Dentistry Insights: Single-Walled and Multi-Walled Carbon Nanotubes, Carbon Dots, and the Rise of Hybrid Materials
Abstract
:1. Introduction
- Carbon Nanotubes (CNTs)
- Applications: Reinforcement of dental materials (e.g., resins, cements, and implants), electrochemical sensors for diagnostics, and targeted drug delivery systems for periodontal therapy.
- Carbon Dots (C-dots)
- Applications: Bioimaging for early detection of oral cancers or infections, biosensors for real-time monitoring of oral pathogens, and antimicrobial agents in dental adhesives.
- Graphene and Graphene Oxide (GO)
- Applications: Dental composites, adhesives, and implants due to their mechanical strength and antibacterial properties. Graphene oxide is used in coatings and drug delivery systems for its enhanced solubility and functionalization capabilities.
- Carbon Nanofibers (CNFs)
- Applications: Tissue engineering scaffolds for periodontal or bone regeneration and enhancing the mechanical properties of dental polymers and composites.
- Fullerenes (e.g., C60)
- Applications: Antioxidant and antimicrobial agents in dental materials, coatings for prosthetics to prevent biofilm formation, and potential use in photodynamic therapy for oral infections.
- Nanodiamonds
- Applications: Drug delivery systems (e.g., localized release of antibiotics in periodontal pockets), strengthening dental composites and bone grafts, and improving the wear resistance of restorative materials.
2. Materials and Methods
2.1. Analysis Strategy
2.2. Acceptability Parameters
2.2.1. Inclusion Criteria
- Studies, reviews, articles, business cases, and cross-sectional studies that refer to carbon nanomaterials specified in the Keywords Section;
- Studies that describe an association between CNTs (SWCNTs, MWCNTs) and CDs in dental medicine;
- Studies that illustrate the synthesis of CNTs (SWCNTs, MWCNTs) and CDs for dental medicine use;
- Studies that describe the characteristics of CNTs (SWCNTs, MWCNTs) and CDs in dental medicine (quality and/or effectiveness of dental treatments);
- Studies that evaluate CNT (SWCNTs, MWCNTs) and CD employment in dental medicine (quality and/or effectiveness of dental treatments).
2.2.2. Exclusion Criteria
- Studies not available in English;
- Studies detailing carbon-based nanomaterials characteristics and/or utilizations other than the ones employed in dental medicine;
- Studies detailing the biological mechanisms of CNTs and CDs.
2.3. Limitations
3. SWCNTs and MWCNTs in Advanced Dental Applications
3.1. Synthesis of Carbon Nanotubes (SWCNTs, MWCNTs)
3.2. Attributes of Carbon Nanotubes (SWCNTs, MWCNTs) in Dental Medicine
3.3. Applications of CNTs (SWCNTs, MWCNTs) in Dental Medicine
4. Carbon Dot (CD) Versatility in Dental Medicine
4.1. Exploring Modern Methods in Carbon Dot Synthesis
4.2. Characteristics of Carbon Dots: How Do CDs Interact with Biological Systems?
4.3. Employments of Carbon Dots in Dentistry
5. Discussion at the Intersection of Present and Future
- Restorative Dentistry.
- Implantology.
- Graphene-based nanoparticles can facilitate aimed drug delivery, augmenting the treatment success of dental implants [143].
- Tissue Regeneration.
6. Conclusions
- Biocompatibility: ensure minimal cytotoxicity through proper functionalization;
- Scalability: develop cost-effective synthesis methods for clinical translation;
- Multifunctionality: combine mechanical, antibacterial, and therapeutic properties for holistic solutions.
- SWCNT/MWCNT + GO: best for antibacterial, reinforced dental composites and coatings;
- CDs/CNDs/CQDs + GO: ideal for multifunctional, drug-eluting, and bioimaging applications;
- GO + DLC: excellent for wear-resistant, antibacterial dental implants and tools.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNTs | Carbon nanotubes |
SWCNTs | Single-walled carbon nanotubes |
MWCNTs | Multi-walled carbon nanotubes |
CDs | Carbon dots |
GO | Graphene oxide |
CNFs | Carbon nanofibers |
CNDs | Carbon nanodots |
CQDs | Carbon quantum dots |
CPDs | Carbonized polymer dots |
CVD | Chemical vapor deposition |
PMMA | Polymethyl methacrylate |
RON | Reactive oxygen species |
RONS | Reactive oxygen and nitrogen species |
MT-CDs | Melatonin-derived carbon dots |
Cu-CDs | Copper-doped carbon dots |
ALN-GQDs-Ag | Alendronate–graphene quantum dots–silver |
C-NZs | Carbon dot nanozymes |
PTT | Photothermal therapy |
DLC | Diamond-like carbon |
References
- Maher, N.; Mahmood, A.; Fareed, M.A.; Kumar, N.; Rokaya, D.; Zafar, M.S. An Updated Review and Recent Advancements in Carbon-Based Bioactive Coatings for Dental Implant Applications. J. Adv. Res. 2024, S209012322400300X. [Google Scholar] [CrossRef] [PubMed]
- Biswas, H.S.; Kundu, A.K.; Poddar, S. Harnessing Carbon-Based Nanomaterials for Sustainable Environmental Solutions. In Advances in Chemical and Materials Engineering; Arun, J., Nirmala, N., Dawn, S.S., Eds.; IGI Global: Hershey, PA, USA, 2024; pp. 57–77. ISBN 9798369336250/9798369336267. Available online: https://www.igi-global.com/gateway/chapter/354531 (accessed on 8 January 2025).
- Singhal, D.; Aggarwal, P.; Bali, S.; Pal, K. Nanotechnology in Periodontics: A Review. Santosh Univ. J. Health Sci. 2021, 7, 6–10. [Google Scholar] [CrossRef]
- Singh, M.; Kumar Singh, A. Advanced Nanomaterials for Solution-Processed Flexible Optoelectronic Devices: Processing to Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2025; ISBN 9781032960500. Available online: https://www.taylorfrancis.com/books/edit/10.1201/9781032960500/advanced-nanomaterials-solution-processed-flexible-optoelectronic-devices-manjeet-singh-ashish-kumar-singh (accessed on 7 January 2025).
- Malik, S.; Waheed, Y. Emerging Applications of Nanotechnology in Dentistry. Dent. J. 2023, 11, 266. [Google Scholar] [CrossRef] [PubMed]
- Seck, A.; Zein, N.; Nounsi, A.; Harmouch, E.; Vidal Varbanova, A.; Fernandez De Grado, G.; Offner, D.; Lutz, J.-C.; Benkirane-Jessel, N.; Fioretti, F. Nanomaterials for Endodontic Regeneration. In Biomedical and Health Research; George, D., Magdalou, J., Stoltz, J.-F., Eds.; IOS Press: Amsterdam, The Netherlands, 2021; ISBN 9781643680262/9781643680279. Available online: https://ebooks.iospress.nl/doi/10.3233/BHR210015 (accessed on 7 January 2025).
