Metformin-Enhanced Secretome from Periodontal Ligament Stem Cells Promotes Functional Recovery in an Inflamed Periodontal Model: In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Periodontal Ligament Stem Cell Culture
2.2. Preparation of CM
2.3. Protein Digestion
2.4. Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS) Analysis
2.5. Proteome Data Analysis
2.6. Validation of DEPs by ELISA
2.7. Alkaline Phosphatase Activity
2.8. Intracellular Calcium Quantification Assay
2.9. RNA Extraction and Real-Time Reverse Transcription (qRT)-PCR
2.10. Library Preparation and Sequencing
2.11. Genome Data Analysis
2.12. Statistical Analysis
3. Results
3.1. Comparison of Differentially Expressed Proteins (DEPs) in PDLSC-CM Versus Met-CM
3.2. Effect of Met-CM on the Differentiation Capability of PDLSCs in LPS-Induced Inflammatory Conditions
3.3. Identification of DEGs and Gene Ontology (GO) Enrichment
3.4. KEGG Enrichment Pathway Analysis
3.5. Identification of PPI Networks
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhai, Q.; Dong, Z.; Wang, W.; Li, B.; Jin, Y. Dental stem cell and dental tissue regeneration. Front. Med. 2019, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Nagata, M.; Iwasaki, K.; Akazawa, K.; Komaki, M.; Yokoyama, N.; Izumi, Y.; Morita, I. Conditioned Medium from Periodontal Ligament Stem Cells Enhances Periodontal Regeneration. Tissue Eng. Part. A 2017, 23, 367. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Wang, X.; Zhou, H.; Zhang, C.; Wang, Y.; Huang, J.; Liu, M.; Yang, P.; Song, A. Enhancement of periodontal tissue regeneration by conditioned media from gingiva-derived or periodontal ligament-derived mesenchymal stem cells: A comparative study in rats. Stem Cell Res. Ther. 2020, 11, 42. [Google Scholar] [CrossRef]
- Kumar, P.; Kandoi, S.; Misra, R.; Vijayalakshmi, S.; Rajagopal, K.; Verma, R.S. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 2019, 46, 1. [Google Scholar]
- Gugliandolo, A.; Diomede, F.; Pizzicannella, J.; Chiricosta, L.; Trubiani, O.; Mazzon, E. Potential Anti-Inflammatory Effects of a New Lyophilized Formulation of the Conditioned Medium Derived from Periodontal Ligament Stem Cells. Biomedicines 2022, 10, 683. [Google Scholar] [CrossRef]
- Novello, S.; Tricot-Doleux, S.; Novella, A.; Pellen-Mussi, P.; Jeanne, S. Influence of Periodontal Ligament Stem Cell-Derived Conditioned Medium on Osteoblasts. Pharmaceutics 2022, 14, 729. [Google Scholar] [CrossRef]
- Rajan, T.S.; Giacoppo, S.; Trubiani, O.; Diomede, F.; Piattelli, A.; Bramanti, P.; Mazzon, E. Conditioned medium of periodontal ligament mesenchymal stem cells exert anti-inflammatory effects in lipopolysaccharide-activated mouse motoneurons. Exp. Cell Res. 2016, 349, 152. [Google Scholar] [CrossRef]
- Rosochowicz, M.A.; Lach, M.S.; Richter, M.; Suchorska, W.M.; Trzeciak, T. Conditioned Medium—Is it an Undervalued Lab Waste with the Potential for Osteoarthritis Management? Stem Cell Rev. Rep. 2023, 19, 1185. [Google Scholar] [CrossRef]
- Basu, S.; Choudhury, I.N.; Lee, J.Y.P.; Chacko, A.; Ekberg, J.A.K.; St John, J.A. Macrophages Treated with VEGF and PDGF Exert Paracrine Effects on Olfactory Ensheathing Cell Function. Cells 2022, 11, 2408. [Google Scholar] [CrossRef]
