Evolution of Dental Resin Adhesives—A Comprehensive Review
Abstract
:1. Introduction
2. Historical Development of Dental Resin Adhesives
2.1. Early Beginnings
2.2. Buonocore’s Acid-Etch Technique
2.3. Discovery of the Hybrid Layer
2.4. From Total-Etch to Self-Etch Adhesive Systems
- Total-Etch Systems: Originating from Buonocore’s acid-etch technique, total-etch systems (fourth and fifth generations) involve a phosphoric acid application to both enamel and dentin, followed by a bonding agent. These systems typically achieve bond strengths ranging from 20 to 30 MPa, providing adequate adhesion but requiring careful techniques to avoid issues such as postoperative sensitivity. Despite their effectiveness, total-etch systems are more sensitive to contaminants like saliva and blood, affecting their bond strength [30,31,32].
- Self-Etch Systems: By contrast, self-etch adhesives (sixth, seventh, and eighth generations) integrate the etching and priming steps. These systems have bond strength values ranging from 18 to 35 MPa. They offer the advantage of reduced technique sensitivity and lower risk of postoperative sensitivity. Two-step self-etch adhesives have demonstrated higher shear bond strength than total-etch and multimode adhesives [33]. However, total-etch systems can exhibit higher bond strength in specific applications, such as when bonding to calcium silicate-based cement [34,35].
- Generational Progression and Comparison: Each generation of dental adhesives has aimed to improve bond strength and application ease. The fourth and fifth generations (total-etch) focused on maximizing bond strength but were more technique-sensitive. In contrast, the sixth to eighth generations (self-etch) emphasized ease of use and consistency in performance, often with slightly lower but more predictable bond strength. Recent developments, like universal adhesives, seek to combine the strengths of both systems, offering versatility in application as they can be used as total-etch or self-etch and enhanced performance across diverse clinical scenarios [36,37].
2.5. Current Generations of Dental Adhesives
- First Generation of Bonding Agents: A Swiss chemist, Oskar Hagger, who worked for DeTrey/Amalgamated Dental Company in the late 1940s, developed the first dental adhesive agent, Sevriton Cavity Seal [38]. This bonding agent had glycerolphosphoric acid dimethacrylate (NPG-GMA), and it was claimed to penetrate the dentin surface and prepare the surface for the chemically cured resin Sevriton [39]. Today, we call the resin-penetrated zone the hybrid zone/layer. These bonding agents preformed an ionic bond with the hydroxyapatite or a covalent bond to the collagen with a (hydrogen-bonding). However, this adhesive product had an overall poor clinical performance due to the high interfacial stress and thermal expansion caused by the methacrylate composites [40]. The bond strength was in the 1–3 MPa range [41]. The advent of first-generation dental adhesives had a profound impact on dental practices. It allowed for more conservative restorations since adhesives could effectively secure materials to a tooth structure with minimal preparation. This was a significant advancement over more invasive techniques requiring extensive tooth modification [42,43].
- Second Generation of Bonding Agents: The second generation was introduced in the late 1970s and utilized an ionic bond between calcium and chlorophosphnate groups. These adhesives primarily used polymerizable phosphonate added to Bis-GMA resins to promote bonds to calcium ions [41,44]. However, this ionic bond was susceptible to degradation, even by the water within the dentin structure, resulting in microleakage when submerged in water. This generation did not remove the smear layer, resulting in a weak, unreliable bond strength [41]. This generation is no longer used due to its bonding failures with the loosely bonded smear layer. Also, the presence of water in the formula led to concerns about hydrolytic stability and degradation over time [44,45]. The second-generation adhesives marked the beginning of incorporating primers into adhesive systems, which later evolved into the more sophisticated multi-step systems of the third generation [22]. They also helped set the stage for the development of aesthetic dentistry, as these adhesives were more compatible with the translucent properties of newer composite materials.
- Third Generation of Bonding Agents: This generation was introduced in the late 1970s and early 1980s. A revolution in this system was introducing the “total-etch” system to modify or partially remove the smear layer [41,46]. This allowed the penetration of the primer within the dentinal tubules after the acid was rinsed entirely away. Then, the primer will be added to the cavity, and an unfilled resin will be placed on dentin and enamel. The chemical composition of the primers and adhesives allowed for better interaction with the hydrophilic dentin and hydrophobic resin materials, improving the interface strength [19]. The weakness of this generation was the unfilled resins that did not infiltrate the smear layer [47]. While third-generation adhesives significantly improved bonding effectiveness, they were not without drawbacks. The total-etch technique increased the risk of post-operative sensitivity due to over-etching or incomplete sealing of dentin tubules. Additionally, the reliance on multiple application steps still posed a challenge regarding technique sensitivity [45]. Developing third-generation adhesives was a critical step towards the later introduction of simplified systems, such as the fourth and fifth generations, which combined the etching and priming steps or even included all steps in one application [48].
- Fourth Generation of Bonding Agents: Introduced in the 1980s and 1990s, fourth-generation adhesives were developed to optimize the bonding process by separating the etching, priming, and bonding steps. This generation is often considered the gold standard for dental adhesive systems due to its high efficacy and predictable results [3,41]. The total-etch technique used with these adhesives involved phosphoric acid to etch both enamel and dentin, which provided a more uniform etch and a reliable bonding surface. This generation protocol was to remove the smear layer entirely, and it is still considered the golden standard. It has three primary components: an acid etchant, a primer, and a bonding agent. These systems are very effective when correctly used as they are technique -sensitive. The enamel and dentin had to be etched with phosphoric acid for 15–20 s and then rinsed, and the surface must be left moist to avoid collagen collapse. Using a hydrophilic primer enhanced the infiltration into the collagen network and formed the hybrid layer [41]. Due to hybridization, the bond strength improved significantly compared to previous generations. It ranged from low to mid-20 MPa [15]. On the downside, these systems can be time-consuming and confusing with many bottles and application steps.
