, B. Gentamicin-Loaded Hydraulic Calcium Phosphate Bone Cement as Antibiotic Delivery System. J. Pharm. Sci. 1997, 86, 565–572. [Google Scholar] [CrossRef]
- Canal, C.; Pastorino, D.; Mestres, G.; Schuler, P.; Ginebra, M.-P. Relevance of microstructure for the early antibiotic release of fresh and pre-set calcium phosphate cements. Acta Biomater. 2013, 9, 8403–8412. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.-A.; Lee, G.-S.; Park, J.-H.; Kim, H.-W. Osteoclastic cell behaviors affected by the α-tricalcium phosphate based bone cements. J. Mater. Sci. Mater. Med. 2010, 21, 3019–3027. [Google Scholar] [CrossRef]
- Standard Specification for Acrylic Bone Cement. Available online: https://store.astm.org/f0451-21.html (accessed on 29 July 2025).
- PR-0936-02-en-EU-2020-10-CERAMENT-V-Product-Fact-Sheet.pdf. Available online: https://www.stoecklimedical.ch/wp-content/uploads/2022/11/936.-PR-0936-02-en-EU-2020-10-CERAMENT-V-Product-Fact-Sheet.pdf (accessed on 20 January 2025).
- CERAMENT-G-3.0-Product-fact-sheet-PR-01327-01-en-AU-EU-ROW-2023-02-Final.pdf. Available online: https://www.bonesupport.com/wp-content/uploads/2023/05/PR-01341-01-en-EU-ROW-CERAMENT-G-2.0-Product-Fact-Sheet-English-1.pdf (accessed on 10 August 2025).
- Fosca, M.; Rau, J.V.; Uskoković, V. Factors influencing the drug release from calcium phosphate cements. Bioact. Mater. 2022, 7, 341–363. [Google Scholar] [CrossRef]
- ISO 10993-5:2009(fr); Évaluation Biologique des Dispositifs Médicaux—Partie 5: Essais Concernant la Cytotoxicité In Vitro. Available online: https://www.iso.org/obp/ui/#iso:std:iso:10993:-5:ed-3:v1:fr (accessed on 7 January 2025).
- Huang, S.-M.; Chen, W.-C.; Wu, C.-C.; Liu, S.-M.; Ko, C.-L.; Chen, J.-C.; Shih, C.-J. Synergistic effect of drug/antibiotic-impregnated micro/nanohybrid mesoporous bioactive glass/calcium phosphate composite bone cement on antibacterial and osteoconductive activities. Biomater. Adv. 2023, 152, 213524. [Google Scholar] [CrossRef]
- Huang, J.-G.; Pang, L.; Chen, Z.-R.; Tan, X.-P. Dual-delivery of vancomycin and icariin from an injectable calcium phosphate cement-release system for controlling infection and improving bone healing. Mol. Med. Rep. 2013, 8, 1221–1227. [Google Scholar] [CrossRef]
- Hu, M.-H.; Chu, P.-Y.; Huang, S.-M.; Shih, B.-S.; Ko, C.-L.; Hu, J.-J.; Chen, W.-C. Injectability, Processability, Drug Loading, and Antibacterial Activity of Gentamicin-Impregnated Mesoporous Bioactive Glass Composite Calcium Phosphate Bone Cement In Vitro. Biomimetics 2022, 7, 121. [Google Scholar] [CrossRef] [PubMed]
- Schilcher, K.; Horswill, A.R. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol. Mol. Biol. Rev. 2020, 84, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Cara, A.; Ferry, T.; Laurent, F.; Josse, J. Prophylactic Antibiofilm Activity of Antibiotic-Loaded Bone Cements against Gram-Negative Bacteria. Antibiotics 2022, 11, 137. [Google Scholar] [CrossRef] [PubMed]
Strains | IC50 G (µg/mL) | IC50 V (µg/mL) | IC50 G + V (µg/mL) |
---|---|---|---|
SA | 2.6 | 96.2 | 2.0 |
MRSA | 0.4 | 1.4 | 0.1 |
SE | 0.4 | 0.2 | 0.2 |
MRSE | 8.3 | 5.4 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elezgaray, E.; Pouget, C.; Salmeron, F.; Flacard, C.; Lavigne, J.-P.; Cavaillès, V.; Bechelany, M. Antibiofilm Activity of a Novel Calcium Phosphate Cement Doped with Two Antibiotics. J. Funct. Biomater. 2025, 16, 320. https://doi.org/10.3390/jfb16090320
Elezgaray E, Pouget C, Salmeron F, Flacard C, Lavigne J-P, Cavaillès V, Bechelany M. Antibiofilm Activity of a Novel Calcium Phosphate Cement Doped with Two Antibiotics. Journal of Functional Biomaterials. 2025; 16(9):320. https://doi.org/10.3390/jfb16090320
Chicago/Turabian StyleElezgaray, Eneko, Cassandra Pouget, Fanny Salmeron, Catherine Flacard, Jean-Philippe Lavigne, Vincent Cavaillès, and Mikhael Bechelany. 2025. "Antibiofilm Activity of a Novel Calcium Phosphate Cement Doped with Two Antibiotics" Journal of Functional Biomaterials 16, no. 9: 320. https://doi.org/10.3390/jfb16090320
APA StyleElezgaray, E., Pouget, C., Salmeron, F., Flacard, C., Lavigne, J.-P., Cavaillès, V., & Bechelany, M. (2025). Antibiofilm Activity of a Novel Calcium Phosphate Cement Doped with Two Antibiotics. Journal of Functional Biomaterials, 16(9), 320. https://doi.org/10.3390/jfb16090320