- Sun, M.; Liu, H.; Xu, H.; Wang, H.; Wang, X. CNTF-Treated Astrocyte Conditioned Medium Enhances Large-Conductance Calcium-Activated Potassium Channel Activity in Rat Cortical Neurons. Neurochem. Res. 2016, 41, 1982. [Google Scholar] [CrossRef]
- Ozkan, S.; Isildar, B.; Ercin, M.; Gezginci-Oktayoglu, S.; Konukoglu, D.; Neşetoğlu, N.; Oncul, M.; Koyuturk, M. Therapeutic potential of conditioned medium obtained from deferoxamine preconditioned umbilical cord mesenchymal stem cells on diabetic nephropathy model. Stem Cell Res. Ther. 2022, 13, 438. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, X.; Zhou, M.; Kuang, Y.; Xiang, M.; Li, J.; Song, J. Effect of metformin on human periodontal ligament stem cells cultured with polydopamine-templated hydroxyapatite. Eur. J. Oral Sci. 2019, 127, 210. [Google Scholar] [CrossRef]
- Yang, K.; Cao, F.; Qiu, S.; Jiang, W.; Tao, L.; Zhu, Y. Metformin Promotes Differentiation and Attenuates H2O2-Induced Oxidative Damage of Osteoblasts via the PI3K/AKT/Nrf2/HO-1 Pathway. Front. Pharmacol. 2022, 13, 829830. [Google Scholar] [CrossRef]
- Smieszek, A.; Tomaszewski, K.A.; Kornicka, K.; Marycz, K. Metformin Promotes Osteogenic Differentiation of Adipose-Derived Stromal Cells and Exerts Pro-Osteogenic Effect Stimulating Bone Regeneration. J. Clin. Med. 2018, 7, 482. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liang, Q.; Kang, W.; Ge, S. Metformin facilitates the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells in vitro. Cell Biol. Int. 2020, 44, 70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Liu, F.; Li, Z.B.; He, X.T.; Li, X.; Wu, R.X.; Sun, H.H.; Ge, S.H.; Chen, F.M.; An, Y. Metformin combats high glucose-induced damage to the osteogenic differentiation of human periodontal ligament stem cells via inhibition of the NPR3-mediated MAPK pathway. Stem Cell Res. Ther. 2022, 13, 305. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, T.T.; Dundar, S.; Bozoglan, A.; Karaman, T.; Kahraman, O.E.; Ozcan, E.C. The effects of metformin on the bone filling ration around of TiAl6Va4 implants in non diabetic rats. J. Oral Biol. Craniofac. Res. 2020, 10, 474. [Google Scholar] [CrossRef]
- Lin, J.; Xu, R.; Shen, X.; Jiang, H.; Du, S. Metformin promotes the osseointegration of titanium implants under osteoporotic conditions by regulating BMSCs autophagy, and osteogenic differentiation. Biochem. Biophys. Res. Commun. 2020, 531, 228. [Google Scholar] [CrossRef]
- Araújo, A.A.; Pereira, A.S.B.F.; Medeiros, C.A.C.X.; Brito, G.A.C.; Leitão, R.F.C.; Araújo, L.S.; Guedes, P.M.M.; Hiyari, S.; Pirih, F.Q.; Araújo Júnior, R.F. Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis. PLoS ONE 2017, 12, e0183506. [Google Scholar] [CrossRef]