- Fifth Generation of Bonding Agents: The fifth generation of dental adhesives, which appeared in the late 1990s, introduced single-bottle systems combining the primer and adhesive in one solution. This generation aimed to simplify the bonding procedure while maintaining the high bond strengths of the fourth-generation systems. They are known to be the “one-bottle” or “one-step” systems [42]. The composition typically included a mixture of hydrophilic and hydrophobic monomers, solvents such as ethanol or acetone, and photoinitiators in a single solution. The consolidation into one bottle aimed to reduce variability in application and decrease the potential for technique-sensitive errors. The primer was combined with the bonding agent into one solution to be applied simultaneously after acid etching with 35–37% phosphoric acid, and this technique prevented collagen collapse and minimized postoperative sensitivity [41,45,49,50]. The single bottle etch-and-rinse adhesive type shows the same mechanical interlocking and comparable bond strengths to the 4th generation. However, they faced criticism for potential compromises in bond strength compared to their predecessors, particularly regarding long-term durability and susceptibility to hydrolytic degradation. They were more prone to water sorption and degradation over time than the 4th generation [51,52].
- Sixth Generation of Bonding Agents: The sixth generation was introduced in the latter part of the 1990s and early 2000s. A self-etching primer is applied to the tooth surface, followed by a bonding agent. The concept of self-etching was first introduced in a publication by Watanabe and Nakabayashi in 1993 [53]. The most significant advantage of this system is that it is less dependent on the hydration status of the dentin than the total-etch systems. Innovations in sixth-generation adhesives have focused on enhancing the chemical composition of the primers to improve their efficacy and compatibility with both enamel and dentin. Specifically, the introduction of functional monomers, such as methacryloyloxydecyl dihydrogen phosphate (MDP), enhanced the adhesive’s interaction with hydroxyapatite in the tooth structure. These modifications aim to improve the hybrid layer’s mechanical properties and increase the bond’s durability [54]. These systems form a bond that is stronger to dentin than enamel, which might be because their pH is not acidic enough to etch enamel [32]. To overcome this problem, it is recommended to utilize selective etching of enamel [51].
- Seventh Generation of Bonding Agents: This system was introduced in late 1999 and early 2005. The primary innovation of seventh-generation adhesives lies in their all-in-one application, significantly reducing procedure time and the potential for error associated with multiple-step systems. These adhesives use an acidic monomer that demineralizes and infiltrates the tooth substrate, creating a bond in one step [35,51]. These are considered acidic systems, and they are prone to hydrolysis and chemical breakdown [55]. In addition, they are more hydrophilic than self-etching primer, making them more susceptible to water sorption, limiting the depth of resin infiltration into the tooth, and creating more voids [56]. These systems have the lowest initial and long-term bond strength of any adhesive in the market [57]. Shear bond strength of the 7th generation ranges from 19.80 to 30.30 MPa [58]. The convenience and speed of application have made seventh-generation adhesives particularly popular for quick and less invasive procedures. Their ability to effectively bond in a moisture-rich environment makes them suitable for pediatric dentistry and for patients with limited cooperation [37]. Research continues to focus on enhancing the formulation of these adhesives by optimizing the ratio of acidic monomers and solvents, and by developing new monomers that can provide stronger and more durable bonds [59].
- Eighth Generation of Bonding Agents: Eighth-generation dental adhesives were introduced in the 2010s, and they are also known as “universal adhesives”, “multi-mode”, or “multi-purpose” because they may be used as self-etch (SE) adhesives, etch-and-rinse (ER) adhesives, or as SE adhesives on dentin and ER adhesives on enamel (a technique commonly referred to as “selective enamel etching”) [37]. As medical devices, universal adhesives are designed to bond to various substrates, such as enamel, dentin, and restorative materials, regardless of the application mode. However, their clinical performance depends on the chosen mode: the SE mode involves simultaneous etching and priming without a separate rinsing step, while the ER mode requires a separate phosphoric acid etching step followed by rinsing and applying the adhesive. Voco America introduced Voco Futurabond DC as the 8th generation of bonding agents in 2010. It contained nanosized fillers, which increased the monomer penetration and the hybrid layer thickness, providing better enamel and dentin bond strength, stress sorption, and longer shelf-life [60]. Shear bond strength of the 8th generation ranges from 22.10 to 37.10 MPa [58].
3. Fundamental Composition of Adhesive Materials
3.1. Common Composition of Current Dental Resin Adhesives
3.1.1. Matrix Resins
- Base Monomers: Base monomers form the skeleton of the resin, determining its physical properties, such as flexural strength and compressive resistance. Two commonly used base monomers include Bisphenol A-Glycidyl Methacrylate (Bis-GMA) and Urethane Dimethacrylate (UDMA). These monomers provide excellent mechanical properties. However, these monomers must often be modified or diluted with other components due to their high viscosity to improve handling. For instance, Bis-GMA offers high strength and rigidity but requires dilution to enhance flow and manipulation properties [104]. Similarly, UDMA is used for its flexibility and toughness but requires diluting agents to achieve optimal handling properties [1,105].