- Mousavi, S.M.; Yousefi, K.; Hashemi, S.A.; Afsa, M.; BahranI, S.; Gholami, A.; Ghahramani, Y.; Alizadeh, A.; Chiang, W.-H. Renewable Carbon Nanomaterials: Novel Resources for Dental Tissue Engineering. Nanomaterials 2021, 11, 2800. [Google Scholar] [CrossRef]
- Parthasarathy, S.; Moharana, S.; Behera, S. Carbon Nanotube-Polymer Nanocomposites for Wearable Electronics. In Carbon Nanotube-Polymer Nanocomposites; Moharana, S., Rout, L., Sagadevan, S., Eds.; Springer Nature Singapore: Singapore, 2024; pp. 461–487. ISBN 9789819763283/9789819763290. Available online: https://link.springer.com/chapter/10.1007/978-981-97-6329-0_18 (accessed on 7 January 2025).
- Murjani, B.O.; Kadu, P.S.; Bansod, M.; Vaidya, S.S.; Yadav, M.D. Carbon Nanotubes in Biomedical Applications: Current Status, Promises, and Challenges. Carbon Lett. 2022, 32, 1207–1226. [Google Scholar] [CrossRef]
- Glowacka-Sobotta, A.; Ziental, D.; Czarczynska-Goslinska, B.; Michalak, M.; Wysocki, M.; Güzel, E.; Sobotta, L. Nanotechnology for Dentistry: Prospects and Applications. Nanomaterials 2023, 13, 2130. [Google Scholar] [CrossRef]
- Bonilla-Represa, V.; Abalos-Labruzzi, C.; Herrera-Martinez, M.; Guerrero-Pérez, M.O. Nanomaterials in Dentistry: State of the Art and Future Challenges. Nanomaterials 2020, 10, 1770. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, C.; Mo, J.; Wang, X.; Wang, T.; Li, G.; Zhou, Q. Recent Progress in Carbon Dots for Anti-Pathogen Applications in Oral Cavity. Front. Cell. Infect. Microbiol. 2023, 13, 1251309. [Google Scholar] [CrossRef]
- Ali, A.; Rahimian Koloor, S.S.; Alshehri, A.H.; Arockiarajan, A. Carbon Nanotube Characteristics and Enhancement Effects on the Mechanical Features of Polymer-Based Materials and Structures—A Review. J. Mater. Res. Technol. 2023, 24, 6495–6521. [Google Scholar] [CrossRef]
- Garcia, I.M.; Mokeem, L.S.; Shahkarami, Y.; Blum, L.; Sheraphim, V.; Leonardo, R.; Balhaddad, A.A.; Melo, M.A.S. Tube-Shaped Nanostructures for Enhancing Resin-Based Dental Materials: A Landscape of Evidence and Research Advancement. Smart Mater. Med. 2023, 4, 504–513. [Google Scholar] [CrossRef]
- Son, M.; Raju, K.; Lee, J.; Jung, J.; Jeong, S.; Kim, J.; Cho, J. 3D Printing of CNT- and YSZ-Added Dental Resin-Based Composites by Digital Light Processing and Their Mechanical Properties. Materials 2023, 16, 1873. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, F.; He, J. Physicochemical Properties of Bis-GMA/TEGDMA Dental Resin Reinforced with Silanized Multi-Walled Carbon Nanotubes. Silicon 2019, 11, 1345–1353. [Google Scholar] [CrossRef]
- Soni, N.; Bairwa, S.; Sumita, S.; Goyal, N.; Choudhary, S.; Gupta, M.; Khurana, M. Mechanical Properties of Dental Resin Composites: A Review. Int. J. Res. Publ. Rev. 2024, 5, 7675–7683. [Google Scholar] [CrossRef]
- Baciu, E.-R.; Savin, C.N.; Tatarciuc, M.; Mârțu, I.; Butnaru, O.M.; Aungurencei, A.E.; Mihalache, A.-M.; Diaconu-Popa, D. Experimental Study on Mechanical Properties of Different Resins Used in Oral Environments. Medicina 2023, 59, 1042. [Google Scholar] [CrossRef] [PubMed]
- Hazar, A.; Hazar, E. Effect of Composite Resins with and without Fiber-Reinforcement on the Fracture Resistance of Teeth with Non-Carious Cervical Lesions. J. Appl. Biomater. Funct. Mater. 2024, 22, 22808000241303330. [Google Scholar] [CrossRef] [PubMed]
- Oysaed, H.; Ruyter, I.E. Composites for Use in Posterior Teeth: Mechanical Properties Tested under Dry and Wet Conditions. J. Biomed. Mater. Res. 1986, 20, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Kausar, A. Carbonaceous Nanofillers in Polymer Matrix. In Polymeric Nanocomposites with Carbonaceous Nanofillers for Aerospace Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 23–53. ISBN 9780323996570. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780323996570000090 (accessed on 7 January 2025).
- Solorio-Rodriguez, S.A.; Williams, A.; Poulsen, S.S.; Knudsen, K.B.; Jensen, K.A.; Clausen, P.A.; Danielsen, P.H.; Wallin, H.; Vogel, U.; Halappanavar, S. Single-Walled vs. Multi-Walled Carbon Nanotubes: Influence of Physico-Chemical Properties on Toxicogenomics Responses in Mouse Lungs. Nanomaterials 2023, 13, 1059. [Google Scholar] [CrossRef] [PubMed]
- De Almeida Barcelos, K.; Garg, J.; Ferreira Soares, D.C.; De Barros, A.L.B.; Zhao, Y.; Alisaraie, L. Recent Advances in the Applications of CNT-Based Nanomaterials in Pharmaceutical Nanotechnology and Biomedical Engineering. J. Drug Deliv. Sci. Technol. 2023, 87, 104834. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Gao, F.; Liu, C.; Liu, X.; Li, C.; Zhang, Y. Effects of Rolling Deformation on the Microstructure and Properties of GNPs/2024Al Composite Materials. Prot. Met. Phys. Chem. Surf. 2024, 60, 734–742. [Google Scholar] [CrossRef]
- Castro-Rojas, M.A.; Vega-Cantu, Y.I.; Cordell, G.A.; Rodriguez-Garcia, A. Dental Applications of Carbon Nanotubes. Molecules 2021, 26, 4423. [Google Scholar] [CrossRef]
- Ni, Z.; Bu, H.; Zou, M.; Yi, H.; Bi, K.; Chen, Y. Anisotropic Mechanical Properties of Graphene Sheets from Molecular Dynamics. Phys. B Condens. Matter 2010, 405, 1301–1306. [Google Scholar] [CrossRef]
- Kechagioglou, P.; Andriotis, E.; Papagerakis, P.; Papagerakis, S. Multiwalled Carbon Nanotubes for Dental Applications. In Odontogenesis: Methods and Protocols; Papagerakis, P., Ed.; Springer: New York, NY, USA, 2019; pp. 121–128. ISBN 9781493990122. Available online: https://link.springer.com/protocol/10.1007/978-1-4939-9012-2_12 (accessed on 7 January 2025).