- Pereira, A.S.B.F.; Brito, G.A.C.; Lima, M.L.S.; Silva Júnior, A.A.D.; Silva, E.D.S.; de Rezende, A.A.; Bortolin, R.H.; Galvan, M.; Pirih, F.Q.; Araújo Júnior, R.F.; et al. Metformin Hydrochloride-Loaded PLGA Nanoparticle in Periodontal Disease Experimental Model Using Diabetic Rats. Int. J. Mol. Sci. 2018, 19, 3488. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, P.; Wang, Q.; Ji, N.; Xia, S.; Ding, Y.; Wang, Q. Metformin ameliorates experimental diabetic periodontitis independently of mammalian target of rapamycin (mTOR) inhibition by reducing NIMA-related kinase 7 (Nek7) expression. J. Periodontol. 2019, 90, 1032. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, A.R.; Patnaik, K.; Nagpal, K.; Karvekar, S.; Ramamurthy, B.L.; Naik, S.B. Efficacy of locally-delivered 1% metformin gel in the treatment of intrabony defects in patients with chronic periodontitis: A randomized, controlled clinical trial. J. Investig. Clin. Dent. 2016, 7, 239. [Google Scholar] [CrossRef]
- Shim, N.Y.; Ryu, J.I.; Heo, J.S. Osteoinductive function of fucoidan on periodontal ligament stem cells: Role of PI3K/Akt and Wnt/β-catenin signaling pathways. Oral Dis. 2022, 28, 1628–1639. [Google Scholar] [CrossRef] [PubMed]
- Nam, O.; Park, J.M.; Lee, H.; Jin, E. De novo transcriptome profile of coccolithophorid alga Emiliania huxleyi CCMP371 at different calcium concentrations with proteome analysis. PLoS ONE 2019, 14, e0221938. [Google Scholar] [CrossRef] [PubMed]
- Suh, H.N.; Ji, J.Y.; Heo, J.S. Translating proteome and transcriptome dynamics of periodontal ligament stem cell-derived secretome/conditioned medium in an in vitro model of periodontitis. BMC Oral Health 2024, 24, 390. [Google Scholar] [CrossRef]
- Kwack, K.H.; Ji, J.Y.; Park, B.; Heo, J.S. Fucoidan (Undaria pinnatifida)/Polydopamine Composite-Modified Surface Promotes Osteogenic Potential of Periodontal Ligament Stem Cells. Mar. Drugs 2022, 20, 181. [Google Scholar] [CrossRef]
- Li, K.; Zhang, S.; Gu, Y.; Wang, J.; Yang, Y.; Mao, W. Transcriptomic data of BT549 triple negative breast cancer cells treated with 20 M NU7441, a DNA-dependent kinase inhibitor. Data Brief 2024, 53, 110183. [Google Scholar] [CrossRef]
- Križanovic, K.; Echchiki, A.; Roux, J.; Šikic, M. Evaluation of tools for long read RNA-seq splice-aware alignment. Bioinformatics 2018, 34, 748. [Google Scholar] [CrossRef]
- Shinjo, K.; Umehara, T.; Niwa, H.; Sato, S.; Katsushima, K.; Sato, S.; Wang, X.; Murofushi, Y.; Suzuki, M.M.; Koyama, H.; et al. Novel pharmacologic inhibition of lysine-specific demethylase 1 as a potential therapeutic for glioblastoma. Cancer Gene Ther. 2024, 31, 1884. [Google Scholar] [CrossRef]
- Kiang, A.L.; Loo, S.S.; Mat-Isa, M.N.; Ng, C.L.; Blake, D.P.; Wan, K.L. Insights into genomic sequence diversity of the SAG surface antigen superfamily in geographically diverse Eimeria tenella isolates. Sci. Rep. 2024, 14, 26251. [Google Scholar] [CrossRef]
- Hejblum, B.P.; Ba, K.; Thiébaut, R.; Agniel, D. Neglecting the impact of normalization in semi-synthetic RNA-seq data simulations generates artificial false positives. Genome Biol. 2024, 25, 281. [Google Scholar] [CrossRef]
- Yang, Z.L.; Chen, J.N.; Lu, Y.Y.; Lu, M.; Wan, Q.L.; Wu, G.S.; Luo, H.R. Inositol polyphosphate multikinase IPMK-1 regulates development through IP3/calcium signaling in Caenorhabditis elegans. Cell Calcium. 2021, 93, 102327. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, Y.; Li, J.; Chen, Y.Y.; Liu, Q.; Tan, L.; Gao, Z.R.; Zhang, S.H.; Zhou, Y.H.; Feng, Y.Z. Endoplasmic reticulum stress remodels alveolar bone formation after tooth extraction. J. Cell Mol. Med. 2020, 24, 12411. [Google Scholar] [CrossRef] [PubMed]