- Diluting Monomers: Diluting monomers adjust dental resins’ viscosity and handling properties. These monomers are less viscous than base monomers, allowing for easier resin application in clinical settings. Diluting monomers such as TEGDMA or HEMA are incorporated into the formulation to reduce the viscosity of the resin, making it easier to handle and apply. In 1-step self-etching adhesives to prevent phase separation between water and the adhesive monomers [106]. In addition, they are vital in optimizing the degree of polymerization and conversion, affecting the material’s shrinkage and overall mechanical performance. However, their inclusion must be carefully balanced, as excessive use of diluting monomers can weaken the mechanical properties of the resin, potentially leading to reduced restoration longevity [4,107].
3.1.2. Initiators
- Chemical Initiator Systems: Chemical initiator systems, also known as self-cure or auto-cure systems, rely on a catalyst (usually benzoyl peroxide) and an activator (commonly an amine) to initiate polymerization without light. Valid areas where light cannot penetrate, such as deep cavities or post-core build-ups [13]. However, it has a shorter working time and potential for color instability [1,86,108].
- Photo-Initiator Systems: Photo-initiator systems use light to activate polymerization. The most common initiator is camphorquinone (CQ), which is activated by blue light. CQ is generally used with an amine co-initiator to accelerate the production of free radicals for polymerization. CQ/amine combination initiates polymerization upon exposure to visible light at approximately 465 nm [90]. However, CQ’s yellow color may affect aesthetics [90]. Combining CQ with Ivocerin or Lucirin TPO broadens the absorption spectrum and improves the depth of cure. It improves esthetics and enhances the depth of the cure [4]. Phenylpropanedione absorbs light at a similar wavelength to CQ but with slightly different optical and polymerization properties. It may be used as a substitute or in combination with CQ to reduce yellowing effects [86].
- Dual-Curing Systems: Dual-cure systems are designed to polymerize through both chemical and light-initiated mechanisms. These systems are beneficial when light penetration is limited, such as in deep cavities or beneath opaque restorations [109]. The most popular combination in dual cure systems is CQ with a tertiary amine for the light-curing component and benzoyl peroxide with an aromatic sulfonic acid salt for the chemical-curing component [13,86].
3.1.3. Fillers
3.2. Adhesion Promoting Functional Monomers in Dental Resin Adhesives
3.3. Challenges of Current Dental Adhesives
3.3.1. Biocompatibility and Toxicity of Dental Resins
3.3.2. Effects of Oral Conditions on Adhesive Durability
3.3.3. Properties and Performance of Dental Resin Adhesive That Need to Be Improved
4. Advances in Solving Challenges
4.1. Hydrolytically Stable Resin Networks
4.2. Resin Matrix Reinforcement
4.3. Improving Adhesive Compatibility with Collagens
4.4. Functionalization of Adhesives for Remineralization
4.5. Providing Adhesives with Antibacterial Activity
5. The Next Generation of Dental Adhesives
5.1. Emerging Technologies in Pretreatment
5.2. Advancements in Biomaterials
5.3. Dental Adhesives in Digital Dentistry
5.4. AI and Machine Learning for Dental Adhesive Development
6. Limitations and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Acronym and Abbreviation List
10-MDP: 10-methacryloyloxydecyl dihydrogenphosphate A174: γ-methacryloxypropyltrimethoxysilane Coupling factor A174: g-methacryloxypropyltrimethoxysilane 2EMATE-BDI: 2-hydroxy-1-ethyl methacrylate 4-AETA: 4-acryloyloxyethyl trimellitate anhydride 4-AET: 4-acryloylethyl trimellitic acid 4-META: 4-methacryloyloxyethyl trimellitate anhydride 4-MET: 4-methacryloyloxyethyl trimellitic acid AMPS: 2-acrylamido-2-methyl-1-propanesulfonic acid BAADA: N,N′-bis(acrylamido) 1,4-diazepane Bis-EMA: ethoxylated bisphenol A glycol dimethacrylate Bis-GMA: bisphenol A diglycidyl methacrylate Bis-MEP: bis[2-(methacryloyloxy)ethyl] phosphate BMAAPMA: N,N-Bis[(3-methylaminoacryl)propyl]methylamine BPDM: biphenyl dimethacrylate or 4,40-dimethacryloyloxyethyloxycarbonylbiphenyl-3,30-dicarboxylic acid BPO: benzoyl peroxide (redox initiator) BS acid: benzenesulfinic acid sodium salt (redox initiator) CQ: camphorquinone or camphoroquinone or 1.7.7-trimethylbicyclo-[2,2,1]-hepta-2,3-dione (photo-initiator) DC: Double bond conversion DEBAAP: N,N-Diethyl-1,3-bis(acrylamido)propane Di-HEMA