- Borges, A.L.S.; Münchow, E.A.; De Oliveira Souza, A.C.; Yoshida, T.; Vallittu, P.K.; Bottino, M.C. Effect of Random/Aligned Nylon-6/MWCNT Fibers on Dental Resin Composite Reinforcement. J. Mech. Behav. Biomed. Mater. 2015, 48, 134–144. [Google Scholar] [CrossRef]
- Yahyazadeh, A.; Nanda, S.; Dalai, A.K. Carbon Nanotubes: A Review of Synthesis Methods and Applications. Reactions 2024, 5, 429–451. [Google Scholar] [CrossRef]
- Pant, M.; Singh, R.; Negi, P.; Tiwari, K.; Singh, Y. A Comprehensive Review on Carbon Nano-Tube Synthesis Using Chemical Vapor Deposition. Mater. Today Proc. 2021, 46, 11250–11253. [Google Scholar] [CrossRef]
- Lobo, L.S. Nucleation and Growth of Carbon Nanotubes and Nanofibers: Mechanism and Catalytic Geometry Control. Carbon 2017, 114, 411–417. [Google Scholar] [CrossRef]
- Kumar, U.; Sikarwar, S.; Sonker, R.K.; Yadav, B.C. Carbon Nanotube: Synthesis and Application in Solar Cell. J. Inorg. Organomet. Polym. Mater. 2016, 26, 1231–1242. [Google Scholar] [CrossRef]
- Szabó, A.; Perri, C.; Csató, A.; Giordano, G.; Vuono, D.; Nagy, J.B. Synthesis Methods of Carbon Nanotubes and Related Materials. Materials 2010, 3, 3092–3140. [Google Scholar] [CrossRef]
- Ribeiro, H.; Schnitzler, M.C.; Da Silva, W.M.; Santos, A.P. Purification of Carbon Nanotubes Produced by the Electric Arc-Discharge Method. Surf. Interfaces 2021, 26, 101389. [Google Scholar] [CrossRef]
- Alsalih, M.; Samsudin, S.; Arshad, S.S. Synthesis and Characterizations Iron Oxide Carbon Nanotubes Nanocomposite by Laser Ablation for Anti-Microbial Applications. J. Genet. Eng. Biotechnol. 2021, 19, 76. [Google Scholar] [CrossRef]
- Teh, S.J.; Lai, C.W. Carbon Nanotubes for Dental Implants. In Applications of Nanocomposite Materials in Dentistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 93–105. ISBN 9780128137420. [Google Scholar]
- Cai, Q.; Subramani, K.; Mathew, R.; Yang, X. Carbon Nanomaterials for Implant Dentistry and Bone Tissue Engineering. In Nanobiomaterials in Clinical Dentistry; Elsevier: Amsterdam, The Netherlands, 2013; pp. 359–388. ISBN 9781455731275. Available online: https://www.sciencedirect.com/science/article/pii/B9781455731275000180?via%3Dihub (accessed on 7 January 2025).
- Li, X.; Liu, X.; Huang, J.; Fan, Y.; Cui, F. Biomedical Investigation of CNT Based Coatings. Surf. Coat. Technol. 2011, 206, 759–766. [Google Scholar] [CrossRef]
- Wang, S.; Liang, L.; Chen, S. Tensile Strength and Toughness of Carbon Nanotube-Graphene Foam Composite Materials and the Corresponding Microscopic Influence Mechanism. Mater. Des. 2024, 237, 112529. [Google Scholar] [CrossRef]
- Patel, V.; Joshi, U.; Joshi, A.; Oza, A.D.; Prakash, C.; Linul, E.; Campilho, R.D.S.G.; Kumar, S.; Saxena, K.K. Strength Evaluation of Functionalized MWCNT-Reinforced Polymer Nanocomposites Synthesized Using a 3D Mixing Approach. Materials 2022, 15, 7263. [Google Scholar] [CrossRef] [PubMed]
- Sivasubramaniyam, V.; Ramasamy, S.; Venkatraman, M.; Gatto, G.; Kumar, A. Carbon Nanotubes as an Alternative to Copper Wires in Electrical Machines: A Review. Energies 2023, 16, 3665. [Google Scholar] [CrossRef]
- Kumanek, B.; Janas, D. Thermal Conductivity of Carbon Nanotube Networks: A Review. J. Mater. Sci. 2019, 54, 7397–7427. [Google Scholar] [CrossRef]
- Kwon, Y.-K.; Kim, P. Unusually High Thermal Conductivity in Carbon Nanotubes. In High Thermal Conductivity Materials; Shindé, S.L., Goela, J.S., Eds.; Springer: New York, NY, USA, 2006; pp. 227–265. ISBN 9780387220215. Available online: https://link.springer.com/chapter/10.1007/0-387-25100-6_8 (accessed on 9 January 2025).
- Logesh, M.; Toan, N.K.; Ahn, S.-G.; Choe, H.-C. Engineering Bioactive MWCNT-Reinforced Hydroxyapatite Coatings on Ti29Nb5Zr Alloy by Plasma Electrolytic Oxidation Method: A Comprehensive Approach to Dental Implant Surface Optimization. J. Alloys Compd. 2024, 1006, 176339. [Google Scholar] [CrossRef]
- Cho, S.G. Chemical Stability of Carbon Nanotube Containers Loaded with Nitromethane: Reactive Molecular Dynamic Simulation. Bull. Korean Chem. Soc. 2017, 38, 116–119. [Google Scholar] [CrossRef]
- Bao, L.; Cui, X.; Mortimer, M.; Wang, X.; Wu, J.; Chen, C. The Renaissance of One-Dimensional Carbon Nanotubes in Tissue Engineering. Nano Today 2023, 49, 101784. [Google Scholar] [CrossRef]
- Anike, J.C.; Belay, K.; Abot, J.L. Effect of Twist on the Electromechanical Properties of Carbon Nanotube Yarns. Carbon 2019, 142, 491–503. [Google Scholar] [CrossRef]
- Kang, S.; Pinault, M.; Pfefferle, L.D.; Elimelech, M. Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir 2007, 23, 8670–8673. [Google Scholar] [CrossRef]
- Saleemi, M.A.; Kong, Y.L.; Yong, P.V.C.; Wong, E.H. An Overview of Antimicrobial Properties of Carbon Nanotubes-Based Nanocomposites. Adv. Pharm. Bull. 2022, 12, 449–465. [Google Scholar] [CrossRef]
- Al-Harbi, N.; Hussein, M.A.; Al-Hadeethi, Y.; Felimban, R.I.; Tayeb, H.H.; Bedaiwi, N.M.H.; Alosaimi, A.M.; Bekyarova, E.; Chen, M. Bioactive Hybrid Membrane-Based Cellulose Acetate/Bioactive Glass/Hydroxyapatite/Carbon Nanotubes Nanocomposite for Dental Applications. J. Mech. Behav. Biomed. Mater. 2023, 141, 105795. [Google Scholar] [CrossRef] [PubMed]
- Shahkar, L.; Malek Khachatourian, A.; Nemati, A. Fabrication and Characterization of PMMA Denture Base Nanocomposite Reinforced with Hydroxyapatite and Multi-Walled Carbon Nanotubes. Diam. Relat. Mater. 2024, 147, 111377. [Google Scholar] [CrossRef]
- Zhang, F.; Xia, Y.; Xu, L.; Gu, N. Surface Modification and Microstructure of Single-walled Carbon Nanotubes for Dental Resin-based Composites. J. Biomed. Mater. Res. 2008, 86B, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Suo, L.; Li, Z.; Luo, F.; Chen, J.; Jia, L.; Wang, T.; Pei, X.; Wan, Q. Effect of Dentin Surface Modification Using Carbon Nanotubes on Dental Bonding and Antibacterial Ability. Dent. Mater. J. 2018, 37, 229–236. [Google Scholar] [CrossRef]
- Guazzo, R.; Gardin, C.; Bellin, G.; Sbricoli, L.; Ferroni, L.; Ludovichetti, F.S.; Piattelli, A.; Antoniac, I.; Bressan, E.; Zavan, B. Graphene-Based Nanomaterials for Tissue Engineering in the Dental Field. Nanomaterials 2018, 8, 349. [Google Scholar] [CrossRef] [PubMed]