- Tsunoyama, T.A.; Watanabe, Y.; Goto, J.; Naito, K.; Kasai, R.S.; Suzuki, K.G.N.; Fujiwara, T.K.; Kusumi, A. Super-long single-molecule tracking reveals dynamic-anchorage-induced integrin function. Nat. Chem. Biol. 2018, 14, 497. [Google Scholar] [CrossRef] [PubMed]
- Chukkapalli, S.S.; Lele, T.P. Periodontal cell mechanotransduction. Open Biol. 2018, 8, 180053. [Google Scholar] [CrossRef]
- Kechagia, J.Z.; Ivaska, J.; Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 2019, 20, 457. [Google Scholar] [CrossRef]
- Case, L.B.; Waterman, C.M. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat. Cell Biol. 2015, 17, 955. [Google Scholar] [CrossRef]
- Ugawa, Y.; Yamamoto, T.; Kawamura, M.; Yamashiro, K.; Shimoe, M.; Tomikawa, K.; Hongo, S.; Maeda, H.; Takashiba, S. Rho-kinase regulates extracellular matrix-mediated osteogenic differentiation of periodontal ligament cells. Cell Biol. Int. 2017, 41, 651. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Tian, Y.; Yang, Y.; Chen, G.; Guo, W.; Tian, W. Cytoskeletal binding proteins distinguish cultured dental follicle cells and periodontal ligament cells. Exp. Cell Res. 2016, 345, 6. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Leibiger, B.; Yang, S.N.; Shears, S.B.; Leibiger, I.B.; Berggren, P.O.; Barker, C.J. Multiple Inositol Polyphosphate Phosphatase Compartmentalization Separates Inositol Phosphate Metabolism from Inositol Lipid Signaling. Biomolecules 2023, 13, 885. [Google Scholar] [CrossRef]
- Blind, R.D. Structural analyses of inositol phosphate second messengers bound to signaling effector proteins. Adv. Biol. Regul. 2020, 75, 100667. [Google Scholar] [CrossRef] [PubMed]
- Tu-Sekine, B.; Kim, S.F. The Inositol Phosphate System-A Coordinator of Metabolic Adaptability. Int. J. Mol. Sci. 2022, 23, 6747. [Google Scholar] [CrossRef]
- Shen, X.; Fan, B.; Hu, X.; Luo, L.; Yan, Y.; Yang, L. Metformin Reduces Lipotoxicity-Induced Meta-Inflammation in beta-Cells through the Activation of GPR40-PLC-IP3 Pathway. J. Diabetes Res. 2019, 2019, 7602427. [Google Scholar] [CrossRef] [PubMed]
- Jankeviciute, S.; Svirskiene, N.; Svirskis, G.; Borutaite, V. Effects of Metformin on Spontaneous Ca2+ Signals in Cultured Microglia Cells under Normoxic and Hypoxic Conditions. Int. J. Mol. Sci. 2021, 22, 9493. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Di, X.; Li, J.; Kang, Y.; Xie, W.; Sun, L.; Zhang, J. Extracellular Calcium-Induced Calcium Transient Regulating the Proliferation of Osteoblasts through Glycolysis Metabolism Pathways. Int. J. Mol. Sci. 2023, 24, 4991. [Google Scholar] [CrossRef]
- Luo, B.; Luo, Y.; He, L.; Cao, Y.; Jiang, Q. Residual periodontal ligament in the extraction socket promotes the dentin regeneration potential of DPSCs in the rabbit jaw. Stem Cell Res. Ther. 2023, 14, 47. [Google Scholar] [CrossRef]
- Yu, Q.; Xiong, Y.; Gao, H.; Liu, J.; Chen, Z.; Wang, Q.; Wen, D. Comparative proteomics analysis of Spodoptera frugiperda cells during Autographa californica multiple nucleopolyhedrovirus infection. Virol. J. 2015, 12, 115. [Google Scholar] [CrossRef]