phosphate: di-2-hydroxyethyl methacryl hydrogenphosphate DMAEMA: dimethylaminoethyl methacrylate EAEPA: ethyl 2-[4-(dihydroxyphosphoryl)-2-oxabutyl]acrylate EGDMA: ethyleneglycol dimethacrylate EM: Elastic modulus F-PRG: full reaction type pre-reacted glass-ionomer fillers FBMA: fluorinated diluent 1 H,1 H-heptafluorobutyl methacrylate FDMA: fluorinated dimethacrylate FM: Flexural modulus FS: Flexural strength GDMA: glycerol dimethacrylate GPDM: glycerol phosphate dimethacrylate HDDMA: 1,6-hexanediol dimethacrylate HEMA: 2-hydroxyethyl methacrylate IBMA: isobornyl methacrylate MA: methacrylic acid MAC-10: 11-methacryloyloxy-1,10-undecanedicarboxylic acid MAEPA: 2,4,6 trimethylphenyl 2-[4-(dihydroxyphosphoryl)-2-oxabutyl]acrylate MDPB: methacryloyloxydodecylpyridinium bromide MF8P: 6-methacryloxy-2,2,3,3,4,4,5,5-octafluorohexyl dihydrogen phosphate NaF: sodium fluoride Na2SiF6: disodium hexafluorosilicate NPG-GMA: N-phenylglycine glycidyl methacrylate NTG-GMA: N-tolylglycine glycidyl methacrylate or N-(2-hydroxy-3-((2-methyl-1-oxo-2-propenyl)oxy)propyl)-N-tolyl glycine PEGDMA: polyethylene glycol dimethacrylate PEM-F: pentamethacryloyloxyethylcyclohexaphosphazene monofluoride PENTA: dipentaerythritol pentaacrylate monophosphate Phenyl-P: 2-(methacryloyloxyethyl)phenyl hydrogenphosphate PMDM: pyromellitic diethylmethacrylate or 2,5-dimethacryloyloxyethyloxycarbonyl-1,4-benzenedicarboxylic acid PMGDM: pyromellitic glycerol dimethacrylate or 2,5-bis(1,3-dimethacryloyloxyprop-2-yloxycarbonyl)benzene-1,4-dicarboxylic acid POSS nano-particulates: polyhedral oligomer silsesquioxanes QAUDMA-m: quaternary ammonium urethane-dimethacrylate derivative (QAUDMA-m, where m was 8, 10, 12, 14, 16, 18, and corresponded to the number of carbon atoms in the N-alkyl substituent) SBS: Shear bond strength SiO2 nanofiber fillers: silicon dioxide nanofibers TBS: Tensile bond strength TE-EGDMA: tetraethylene glycol dimethacrylate TEG-DVBE: triethylene glycol divinylbenzyl ether TEGDMA: triethylene glycol dimethacrylate TMAAEA: Tris[(2-methylaminoacryl)ethyl]amine TMPTMA: trimethylolpropane trimethacrylate UDMA: urethane dimethacrylate or 1,6-di(methacryloyloxyethylcarbamoyl)-3,30,5-trimethylhexane |
VS: Volumetric shrinkage WS: Water sorption WSL: Water solubility |
References
- Ferracane, J.L. Resin composite--state of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Van Meerbeek, B.; Yoshihara, K.; Yoshida, Y.; Mine, A.; De Munck, J.; Van Landuyt, K.L. State of the art of self-etch adhesives. Dent. Mater. 2011, 27, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Van Meerbeek, B.; De Munck, J.; Yoshida, Y.; Inoue, S.; Vargas, M.; Vijay, P.; Van Landuyt, K.; Lambrechts, P.; Vanherle, G. Buonocore memorial lecture. Adhesion to enamel and dentin: Current status and future challenges. Oper. Dent. 2003, 28, 215–235. [Google Scholar] [PubMed]
- Van Landuyt, K.L.; Snauwaert, J.; De Munck, J.; Peumans, M.; Yoshida, Y.; Poitevin, A.; Coutinho, E.; Suzuki, K.; Lambrechts, P.; Van Meerbeek, B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007, 28, 3757–3785. [Google Scholar] [CrossRef]
- Heintze, S.D.; Loguercio, A.D.; Hanzen, T.A.; Reis, A.; Rousson, V. Clinical efficacy of resin-based direct posterior restorations and glass-ionomer restorations—An updated meta-analysis of clinical outcome parameters. Dent. Mater. 2022, 38, e109–e135. [Google Scholar] [CrossRef]
- Hofsteenge, J.W.; Scholtanus, J.D.; Özcan, M.; Nolte, I.M.; Cune, M.S.; Gresnigt, M.M.M. Clinical longevity of extensive direct resin composite restorations after amalgam replacement with a mean follow-up of 15 years. J. Dent. 2023, 130, 104409. [Google Scholar] [CrossRef]
- Scholz, K.J.; Tabenski, I.M.; Vogl, V.; Cieplik, F.; Schmalz, G.; Buchalla, W.; Hiller, K.A.; Federlin, M. Randomized clinical split-mouth study on the performance of CAD/CAM-partial ceramic crowns luted with a self-adhesive resin cement or a universal adhesive and a conventional resin cement after 39 months. J. Dent. 2021, 115, 103837. [Google Scholar] [CrossRef]
- Yoshihara, K.; Yoshida, Y.; Nagaoka, N.; Hayakawa, S.; Okihara, T.; De Munck, J.; Maruo, Y.; Nishigawa, G.; Minagi, S.; Osaka, A.; et al. Adhesive interfacial interaction affected by different carbon-chain monomers. Dent. Mater. 2013, 29, 888–897. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Hayakawa, S.; Okihara, T.; Yoshida, Y.; Van Meerbeek, B. Chemical interaction of glycero-phosphate dimethacrylate (GPDM) with hydroxyapatite and dentin. Dent. Mater. 2018, 34, 1072–1081. [Google Scholar] [CrossRef]