- Peñaranda-Armbrecht, J.; Correa-Quiceno, M.J.; Caicedo-Angulo, J.C.; Neuta-Arciniegas, P.A.; Gutiérrez-Montes, J.Ó. Fabrication of Multi-Walled Carbon Nanotube/Polycaprolactone Scaffolds for Possible Application in Tissue Engineering. J. Polym. Res. 2024, 31, 64. [Google Scholar] [CrossRef]
- Oh, D.E.; Lee, C.-S.; Kim, T.W.; Jeon, S.; Kim, T.H. A Flexible and Transparent PtNP/SWCNT/PET Electrochemical Sensor for Nonenzymatic Detection of Hydrogen Peroxide Released from Living Cells with Real-Time Monitoring Capability. Biosensors 2023, 13, 704. [Google Scholar] [CrossRef]
- Ma, X.; Pang, W.; Gao, Y.; Chang, X.; Hu, Z.; Hu, T. A Paper-Based Electrochemical Sensor Based on Chain Structured ZIF-8@MWCNTs for Efficient Determination of Rutin. J. Electrochem. Soc. 2024, 171, 047514. [Google Scholar] [CrossRef]
- Hamdy, T.M. Polymerization Shrinkage in Contemporary Resin-Based Dental Composites: A Review Article. Egypt. J. Chem. 2021, 64, 3087–3092. [Google Scholar] [CrossRef]
- Bhavikatti, S.K.; Zainuddin, S.L.A.; Ramli, R.B.; Dandge, P.B.; Khalate, M.; Karobari, D.M.I. The Role of Carbon Dots in Combatting Oral Diseases: Insights and Perspectives. Nat. Resour. Hum. Health 2024, 4, 287–294. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Y.; Gu, Z.; Pan, H.; Zhou, P.; Gan, Q.; Yuan, Y.; Liu, C. Multifunctional Carbon Dots for Biomedical Applications: Diagnosis, Therapy, and Theranostic. Small 2024, 20, 2303773. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Brand, H.S.; Bikker, F.J. The Applications of Carbon Dots in Oral Health: A Scoping Review. Oral Dis. 2024, 30, 1861–1872. [Google Scholar] [CrossRef]
- Mansuriya, B.D.; Altintas, Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care—An Updated Review (2018–2021). Nanomaterials 2021, 11, 2525. [Google Scholar] [CrossRef]
- Xin, X.; Liu, J.; Liu, X.; Xin, Y.; Hou, Y.; Xiang, X.; Deng, Y.; Yang, B.; Yu, W. Melatonin-Derived Carbon Dots with Free Radical Scavenging Property for Effective Periodontitis Treatment via the Nrf2/HO-1 Pathway. ACS Nano 2024, 18, 8307–8324. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Huang, L.; Xu, X.; Wei, X.; Yang, X.; Li, X.; Wang, B.; Xu, Y.; Li, L.; Yang, Z. Copper Doped Carbon Dots for Addressing Bacterial Biofilm Formation, Wound Infection, and Tooth Staining. ACS Nano 2022, 16, 9479–9497. [Google Scholar] [CrossRef]
- Anand, A.; Unnikrishnan, B.; Wei, S.-C.; Chou, C.P.; Zhang, L.-Z.; Huang, C.-C. Graphene Oxide and Carbon Dots as Broad-Spectrum Antimicrobial Agents—A Minireview. Nanoscale Horiz. 2019, 4, 117–137. [Google Scholar] [CrossRef]
- Jiang, Y.; Hua, Z.; Geng, Q.; Li, N. Carbon Quantum Dots Carrying Antibiotics for Treating Dental Implant Bacterial Infections Following Photothermal Therapy. Nano 2024, 19, 2450004. [Google Scholar] [CrossRef]
- Karpushkin, E.A.; Kharochkina, E.S.; Lopatina, L.I.; Sergeev, V.G. Carbon Nanodots: Preparation, Properties, Application (A Review). Žurnal Obŝej Him. 2024, 94, 136–164. [Google Scholar] [CrossRef]
- Gong, X.; Li, W.; Wu, Y.; Li, X.; Ma, Y.; Wang, H.; Wu, M. A Rational Strategy for Directly Synthesizing Strongly Yellow Solid-State Fluorescent-Emitting Carbon Nanodots Composite Microparticles by Structure Regulation. Mater. Today Adv. 2023, 20, 100428. [Google Scholar] [CrossRef]
- Xu, J.; Huang, B.-B.; Lai, C.-M.; Lu, Y.-S.; Shao, J.-W. Advancements in the Synthesis of Carbon Dots and Their Application in Biomedicine. J. Photochem. Photobiol. B Biol. 2024, 255, 112920. [Google Scholar] [CrossRef]
- Shi, W.; Han, Q.; Wu, J.; Ji, C.; Zhou, Y.; Li, S.; Gao, L.; Leblanc, R.M.; Peng, Z. Synthesis Mechanisms, Structural Models, and Photothermal Therapy Applications of Top-Down Carbon Dots from Carbon Powder, Graphite, Graphene, and Carbon Nanotubes. Int. J. Mol. Sci. 2022, 23, 1456. [Google Scholar] [CrossRef] [PubMed]
- Bourgi, R.; Doumandji, Z.; Cuevas-Suárez, C.E.; Ben Ammar, T.; Laporte, C.; Kharouf, N.; Haikel, Y. Exploring the Role of Nanoparticles in Dental Materials: A Comprehensive Review. Coatings 2025, 15, 33. [Google Scholar] [CrossRef]
- Supajaruwong, S.; Porahong, S.; Wibowo, A.; Yu, Y.-S.; Khan, M.J.; Pongchaikul, P.; Posoknistakul, P.; Laosiripojana, N.; Wu, K.C.-W.; Sakdaronnarong, C. Scaling-up of Carbon Dots Hydrothermal Synthesis from Sugars in a Continuous Flow Microreactor System for Biomedical Application as in Vitro Antimicrobial Drug Nanocarrier. Sci. Technol. Adv. Mater. 2023, 24, 2260298. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, X.; Bu, W.; Jin, N.; Meng, Y.; Wang, Y.; Wang, D.; Xu, X.; Zhou, D.; Sun, H. Carbon Dots Enhance Extracellular Matrix Secretion for Dentin-Pulp Complex Regeneration through PI3K/Akt/MTOR Pathway-Mediated Activation of Autophagy. Mater. Today Bio 2022, 16, 100344. [Google Scholar] [CrossRef]
- Yang, H.-L.; Bai, L.-F.; Geng, Z.-R.; Chen, H.; Xu, L.-T.; Xie, Y.-C.; Wang, D.-J.; Gu, H.-W.; Wang, X.-M. Carbon Quantum Dots: Preparation, Optical Properties, and Biomedical Applications. Mater. Today Adv. 2023, 18, 100376. [Google Scholar] [CrossRef]
- Zhao, C.; Song, X.; Liu, Y.; Fu, Y.; Ye, L.; Wang, N.; Wang, F.; Li, L.; Mohammadniaei, M.; Zhang, M.; et al. Synthesis of Graphene Quantum Dots and Their Applications in Drug Delivery. J. Nanobiotechnology 2020, 18, 142. [Google Scholar] [CrossRef]
- Yin, I.X.; Niu, J.Y.; Mei, M.L.; Tang, J.; Wu, W.K.K.; Chu, C.H. Tooth-Binding Graphene Quantum Dots Silver Nanocomposites for Prevention of Dental Caries. Int. J. Nanomed. 2024, 19, 11195–11212. [Google Scholar] [CrossRef]
- Ullah, M.; Awan, U.A.; Ali, H.; Wahab, A.; Khan, S.U.; Naeem, M.; Ruslin, M.; Mustopa, A.Z.; Hasan, N. Carbon Dots: New Rising Stars in the Carbon Family for Diagnosis and Biomedical Applications. J. Nanotheranostics 2024, 6, 1. [Google Scholar] [CrossRef]
- Innocenzi, P.; Stagi, L. Carbon Dots as Oxidant-Antioxidant Nanomaterials, Understanding the Structure-Properties Relationship. A Critical Review. Nano Today 2023, 50, 101837. [Google Scholar] [CrossRef]