- Yang, S.Y.; Wei, F.L.; Hu, L.H.; Wang, C.L. PERK-eIF2α-ATF4 pathway mediated by endoplasmic reticulum stress response is involved in osteodifferentiation of human periodontal ligament cells under cyclic mechanical force. Cell Signal 2016, 28, 880. [Google Scholar] [CrossRef]
- Urra, H.; Dufey, E.; Avril, T.; Chevet, E.; Hetz, C. Endoplasmic reticulum stress and the hallmarks of cancer, trends. Cancer 2016, 2, 252. [Google Scholar]
- Lebeaupin, C.; Vallee, D.; Hazari, Y.; Hetz, C.; Chevet, E.; Bailly-Maitre, B. Endoplasmic reticulum stress signalling and the pathogenesis of nonalcoholic fatty liver disease. J. Hepatol. 2018, 69, 927. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Wang, H.; Huang, C.; Huang, Y.; Li, J. Endoplasmic reticulum stress is the crossroads of autophagy, inflammation, and apoptosis signaling pathways and participates in liver fibrosis. Inflamm. Res. 2015, 64, 1. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki-Anzai, S.; Masuda, M.; Demos-Davies, K.M.; Keenan, A.L.; Saunders, S.J.; Masuda, R.; Jablonski, K.; Cavasin, M.A.; Kendrick, J.; Chonchol, M.; et al. Endoplasmic reticulum stress effector CCAAT/enhancer-binding protein homologous protein (CHOP) regulates chronic kidney disease-induced vascular calcification. J. Am. Heart Assoc. 2014, 3, e000949. [Google Scholar] [CrossRef] [PubMed]
- Sozen, E.; Karademir, B.; Ozer, N.K. Basic mechanisms in endoplasmic reticulum stress and relation to cardiovascular diseases. Free Radic. Biol. Med. 2015, 78, 30. [Google Scholar] [CrossRef] [PubMed]
- Ba, P.; Duan, X.; Fu, G.; Lv, S.; Yang, P.; Sun, Q. Differential effects of p38 and Erk1/2 on the chondrogenic and osteogenic differentiation of dental pulp stem cells. Mol. Med. Rep. 2017, 16, 63. [Google Scholar] [CrossRef]
- Wei, K.; Xie, Y.; Chen, T.; Fu, B.; Cui, S.; Wang, Y.; Cai, G.; Chen, X. ERK1/2 signaling mediated naringin-induced osteogenic differentiation of immortalized human periodontal ligament stem cells. Biochem. Biophys. Res. Commun. 2017, 489, 319. [Google Scholar] [CrossRef]
- Ye, J.; Ai, W.; Zhang, F.; Zhu, X.; Shu, G.; Wang, L.; Gao, P.; Xi, Q.; Zhang, Y.; Jiang, Q.; et al. Enhanced Proliferation of Porcine Bone Marrow Mesenchymal Stem Cells Induced by Extracellular Calcium is Associated with the Activation of the Calcium-Sensing Receptor and ERK Signaling Pathway. Stem Cells Int. 2016, 2016, 6570671. [Google Scholar] [CrossRef]
- Zhong, Y.T.; Liao, H.B.; Ye, Z.Q.; Jiang, H.S.; Li, J.X.; Ke, L.M.; Hua, J.Y.; Wei, B.; Wu, X.; Cui, L. Eurycomanone stimulates bone mineralization in zebrafish larvae and promotes osteogenic differentiation of mesenchymal stem cells by upregulating AKT/GSK-3beta/beta-catenin signaling. J. Orthop. Transl. 2023, 40, 132. [Google Scholar]
- Yang, J.; Zhang, L.; Ding, Q.; Zhang, S.; Sun, S.; Liu, W.; Liu, J.; Han, X.; Ding, C. Flavonoid-Loaded Biomaterials in Bone Defect Repair. Molecules 2023, 28, 6888. [Google Scholar] [CrossRef]
- Hu, L.; Chen, W.; Qian, A.; Li, Y.P. Wnt/beta-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res. 2024, 12, 39. [Google Scholar] [CrossRef]