- Sebold, M.; André, C.B.; Sahadi, B.O.; Breschi, L.; Giannini, M. Chronological history and current advancements of dental adhesive systems development: A narrative review. J. Adhes. Sci. Technol. 2021, 35, 1941–1967. [Google Scholar] [CrossRef]
- Thomé, T.; Erhardt, M.C.; Leme, A.A.; Al Bakri, I.; Bedran-Russo, A.K.; Bertassoni, L.E. Emerging polymers in dentistry. Adv. Polym. Med. 2015, 265–296. [Google Scholar] [CrossRef]
- Zhang, K.; Baras, B.; Lynch, C.D.; Weir, M.D.; Melo, M.A.S.; Li, Y.; Reynolds, M.A.; Bai, Y.; Wang, L.; Wang, S.; et al. Developing a New Generation of Therapeutic Dental Polymers to Inhibit Oral Biofilms and Protect Teeth. Materials 2018, 11, 1747. [Google Scholar] [CrossRef] [PubMed]
- Moszner, N.; Salz, U. New developments of polymeric dental composites. Prog. Polym. Sci. 2001, 26, 535–576. [Google Scholar] [CrossRef]
- Mount, G.J.; Hume, W.R.; Ngo, H.C.; Wolff, M.S. Preservation and Restoration of Tooth Structure; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Buonocore, M.G. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J. Dent. Res. 1955, 34, 849–853. [Google Scholar] [CrossRef]
- Retief, D.H. Effect of conditioning the enamel surface with phosphoric acid. J. Dent. Res. 1973, 52, 333–341. [Google Scholar] [CrossRef]
- Nakabayashi, N.; Nakamura, M.; Yasuda, N. Hybrid layer as a dentin-bonding mechanism. J. Esthet. Dent. 1991, 3, 133–138. [Google Scholar] [CrossRef]
- Nakabayashi, N.; Kojima, K.; Masuhara, E. The promotion of adhesion by the infiltration of monomers into tooth substrates. J. Biomed. Mater. Res. 1982, 16, 265–273. [Google Scholar] [CrossRef]
- Nakabayashi, N.; Pashley, D.H. Hybridization of Dental Hard Tissues; Quintessence Publishing Company: Berlin, Germany, 1998. [Google Scholar]
- Kanca, J., 3rd. Improving bond strength through acid etching of dentin and bonding to wet dentin surfaces. J. Am. Dent. Assoc. 1992, 123, 35–43. [Google Scholar] [CrossRef]
- Fusayama, T.; Nakamura, M.; Kurosaki, N.; Iwaku, M. Non-pressure adhesion of a new adhesive restorative resin. J. Dent. Res. 1979, 58, 1364–1370. [Google Scholar] [CrossRef]
- Gwinnett, A.J. Moist versus dry dentin: Its effect on shear bond strength. Am. J. Dent. 1992, 5, 127–129. [Google Scholar]
- Wilson, A.D.; Kent, B.E. A new translucent cement for dentistry. The glass ionomer cement. Br. Dent. J. 1972, 132, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Current trends in dental composites. Crit. Rev. Oral Biol. Med. 1995, 6, 302–318. [Google Scholar] [CrossRef] [PubMed]
- Perdigao, J.; Swift, E.J., Jr. Universal Adhesives. J. Esthet. Restor. Dent. 2015, 27, 331–334. [Google Scholar] [CrossRef]
- Cramer, N.B.; Stansbury, J.W.; Bowman, C.N. Recent advances and developments in composite dental restorative materials. J. Dent. Res. 2011, 90, 402–416. [Google Scholar] [CrossRef]
- Almeida, R.; Manarte-Monteiro, P.; Domingues, J.; Falcao, C.; Herrero-Climent, M.; Rios-Carrasco, B.; Lemos, B.F. High-Power LED Units Currently Available for Dental Resin-Based Materials—A Review. Polymers 2021, 13, 2165. [Google Scholar] [CrossRef]
- Mitra, S.B.; Wu, D.; Holmes, B.N. An application of nanotechnology in advanced dental materials. J. Am. Dent. Assoc. 2003, 134, 1382–1390. [Google Scholar] [CrossRef]
- Tay, F.R.; Pashley, D.H. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials 2008, 29, 1127–1137. [Google Scholar] [CrossRef]
- Dey, S.; Shenoy, A.; Kundapur, S.S.; Das, M.; Gunwal, M.; Bhattacharya, R. Evaluation of the effect of different contaminants on the shear bond strength of a two-step self-etch adhesive system, one-step, self-etch adhesive system and a total-etch adhesive system. J. Int. Oral Health 2016, 8, 378. [Google Scholar] [CrossRef]
- Armstrong, S.R.; Vargas, M.A.; Fang, Q.; Laffoon, J.E. Microtensile bond strength of a total-etch 3-step, total-etch 2-step, self-etch 2-step, and a self-etch 1-step dentin bonding system through 15-month water storage. J. Adhes. Dent. 2003, 5, 47–56. [Google Scholar]
- De Munck, J.; Van Meerbeek, B.; Yoshida, Y.; Inoue, S.; Vargas, M.; Suzuki, K.; Lambrechts, P.; Vanherle, G. Four-year water degradation of total-etch adhesives bonded to dentin. J. Dent. Res. 2003, 82, 136–140. [Google Scholar] [CrossRef]