- Getachew, G.; Korupalli, C.; Rasal, A.S.; Chang, J.-Y. ROS Generation/Scavenging Modulation of Carbon Dots as Phototherapeutic Candidates and Peroxidase Mimetics to Integrate with Polydopamine Nanoparticles/GOx towards Cooperative Cancer Therapy. Compos. Part B Eng. 2021, 226, 109364. [Google Scholar] [CrossRef]
- Ozhukil Valappil, M.; Pillai, V.K.; Alwarappan, S. Spotlighting Graphene Quantum Dots and beyond: Synthesis, Properties and Sensing Applications. Appl. Mater. Today 2017, 9, 350–371. [Google Scholar] [CrossRef]
- Zaky, S.; Shehabeldin, M.; Ray, H.; Sfeir, C. The Role of Inflammation Modulation in Dental Pulp Regeneration. eCM 2021, 41, 184–193. [Google Scholar] [CrossRef]
- Payamifar, S.; Foroozandeh, A.; Pourmadadi, M.; Abdouss, M.; Hasanzadeh, M. Cyclodextrin-Based Nanocarriers as Promising Scaffolds for Overcoming Challenges of Doxorubicin Delivery in Cancer Chemotherapy. Carbohydr. Polym. Technol. Appl. 2025, 9, 100677. [Google Scholar] [CrossRef]
- Wu, G.; Xu, Z.; Yu, Y.; Zhang, M.; Wang, S.; Duan, S.; Liu, X. Biomaterials-Based Phototherapy for Bacterial Infections. Front. Pharmacol. 2024, 15, 1513850. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mei, L.; Zhang, Y.; Wang, K.; Chen, S.; Song, T. Nanomaterials at the Forefront of Antimicrobial Therapy by Photodynamic and Photothermal Strategies. Mater. Today Bio 2024, 29, 101354. [Google Scholar] [CrossRef] [PubMed]
- Ghamrawi, S.; Ren, L. Editorial: Reducing Healthcare-Associated Infections through Antimicrobial Materials. Front. Cell. Infect. Microbiol. 2024, 14, 1446870. [Google Scholar] [CrossRef]
- Huang, S.; Song, Y.; Zhang, J.; Chen, X.; Zhu, J. Antibacterial Carbon Dots-Based Composites. Small 2023, 19, 2207385. [Google Scholar] [CrossRef] [PubMed]
- Abraham, W.L.; Demirci, S.; Wypyski, M.S.; Ayyala, R.S.; Bhethanabotla, V.R.; Lawson, L.B.; Sahiner, N. Biofilm Inhibition and Bacterial Eradication by C-Dots Derived from Polyethyleneimine-Citric Acid. Colloids Surf. B Biointerfaces 2022, 217, 112704. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Sun, L.; Zhou, J.; Liu, Y.; Du, M.; Guo, Y.; Wu, X.; Li, B.; Fan, Y. Recent Advances in Carbon Dots: Applications in Oral Diseases. ACS Appl. Nano Mater. 2025, 8, 22–38. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Mo, L.; Long, F.; Wang, Y.; Guo, Z.; Chen, H.; Hu, C.; Liu, Z. “Afterglow” Photodynamic Therapy Based on Carbon Dots Embedded Silica Nanoparticles for Nondestructive Teeth Whitening. ACS Nano 2023, 17, 21195–21205. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, X.; Luo, Y.; Ma, X.; Luo, L.; Liang, L.; Deng, T.; Qiao, Y.; Ye, F.; Liao, H. A Carbon Dot Nanozyme Hydrogel Enhances Pulp Regeneration Activity by Regulating Oxidative Stress in Dental Pulpitis. J. Nanobiotechnology 2024, 22, 537. [Google Scholar] [CrossRef] [PubMed]
- Bulancea, B.; Vasluianu, R.; Tatarciuc, M.; Bulancea, A.; Checherita, L.; Baciu, R. Oral rehabilitation methods through the combination of different prosthetic techniques. Rom. J. Oral Rehabil. 2019, 11, 266–273. Available online: https://rjor.ro/oral-rehabilitation-methods-through-the-combination-of-different-prosthetic-techniques/ (accessed on 8 January 2025).
- Murariu, A.; Hanganu, C.; Vasluianu, R. Oral impact on quality of life amoung young adults in Iasi. Rom. J. Oral Rehabil. 2012, 4, 18–22. Available online: https://rjor.ro/oral-impact-on-quality-of-life-among-young-adults-in-iasi/ (accessed on 9 January 2025).
- Pennisi, P.R.C.; Silva, P.U.J.; Valverde, F.S.; Clemente, T.C.; Cerri, V.; Biaco, M.E.; Ferreira, R.G.R.; Paranhos, L.R.; Moffa, E.B. Flexural Strength of an Indirect Composite Modified with Single-Wall Carbon Nanotubes. Eur. J. Dent. 2024, 18, 104–108. [Google Scholar] [CrossRef] [PubMed Central]
- Toor, Z.S.; Shifa, M. Effect of Multiwalled Carbon Nanotubes (MWCNTs) Distribution on Physiomechancal Characteristics of Alumina (Al2O3) Matrix Nanocomposite. Diam. Relat. Mater. 2023, 136, 109975. [Google Scholar] [CrossRef]
- Song, S.; Li, Q.; Zhang, C.; Liu, Z.; Fan, X.; Zhang, Y. Balanced Strength-Toughness, Thermal Conductivity and Self-Cleaning Properties of PMMA Composites Enabled by Terpolymer Grafted Carbon Nanotube. Nanotechnology 2021, 32, 195709. [Google Scholar] [CrossRef]
- Li, X.; Liu, W.; Sun, L.; Aifantis, K.E.; Yu, B.; Fan, Y.; Feng, Q.; Cui, F.; Watari, F. Resin Composites Reinforced by Nanoscaled Fibers or Tubes for Dental Regeneration. BioMed Res. Int. 2014, 2014, 542958. [Google Scholar] [CrossRef]
- Al-Jumaili, A.; Alancherry, S.; Bazaka, K.; Jacob, M. Review on the Antimicrobial Properties of Carbon Nanostructures. Materials 2017, 10, 1066. [Google Scholar] [CrossRef]
- Rausch, J.; Zhuang, R.-C.; Mäder, E. Surfactant Assisted Dispersion of Functionalized Multi-Walled Carbon Nanotubes in Aqueous Media. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1038–1046. [Google Scholar] [CrossRef]
- Aoki, K.; Saito, N. Biocompatibility and Carcinogenicity of Carbon Nanotubes as Biomaterials. Nanomaterials 2020, 10, 264. [Google Scholar] [CrossRef]
- De Andrade, L.R.M.; Andrade, L.N.; Bahú, J.O.; Cárdenas Concha, V.O.; Machado, A.T.; Pires, D.S.; Santos, R.; Cardoso, T.F.M.; Cardoso, J.C.; Albuquerque-Junior, R.L.C.; et al. Biomedical Applications of Carbon Nanotubes: A Systematic Review of Data and Clinical Trials. J. Drug Deliv. Sci. Technol. 2024, 99, 105932. [Google Scholar] [CrossRef]
- Hatta, M.H.M.; Matmin, J.; Ghazalli, N.F.; Jalani, M.A.A.K.; Hussin, F. Recent Modifications of Carbon Nanotubes for Biomedical Applications. J. Teknol. (Sci. Eng.) 2023, 85, 83–100. [Google Scholar] [CrossRef]
- Ali, T.W.; Gul, H.; Fareed, M.A.; Tabassum, S.; Mir, S.R.; Afzaal, A.; Muhammad, N.; Kaleem, M. Biochemical Properties of Novel Carbon Nanodot-Stabilized Silver Nanoparticles Enriched Calcium Hydroxide Endodontic Sealer. PLoS ONE 2024, 19, e0303808. [Google Scholar] [CrossRef] [PubMed]
- Carbon Nanotubes Market Size, Industry Share Growth Forecast, Global Trends Report, [Latest]. Available online: https://www.marketsandmarkets.com/Market-Reports/carbon-nanotubes-139.html (accessed on 5 February 2025).