- Steinhart, Z.; Angers, S. Wnt signaling in development and tissue homeostasis. Development 2018, 145, dev146589. [Google Scholar] [CrossRef]
ID | Term | Count Gene | p Value | |
---|---|---|---|---|
Control vs. Met-CM | ||||
hsa05225 | Hepatocellular carcinoma | 12 | 7.82 × 10−4 | |
hsa05142 | Chagas disease | 9 | 0.001 | |
hsa05200 | Pathways in cancer | 22 | 0.004 | |
hsa05226 | Gastric cancer | 10 | 0.004 | |
hsa00562 | Inositol phosphate metabolism | 7 | 0.004 | |
hsa00600 | Sphingolipid metabolism | 6 | 0.005 | |
hsa05216 | Thyroid cancer | 5 | 0.007 | |
hsa05217 | Basal cell carcinoma | 6 | 0.010 | |
hsa05221 | Acute myeloid leukemia | 6 | 0.013 | |
hsa05417 | Lipid and atherosclerosis | 11 | 0.015 | |
LPS vs. LPS + Met-CM | ||||
hsa04932 | Non-alcoholic fatty liver disease | 61 | 2.45 × 10−10 | |
hsa04141 | Protein processing in endoplasmic reticulum | 65 | 3.25 × 10−10 | |
hsa05012 | Parkinson disease | 88 | 7.75 × 10−10 | |
hsa05014 | Amyotrophic lateral sclerosis | 111 | 8.69 × 10−10 | |
hsa04144 | Endocytosis | 83 | 2.57 × 10−9 | |
hsa05208 | Chemical carcinogenesis—reactive oxygen species | 76 | 2.96 × 10−9 | |
hsa05020 | Prion disease | 88 | 3.29 × 10−9 | |
hsa05016 | Huntington disease | 95 | 6.23 × 10−9 | |
hsa05022 | Pathways of neurodegeneration—multiple diseases | 132 | 1.58 × 10−8 | |
hsa05210 | Colorectal cancer | 38 | 2.67 × 10−8 |
Gene Name | Protein Description | No. of Interacting Proteins |
---|---|---|
Control vs. Met-CM | ||
MAPK3 | mitogen-activated protein kinase 3 | 23 |
CCNA2 | cyclin A2 | 20 |
MRPL4 | mitochondrial ribosomal protein L4 | 20 |
UTP18 | UTP18, small subunit processome component | 16 |
NIP7 | NIP7, nucleolar pre-rRNA processing protein | 16 |
LPS vs. LPS + Met-CM | ||
ACTB | actin, beta | 464 |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase | 413 |
AKT1 | AKT1 substrate 1 | 409 |
CTNNB1 | catenin beta 1 | 352 |
UBA52 | ubiquitin A-52 residue ribosomal protein fusion product 1 | 345 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suh, H.N.; Ji, J.Y.; Heo, J.S. Metformin-Enhanced Secretome from Periodontal Ligament Stem Cells Promotes Functional Recovery in an Inflamed Periodontal Model: In Vitro Study. J. Funct. Biomater. 2025, 16, 177. https://doi.org/10.3390/jfb16050177
Suh HN, Ji JY, Heo JS. Metformin-Enhanced Secretome from Periodontal Ligament Stem Cells Promotes Functional Recovery in an Inflamed Periodontal Model: In Vitro Study. Journal of Functional Biomaterials. 2025; 16(5):177. https://doi.org/10.3390/jfb16050177
Chicago/Turabian StyleSuh, Han Na, Ju Young Ji, and Jung Sun Heo. 2025. "Metformin-Enhanced Secretome from Periodontal Ligament Stem Cells Promotes Functional Recovery in an Inflamed Periodontal Model: In Vitro Study" Journal of Functional Biomaterials 16, no. 5: 177. https://doi.org/10.3390/jfb16050177
APA StyleSuh, H. N., Ji, J. Y., & Heo, J. S. (2025). Metformin-Enhanced Secretome from Periodontal Ligament Stem Cells Promotes Functional Recovery in an Inflamed Periodontal Model: In Vitro Study. Journal of Functional Biomaterials, 16(5), 177. https://doi.org/10.3390/jfb16050177