- Valsan, D.; Bhaskaran, S.; Mathew, J.; Hari, K.; Joy, J. Comparative Evaluation of the Bonding Efficacy of Multimode Adhesive, Two-Step Self-Etch Adhesive, and a Total-Etch System to Pulpal Floor Dentin—An In vitro Study. Contemp. Clin. Dent. 2023, 14, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Mutluay, A.T.; Mutluay, M. Characterisation of the calcium silicate-based cement–composite interface and the bonding strength with total-etch or single/two-stage self-etch adhesive systems. Aust. Endod. J. 2022, 48, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Giannini, M.; Makishi, P.; Ayres, A.P.; Vermelho, P.M.; Fronza, B.M.; Nikaido, T.; Tagami, J. Self-etch adhesive systems: A literature review. Braz. Dent. J. 2015, 26, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Van Meerbeek, B.; Yoshihara, K.; Van Landuyt, K.; Yoshida, Y.; Peumans, M. From Buonocore’s pioneering acid-etch technique to self-adhering restoratives. A status perspective of rapidly advancing dental adhesive technology. J. Adhes. Dent. 2020, 22, 7–34. [Google Scholar]
- Sofan, E.; Sofan, A.; Palaia, G.; Tenore, G.; Romeo, U.; Migliau, G. Classification review of dental adhesive systems: From the IV generation to the universal type. Ann. Stomatol. 2017, 8, 1–17. [Google Scholar] [CrossRef]
- McLean, J.W. The pioneers of enamel and dentin bonding. J. Adhes. Dent. 1999, 1, 185–187. [Google Scholar]
- Kramer, I.; McLean, J. The response of the human pulp to self-polymerising acrylic. Br. Dent. J. 1952, 93, 150–153. [Google Scholar]
- Anusavice, K.J.; Shen, C.; Rawls, H.R. Phillips’ Science of Dental Materials; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Kugel, G.; Ferrari, M. The science of bonding: From first to sixth generation. J. Am. Dent. Assoc. 2000, 131, 20S–25S. [Google Scholar] [CrossRef]
- Swift, E.J., Jr.; Perdigao, J.; Heymann, H.O. Bonding to enamel and dentin: A brief history and state of the art, 1995. Quintessence Int. 1995, 26, 95–110. [Google Scholar]
- Buonocore, M.G.; Matsui, A.; Gwinnett, A.J. Penetration of resin dental materials into enamel surfaces with reference to bonding. Arch. Oral Biol. 1968, 13, 61–70. [Google Scholar] [CrossRef]
- Broome, J.; Duke, E.; Norling, B. Shear bond strengths of composite resin with three dentin adhesives. J. Dent. Res. 1985, 64, 244. [Google Scholar]
- Perdigao, J.; Lambrechts, P.; Van Meerbeek, B.; Vanherle, G.; Lopes, A.L. Field emission SEM comparison of four postfixation drying techniques for human dentin. J. Biomed. Mater. Res. 1995, 29, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Kanca, J., 3rd. Resin bonding to wet substrate. 1. Bonding to dentin. Quintessence Int. 1992, 23, 39–41. [Google Scholar] [PubMed]
- Tao, L.; Pashley, D.H.; Boyd, L. Effect of different types of smear layers on dentin and enamel shear bond strengths. Dent. Mater. 1988, 4, 208–216. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Peumans, M.; Poitevin, A.; Mine, A.; Van Ende, A.; Neves, A.; De Munck, J. Relationship between bond-strength tests and clinical outcomes. Dent. Mater. 2010, 26, e100–e121. [Google Scholar] [CrossRef]
- De Munck, J.d.; Van Landuyt, K.; Peumans, M.; Poitevin, A.; Lambrechts, P.; Braem, M.; Van Meerbeek, B. A critical review of the durability of adhesion to tooth tissue: Methods and results. J. Dent. Res. 2005, 84, 118–132. [Google Scholar] [CrossRef]
- Leinfelder, K.F. Dentin adhesives for the twenty-first century. Dent. Clin. N. Am. 2001, 45, 1–6. [Google Scholar] [CrossRef]
- Alex, G. Adhesive considerations in the placement of direct composite restorations. Oral Health 2008, 98, 109–119. [Google Scholar]
- Pashley, D.H.; Carvalho, R.M.; Sano, H.; Nakajima, M.; Yoshiyama, M.; Shono, Y.; Fernandes, C.A.; Tay, F. The microtensile bond test: A review. J. Adhes. Dent. 1999, 1, 299–309. [Google Scholar]
- Watanabe, I.; Nakabayashi, N.; Pashley, D.H. Bonding to ground dentin by a phenyl-P self-etching primer. J. Dent. Res. 1994, 73, 1212–1220. [Google Scholar] [CrossRef]
- Hashimoto, M.; Fujita, S.; Endo, K.; Ohno, H. In vitro degradation of resin-dentin bonds with one-bottle self-etching adhesives. Eur. J. Oral. Sci. 2009, 117, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Moszner, N.; Salz, U.; Zimmermann, J. Chemical aspects of self-etching enamel-dentin adhesives: A systematic review. Dent. Mater. 2005, 21, 895–910. [Google Scholar] [CrossRef] [PubMed]
- Tay, F.R.; Pashley, D.H. Have dentin adhesives become too hydrophilic? J.-Can. Dent. Assoc. 2003, 69, 726–732. [Google Scholar] [PubMed]
- Yaseen, S.M.; Reddy, V.S. Comparative evaluation of shear bond strength of two self-etching adhesives (sixth and seventh generation) on dentin of primary and permanent teeth: An in vitro study. J. Indian. Soc. Pedod. Prev. Dent. 2009, 27, 33. [Google Scholar] [CrossRef]