- Dhumal, P.; Chakraborty, S.; Ibrahim, B.; Kaur, M.; Valsami-Jones, E. Green-Synthesised Carbon Nanodots: A SWOT Analysis for Their Safe and Sustainable Innovation. J. Clean. Prod. 2024, 480, 144115. [Google Scholar] [CrossRef]
- Wolff, H.; Vogel, U. Recent Progress in the EU Classification of the Health Hazards Associated with Certain Multiwall Carbon Nanotubes (MWCNTs): What about the Other MWCNTs? Nanotoxicology 2024, 18, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Peng, J.; Wang, Z.; Xiao, Y.; Qiu, X. Diamond-like Carbon Coatings in the Biomedical Field: Properties, Applications and Future Development. Coatings 2022, 12, 1088. [Google Scholar] [CrossRef]
- Inani, H.; Singhal, R.; Sharma, P.; Vishnoi, R.; Aggarwal, S.; Sharma, G.D. Effect of Low Fluence Radiation on Nanocomposite Thin Films of Cu Nanoparticles Embedded in Fullerene C60. Vacuum 2017, 142, 5–12. [Google Scholar] [CrossRef]
- Anusha, T.; Bhavani, K.S.; Kumar, J.V.S.; Brahman, P.K. Designing and Fabrication of Electrochemical Nanosensor Employing Fullerene-C60 and Bimetallic Nanoparticles Composite Film for the Detection of Vitamin D3 in Blood Samples. Diam. Relat. Mater. 2020, 104, 107761. [Google Scholar] [CrossRef]
- Dorner-Reisel, A.; Wang, T.; Freiberger, E.; Ritter, U.; Moje, J.; Zhao, M.; Scharff, P. Fullerene C60 Films on Dental Implants: Durability Study after in Vitro Short-Term Exposure. Diam. Relat. Mater. 2023, 135, 109886. [Google Scholar] [CrossRef]
- Gao, F.; Nie, Y.; Zhang, Y.; Wang, T. A Covalent Combination Strategy to Fabricate Fullerene C60 on the Titanium Surface. Vacuum 2024, 222, 113043. [Google Scholar] [CrossRef]
- Montoya, C.; Roldan, L.; Yu, M.; Valliani, S.; Ta, C.; Yang, M.; Orrego, S. Smart Dental Materials for Antimicrobial Applications. Bioact. Mater. 2023, 24, 1–19. [Google Scholar] [CrossRef]
- Bhakta, P.; Barthunia, B. Fullerene and Its Applications: A Review. J. Indian Acad. Oral Med. Radiol. 2020, 32, 159–163. [Google Scholar] [CrossRef]
- Roy, R.K.; Ahmed, S.F.; Yi, J.W.; Moon, M.-W.; Lee, K.-R.; Jun, Y. Improvement of Adhesion of DLC Coating on Nitinol Substrate by Hybrid Ion Beam Deposition Technique. Vacuum 2009, 83, 1179–1183. [Google Scholar] [CrossRef]
- Joska, L.; Fojt, J.; Mestek, O.; Cvrcek, L.; Brezina, V. The Effect of a DLC Coating Adhesion Layer on the Corrosion Behavior of Titanium and the Ti6Al4V Alloy for Dental Implants. Surf. Coat. Technol. 2012, 206, 4899–4906. [Google Scholar] [CrossRef]
- Zia, A.W.; Anestopoulos, I.; Panayiotidis, M.I.; Birkett, M. Soft Diamond-like Carbon Coatings with Superior Biocompatibility for Medical Applications. Ceram. Int. 2023, 49, 17203–17211. [Google Scholar] [CrossRef]
- Jiadong, S.; Guozheng, M.; Cuihong, H.; Haidou, W.; Guolu, L.; Aobo, W.; Yunfan, L.; Qingsong, Y. The Tribological Performance in Vacuum of DLC Coating Treated with Graphene Spraying Top Layer. Diam. Relat. Mater. 2022, 125, 108998. [Google Scholar] [CrossRef]
- Shaikh, S.; Sadeghi, M.; Cruz, S.; Ferreira, F. Recent Progress on the Tribology of Pure/Doped Diamond-like Carbon Coatings and Ionic Liquids. Coatings 2024, 14, 71. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, F.; Yuan, L.; Zhao, W.; Zhang, H.; Zuo, D. Microstructural, Mechanical and Tribological Performances of DLC/CrN Multilayer Films with Different Modulation Period. Diam. Relat. Mater. 2025, 154, 112163. [Google Scholar] [CrossRef]
- Towobola, A.V.; Jack, T.A.; Hosseini, V.; Yang, Q. Synthesis and Characterization of Ag Doped DLC Films for Biomedical Implants. Diam. Relat. Mater. 2025, 152, 111884. [Google Scholar] [CrossRef]
- Zhu, W.; Arao, K.; Marin, E.; Morita, T.; Nakamura, M.; Palmero, P.; Tulliani, J.-M.; Montanaro, L.; Pezzotti, G. Spectroscopic Analyses of Structural Alterations in Diamond-like Carbon Films Deposited on Zirconia Substrates. Diam. Relat. Mater. 2022, 124, 108937. [Google Scholar] [CrossRef]
- Salgueiredo, E.; Vila, M.; Silva, M.A.; Lopes, M.A.; Santos, J.D.; Costa, F.M.; Silva, R.F.; Gomes, P.S.; Fernandes, M.H. Biocompatibility Evaluation of DLC-Coated Si3N4 Substrates for Biomedical Applications. Diam. Relat. Mater. 2008, 17, 878–881. [Google Scholar] [CrossRef]
- Yu, S.; Li, D.; Ye, Y.; Ye, Z.; Xu, F.; Lang, W.; Liu, J.; Yu, X.; Qin, Q.H. Tribological and Corrosive Performance of Functional Gradient DLC Coatings Prepared by a Hybrid HiPIMS/CVD Techniques. Vacuum 2025, 238, 114160. [Google Scholar] [CrossRef]
- Rysaeva, L.K.; Baimova, J.A.; Dmitriev, S.V.; Lisovenko, D.S.; Gorodtsov, V.A.; Rudskoy, A.I. Elastic Properties of Diamond-like Phases Based on Carbon Nanotubes. Diam. Relat. Mater. 2019, 97, 107411. [Google Scholar] [CrossRef]
- Yang, Q.; He, S.; Huang, R.; Yu, M.; Chen, C.; Zheng, S.; Yun, D.; Zheng, L.; Cheng, Q. Research on the Fabrication and Anti-Reflection Performance of Diamond-like Carbon Films. Diam. Relat. Mater. 2021, 111, 108184. [Google Scholar] [CrossRef]
- Czyż, K.; Marczak, J.; Major, R.; Mzyk, A.; Rycyk, A.; Sarzyński, A.; Strzelec, M. Selected Laser Methods for Surface Structuring of Biocompatible Diamond-like Carbon Layers. Diam. Relat. Mater. 2016, 67, 26–40. [Google Scholar] [CrossRef]
- Ban, M.; Tobe, S.; Takeuchi, L. Effects of Diamond-like Carbon Thin Film and Wrinkle Microstructure on Cell Proliferation. Diam. Relat. Mater. 2018, 90, 194–201. [Google Scholar] [CrossRef]
- Pimenov, S.M.; Zavedeev, E.V.; Komlenok, M.S.; Zilova, O.S.; Jaeggi, B.; Neuenschwander, B. Laser Surface Structuring of Diamond-like Carbon Films for Tribology. Diam. Relat. Mater. 2024, 148, 111462. [Google Scholar] [CrossRef]