- Mishra, A.; Koul, M.; Upadhyay, V.K.; Abdullah, A. A Comparative Evaluation of Shear Bond Strength of Seventh- and Eighth-Generation Self-etch Dentin Bonding Agents in Primary Teeth: An In Vitro Study. Int. J. Clin. Pediatr. Dent. 2020, 13, 225–229. [Google Scholar] [CrossRef]
- Sanares, A.M.; Itthagarun, A.; King, N.M.; Tay, F.R.; Pashley, D.H. Adverse surface interactions between one-bottle light-cured adhesives and chemical-cured composites. Dent. Mater. 2001, 17, 542–556. [Google Scholar] [CrossRef]
- Nair, M.; Paul, J.; Kumar, S.; Chakravarthy, Y.; Krishna, V. Comparative evaluation of the bonding efficacy of sixth and seventh generation bonding agents: An In-Vitro study. J. Conserv. Dent. JCD 2014, 17, 27. [Google Scholar] [CrossRef]
- Rosa, W.L.; Piva, E.; Silva, A.F. Bond strength of universal adhesives: A systematic review and meta-analysis. J. Dent. 2015, 43, 765–776. [Google Scholar] [CrossRef]
- Bedran-Russo, A.; Leme-Kraus, A.A.; Vidal, C.M.P.; Teixeira, E.C. An Overview of Dental Adhesive Systems and the Dynamic Tooth-Adhesive Interface. Dent. Clin. N. Am. 2017, 61, 713–731. [Google Scholar] [CrossRef]
- Elias, S.T.; Santos, A.F.d.; Garcia, F.C.; Pereira, P.N.; Hilgert, L.A.; Fonseca-Bazzo, Y.M.; Guerra, E.N.; Ribeiro, A.P.D. Cytotoxicity of universal, self-etching and etch-and-rinse adhesive systems according to the polymerization time. Braz. Dent. J. 2015, 26, 160–168. [Google Scholar] [CrossRef]
- Perdigao, J.; Kose, C.; Mena-Serrano, A.P.; De Paula, E.A.; Tay, L.Y.; Reis, A.; Loguercio, A.D. A new universal simplified adhesive: 18-month clinical evaluation. Oper. Dent. 2014, 39, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Bowen, R. Adhesive bonding of various materials to hard tooth tissues. II. Bonding to dentin promoted by a surface-active comonomer. J. Dent. Res. 1965, 44, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Janani, A.; Majidinia, S.; Sadeghi, R.; Shirazi, A.S. Are self-etch adhesives reliable for primary tooth dentin? A systematic review and meta-analysis. J. Conserv. Dent. 2018, 21, 243–250. [Google Scholar] [CrossRef]
- Yoshida, Y.; Yoshihara, K.; Nagaoka, N.; Hayakawa, S.; Torii, Y.; Ogawa, T.; Osaka, A.; Meerbeek, B.V. Self-assembled nano-layering at the adhesive interface. J. Dent. Res. 2012, 91, 376–381. [Google Scholar] [CrossRef]
- Wagner, A.; Wendler, M.; Petschelt, A.; Belli, R.; Lohbauer, U. Bonding performance of universal adhesives in different etching modes. J. Dent. 2014, 42, 800–807. [Google Scholar] [CrossRef]
- Tay, F.R.; Pashley, D.H. Dental adhesives of the future. J. Adhes. Dent. 2002, 4, 91. [Google Scholar]
- Fehrenbach, J.; Lacerda-Santos, R.; Machado, L.S.; Miotti, L.L.; de Carvalho, F.G.; Munchow, E.A. Which self-etch acidic composition may result in higher dental bonds at the long-term? A network meta-analysis review of in vitro studies. J. Dent. 2022, 126, 104283. [Google Scholar] [CrossRef]
- Breschi, L.; Mazzoni, A.; Ruggeri, A.; Cadenaro, M.; Di Lenarda, R.; De Stefano Dorigo, E. Dental adhesion review: Aging and stability of the bonded interface. Dent. Mater. 2008, 24, 90–101. [Google Scholar] [CrossRef]
- Pashley, D.H.; Sano, H.; Ciucchi, B.; Yoshiyama, M.; Carvalho, R.M. Adhesion testing of dentin bonding agents: A review. Dent. Mater. 1995, 11, 117–125. [Google Scholar] [CrossRef]
- Haller, B. Recent developments in dentin bonding. Am. J. Dent. 2000, 13, 44–50. [Google Scholar]
- Breschi, L.; Maravic, T.; Cunha, S.R.; Comba, A.; Cadenaro, M.; Tjaderhane, L.; Pashley, D.H.; Tay, F.R.; Mazzoni, A. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications. Dent. Mater. 2018, 34, 78–96. [Google Scholar] [CrossRef] [PubMed]
- van Dijken, J.W.; Sunnegardh-Gronberg, K.; Lindberg, A. Clinical long-term retention of etch-and-rinse and self-etch adhesive systems in non-carious cervical lesions. A 13 years evaluation. Dent. Mater. 2007, 23, 1101–1107. [Google Scholar] [CrossRef]
- Nishitani, Y.; Yoshiyama, M.; Donnelly, A.M.; Agee, K.A.; Sword, J.; Tay, F.R.; Pashley, D.H. Effects of resin hydrophilicity on dentin bond strength. J. Dent. Res. 2006, 85, 1016–1021. [Google Scholar] [CrossRef]
- Pashley, D.H.; Tay, F.R.; Yiu, C.; Hashimoto, M.; Breschi, L.; Carvalho, R.M.; Ito, S. Collagen degradation by host-derived enzymes during aging. J. Dent. Res. 2004, 83, 216–221. [Google Scholar] [CrossRef]
- Swift, E.J., Jr. Dentin/enamel adhesives: Review of the literature. Pediatr. Dent. 2002, 24, 456–461. [Google Scholar]
- Peumans, M.; Kanumilli, P.; De Munck, J.; Van Landuyt, K.; Lambrechts, P.; Van Meerbeek, B. Clinical effectiveness of contemporary adhesives: A systematic review of current clinical trials. Dent. Mater. 2005, 21, 864–881. [Google Scholar] [CrossRef]