- Dorner-Reisel, A.; Engel, A.; Schürer, C.; Svoboda, S.; Weißmantel, S. Tribological Behaviour of Femtosecond Laser Micro-Patterned Hydrogenated DLC in Dry and Hyaluronic Gel Lubricated Conditions. Surf. Coat. Technol. 2020, 399, 126082. [Google Scholar] [CrossRef]
- Heikkinen, J.J.; Kaarela, T.; Ludwig, A.; Sukhanova, T.; Khakipoor, S.; Kim, S.I.; Han, J.G.; Huttunen, H.J.; Rivera, C.; Lauri, S.E.; et al. Plasma Etched Carbon Microelectrode Arrays for Bioelectrical Measurements. Diam. Relat. Mater. 2018, 90, 126–134. [Google Scholar] [CrossRef]
- Birkett, M.; Zia, A.W.; Devarajan, D.K.; Soni; Panayiotidis, M.I.; Joyce, T.J.; Tambuwala, M.M.; Serrano-Aroca, Á. Multi-Functional Bioactive Silver- and Copper-Doped Diamond-like Carbon Coatings for Medical Implants. Acta Biomater. 2023, 167, 54–68. [Google Scholar] [CrossRef]
- Granek, A.; Monika, M.; Ozimina, D. Diamond-like Carbon Films for Use in Medical Implants. In Proceedings of the XIII International Conference Electromachining 2018, Bydgoszcz, Poland, 9–11 May 2018; p. 020006. Available online: https://pubs.aip.org/aip/acp/article/2017/1/020006/697535/Diamond-like-carbon-films-for-use-in-medical (accessed on 9 January 2025).
- Dhanola, A. Diamond-like Carbon (DLC) as a Biocompatible Coating for Biomedical Engineering. In Medical Applications for Biocompatible Surfaces and Coatings; Kulkarni, S., Haghi, A.K., Yingngam, B., Ogwu, M.C., Eds.; Royal Society of Chemistry: London, UK, 2024; pp. 1–19. ISBN 9781837674343/9781837675562/9781837675555. Available online: https://books.rsc.org/books/edited-volume/2242/chapter/8170412/Diamond-like-Carbon-DLC-as-a-Biocompatible-Coating (accessed on 9 January 2025).
- Li, H.; Liu, C.; Sun, P.; Zhang, J. Enhanced Adhesion and Wear Resistance of DLC Films on AZ31 Alloy Achieved with High Bias Voltage. Heliyon 2024, 10, e38864. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, P.; Khanna, V.; Singh, K.; Alqarni, A.; Saeed, M. Review—Graphene Nanocomposites in Dentistry: A State-of-the-Art Review. ECS J. Solid State Sci. Technol. 2024, 13, 111003. [Google Scholar] [CrossRef]
- Li, X.; Liang, X.; Wang, Y.; Wang, D.; Teng, M.; Xu, H.; Zhao, B.; Han, L. Graphene-Based Nanomaterials for Dental Applications: Principles, Current Advances, and Future Outlook. Front. Bioeng. Biotechnol. 2022, 10, 804201. [Google Scholar] [CrossRef] [PubMed Central]
- Nizami, M.Z.I.; Takashiba, S.; Nishina, Y. Graphene Oxide: A New Direction in Dentistry. Appl. Mater. Today 2020, 19, 100576. [Google Scholar] [CrossRef]
- Taymour, N.; Haque, M.A.; Atia, G.A.N.; Mohamed, S.Z.; Rokaya, D.; Bajunaid, S.M.; Soliman, M.M.; Shalaby, H.K.; Barai, P.; Roy, M.; et al. Nanodiamond: A Promising Carbon-Based Nanomaterial for Therapeutic and Regenerative Dental Applications. ChemistrySelect 2024, 9, e202401328. [Google Scholar] [CrossRef]
- Wang, N.; Lin, P.; Yang, J.; Gutmann, J.L.; Chang, H.; Huang, H.; Hsieh, S. Micro- CT Evaluation of a Nanodiamond Irrigant for Hard-tissue Debris Removal during Sonic Agitation. Int. Endod. J. 2025, 58, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Bokobza, L. On the Use of Nanoparticles in Dental Implants. Materials 2024, 17, 3191. [Google Scholar] [CrossRef]
- Vijay, R.; Mendhi, J.; Prasad, K.; Xiao, Y.; MacLeod, J.; Ostrikov, K.; Zhou, Y. Carbon Nanomaterials Modified Biomimetic Dental Implants for Diabetic Patients. Nanomaterials 2021, 11, 2977. [Google Scholar] [CrossRef]
- Kang, M.S.; Lee, J.H.; Hong, S.W.; Lee, J.H.; Han, D.-W. Nanocomposites for Enhanced Osseointegration of Dental and Orthopedic Implants Revisited: Surface Functionalization by Carbon Nanomaterial Coatings. J. Compos. Sci. 2021, 5, 23. [Google Scholar] [CrossRef]
- Soe, Z.C.; Wahyudi, R.; Mattheos, N.; Lertpimonchai, A.; Everts, V.; Tompkins, K.A.; Osathanon, T.; Limjeerajarus, C.N.; Limjeerajarus, N. Application of Nanoparticles as Surface Modifiers of Dental Implants for Revascularization/Regeneration of Bone. BMC Oral Health 2024, 24, 1175. [Google Scholar] [CrossRef]
- Susan Bangera, B.; Prajna, K.S.; Shenoy, V. Applications of Nano Graphene Oxides in Prosthodontics and Implant Dentistry- Current Trends and Future Outlook. Int. J. Innov. Sci. Res. Technol. (IJISRT) 2024, 9, 2347–2357. [Google Scholar] [CrossRef]
- Adel, M.; Keyhanvar, P.; Zare, I.; Tavangari, Z.; Akbarzadeh, A.; Zahmatkeshan, M. Nanodiamonds for Tissue Engineering and Regeneration. J. Drug Deliv. Sci. Technol. 2023, 90, 105130. [Google Scholar] [CrossRef]
- Narváez-Romero, A.M.; Rodríguez-Lozano, F.J.; Pecci-Lloret, M.P. Graphene-Based Materials for Bone Regeneration in Dentistry: A Systematic Review of In Vitro Applications and Material Comparisons. Nanomaterials 2025, 15, 88. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Platform | Link | Key Feature |
---|---|---|
PubMed | https://pubmed.ncbi.nlm.nih.gov, accessed on 8 January 2025 | Search terms refined specifically for dental topics |
ScienceDirect | https://www.sciencedirect.com/journal/journal-of-dentistry, accessed on 7 January 2025 | Special focus on journals like the Journal of Dentistry, Journal of Periodontology, and Oral Oncology |
Web of Science | https://www.webofscience.com, accessed on 9 January 2025 | Search by dental-specific topics |
Journal of Dental Research | https://journals.sagepub.com/home/jdr, accessed on 7 January 2025 | Access to groundbreaking studies and reviews that inform clinical practices |
PubMed Central | https://www.ncbi.nlm.nih.gov/pmc, accessed on 8 January 2025 | Great for finding open-access articles in dental medicine |
Embase | https://www.embase.com, accessed on 8 January 2025 | Includes conference abstracts, making it ideal for emerging trends and new findings in nanodentistry |
ResearchGate | https://www.researchgate.net, accessed on 7 January 2025 | Facilitates direct contact with authors and researchers for follow-up discussions or access to unpublished work |
Cochrane Library | https://www.cochranelibrary.com, accessed on 8 January 2025 | Search filters available for specific dental applications |
Scopus | https://www.scopus.com, accessed on 9 January 2025 | Can be filtered by subject area, including dental medicine |
Property | Dental Resins with CNT Reinforcement | Dental Resins Without CNT Reinforcement |
---|---|---|
Strength | Higher flexural strength | Lower flexural strength |
Wear Resistance | Improved wear resistance | Standard wear resistance |
Toughness | Enhanced toughness | Standard toughness |
Stiffness | Increased stiffness | Standard stiffness |
Property | Multi-Walled Carbon Nanotubes (MWCNTs) | Carbon Nanodots (CNDs) | Graphene Oxide (GO) | Carbon Nanofibers (CNFs) |
---|---|---|---|---|
Mechanical Strength | - Extremely high tensile strength; ideal for reinforcement. | - Low mechanical strength; not used for reinforcement. | - High mechanical strength; improves composite durability. | - High tensile strength; excellent for reinforcement. |
Biocompatibility | - Moderate; can be improved with functionalization. | - High; inherently biocompatible. | - Moderate; can cause cytotoxicity at high concentrations. | - High, but depends on surface treatment. |
Antimicrobial Activity | - Moderate; depends on functionalization. | - High due to reactive oxygen species (ROS) generation. | - High due to sharp edges and oxidative stress. | - Low to moderate, depending on surface modification. |
Primary Dental Applications | - Dental composites; - Bone regeneration; - Implant coatings. | - Antibacterial coatings; - Bioimaging; - Drug delivery. | - Dental composites; - Antibacterial coatings; - Tissue engineering. | - Dental composites; - Bone regeneration; - Implant reinforcement. |
Key Limitations | - Potential cytotoxicity; - Aggregation issues; - Complex synthesis. | - Low mechanical strength; - Limited reinforcement capability. | - Potential cytotoxicity; - Requires careful dose control. | - Less efficient for drug delivery; - Aggregation issues. |
Property | CNTs | CDs | Fullerene (e.g., C60) | Diamond-like Carbon (DLC) |
---|---|---|---|---|
Mechanical Strength | - Extremely high tensile strength; - Used to reinforce dental composites. | - Moderate strength; - Primarily used for imaging/therapy, not structural support. | - Moderate strength; - Less robust than CNTs or DLC. | - High hardness and wear resistance; - Ideal for coatings on implants/orthodontic tools. |
Biocompatibility | - Potential cytotoxicity concerns; - Requires surface functionalization for safe use. | - Toxicity risks (e.g., heavy metals in CQDs); - Biocompatibility varies by type. | - Generally biocompatible; - Antioxidant properties may reduce inflammation. | - Excellent biocompatibility; - Chemically inert and blood/tissue friendly. |
Antimicrobial Activity | - Can be functionalized with antimicrobial agents (e.g., silver nanoparticles). | - Photodynamic therapy can target pathogens; - Requires activation (e.g., light). | - Strong antimicrobial properties via oxidative stress on bacterial membranes. | - Limited inherent antimicrobial activity; - Often combined with other agents. |
Primary Dental Applications | - Composite reinforcements; - Bone regeneration scaffolds; - Drug delivery systems. | - Bioimaging; - Targeted drug delivery; - Photodynamic therapy for infections. | - Antimicrobial coatings; - Antioxidant additives in dental materials. | - Coatings for implants/prosthetics; - Wear-resistant surfaces for dental tools. |
Key Limitations | - Toxicity if unmodified; - Aggregation in composites; - High cost of functionalization. | - Potential heavy metal toxicity; - Stability issues in biological environments. | - Limited mechanical reinforcement; - High cost of synthesis/purification. | - High residual stress can lead to delamination; - Expensive fabrication method. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasluianu, R.-I.; Dima, A.M.; Bobu, L.; Murariu, A.; Stamatin, O.; Baciu, E.-R.; Luca, E.-O. Dentistry Insights: Single-Walled and Multi-Walled Carbon Nanotubes, Carbon Dots, and the Rise of Hybrid Materials. J. Funct. Biomater. 2025, 16, 110. https://doi.org/10.3390/jfb16030110
Vasluianu R-I, Dima AM, Bobu L, Murariu A, Stamatin O, Baciu E-R, Luca E-O. Dentistry Insights: Single-Walled and Multi-Walled Carbon Nanotubes, Carbon Dots, and the Rise of Hybrid Materials. Journal of Functional Biomaterials. 2025; 16(3):110. https://doi.org/10.3390/jfb16030110
Chicago/Turabian StyleVasluianu, Roxana-Ionela, Ana Maria Dima, Livia Bobu, Alice Murariu, Ovidiu Stamatin, Elena-Raluca Baciu, and Elena-Odette Luca. 2025. "Dentistry Insights: Single-Walled and Multi-Walled Carbon Nanotubes, Carbon Dots, and the Rise of Hybrid Materials" Journal of Functional Biomaterials 16, no. 3: 110. https://doi.org/10.3390/jfb16030110
APA StyleVasluianu, R.-I., Dima, A. M., Bobu, L., Murariu, A., Stamatin, O., Baciu, E.-R., & Luca, E.-O. (2025). Dentistry Insights: Single-Walled and Multi-Walled Carbon Nanotubes, Carbon Dots, and the Rise of Hybrid Materials. Journal of Functional Biomaterials, 16(3), 110. https://doi.org/10.3390/jfb16030110