- Pulgar, R.; Olea-Serrano, M.F.; Novillo-Fertrell, A.; Rivas, A.; Pazos, P.; Pedraza, V.; Navajas, J.-M.; Olea, N. Determination of bisphenol A and related aromatic compounds released from bis-GMA-based composites and sealants by high performance liquid chromatography. Environ. Health Perspect. 2000, 108, 21–27. [Google Scholar] [CrossRef]
- Soderholm, K.J.; Mariotti, A. BIS-GMA--based resins in dentistry: Are they safe? J. Am. Dent. Assoc. 1999, 130, 201–209. [Google Scholar] [CrossRef]
- Arenholt-Bindslev, D.; Breinholt, V.; Preiss, A.; Schmalz, G. Time-related bisphenol-A content and estrogenic activity in saliva samples collected in relation to placement of fissure sealants. Clin. Oral. Investig. 1999, 3, 120–125. [Google Scholar] [CrossRef]
- Schmalz, G.; Preiss, A.; Arenholt-Bindslev, D. Bisphenol-A content of resin monomers and related degradation products. Clin. Oral Investig. 1999, 3, 114–119. [Google Scholar] [CrossRef]
- Izumi, Y.; Yamaguchi, K.; Ishikawa, T.; Ando, M.; Chiba, K.; Hashimoto, H.; Shiotani, M.; Fujisawa, M. Molecular changes induced by bisphenol-A in rat Sertoli cell culture. Syst. Biol. Reprod. Med. 2011, 57, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Massaro, H.; Zambelli, L.F.A.; Britto, A.A.; Vieira, R.P.; Ligeiro-de-Oliveira, A.P.; Andia, D.C.; Oliveira, M.T.; Lima, A.F. Solvent and HEMA Increase Adhesive Toxicity and Cytokine Release from Dental Pulp Cells. Materials 2019, 12, 2750. [Google Scholar] [CrossRef] [PubMed]
- Dressano, D.; Salvador, M.V.; Oliveira, M.T.; Marchi, G.M.; Fronza, B.M.; Hadis, M.; Palin, W.M.; Lima, A.F. Chemistry of novel and contemporary resin-based dental adhesives. J. Mech. Behav. Biomed. Mater. 2020, 110, 103875. [Google Scholar] [CrossRef] [PubMed]
- Pratap, B.; Gupta, R.K.; Bhardwaj, B.; Nag, M. Resin based restorative dental materials: Characteristics and future perspectives. Jpn. Dent. Sci. Rev. 2019, 55, 126–138. [Google Scholar] [CrossRef]
- Barszczewska-Rybarek, I.M. Structure-property relationships in dimethacrylate networks based on Bis-GMA, UDMA and TEGDMA. Dent. Mater. 2009, 25, 1082–1089. [Google Scholar] [CrossRef]
- Finger, W.J.; Fritz, U.B. Resin bonding to enamel and dentin with one-component UDMA/HEMA adhesives. Eur. J. Oral Sci. 1997, 105, 183–186. [Google Scholar] [CrossRef]
- Asmussen, E.; Peutzfeldt, A. Influence of UEDMA BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent. Mater. 1998, 14, 51–56. [Google Scholar] [CrossRef]
- Szczesio-Wlodarczyk, A.; Polikowski, A.; Krasowski, M.; Fronczek, M.; Sokolowski, J.; Bociong, K. The Influence of Low-Molecular-Weight Monomers (TEGDMA, HDDMA, HEMA) on the Properties of Selected Matrices and Composites Based on Bis-GMA and UDMA. Materials 2022, 15, 2649. [Google Scholar] [CrossRef]
- Becher, R.; Kopperud, H.M.; Al, R.H.; Samuelsen, J.T.; Morisbak, E.; Dahlman, H.J.; Lilleaas, E.M.; Dahl, J.E. Pattern of cell death after in vitro exposure to GDMA, TEGDMA, HEMA and two compomer extracts. Dent. Mater. 2006, 22, 630–640. [Google Scholar] [CrossRef]
- Araujo-Neto, V.G.; Nobre, C.F.A.; De Paula, D.M.; Souza, L.C.; Silva, J.C.; Moreira, M.M.; Picanco, P.R.B.; Feitosa, V.P. Glycerol-dimethacrylate as alternative hydrophilic monomer for HEMA replacement in simplified adhesives. J. Mech. Behav. Biomed. Mater. 2018, 82, 95–101. [Google Scholar] [CrossRef]
- Yoshida, Y.; Van Meerbeek, B.; Nakayama, Y.; Yoshioka, M.; Snauwaert, J.; Abe, Y.; Lambrechts, P.; Vanherle, G.; Okazaki, M. Adhesion to and decalcification of hydroxyapatite by carboxylic acids. J. Dent. Res. 2001, 80, 1565–1569. [Google Scholar] [CrossRef] [PubMed]
- Hosoya, Y.; Tay, F.R. Bonding ability of 4-META self-etching primer used with 4-META/MMA-TBB resin to enamel and dentine: Primary vs permanent teeth. J. Dent. 2014, 42, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Nagakane, K.; Yoshida, Y.; Hirata, I.; Fukuda, R.; Nakayama, Y.; Shirai, K.; Ogawa, T.; Suzuki, K.; Van Meerbeek, B.; Okazaki, M. Analysis of chemical interaction of 4-MET with hydroxyapatite using XPS. Dent. Mater. J. 2006, 25, 645–649. [Google Scholar] [CrossRef]
- Yoshida, Y.; Nagakane, K.; Fukuda, R.; Nakayama, Y.; Okazaki, M.; Shintani, H.; Inoue, S.; Tagawa, Y.; Suzuki, K.; De Munck, J. Comparative study on adhesive performance of functional monomers. J. Dent. Res. 2004, 83, 454–458. [Google Scholar] [CrossRef]
- Yoshida, Y.; Yoshihara, K.; Hayakawa, S.; Nagaoka, N.; Okihara, T.; Matsumoto, T.; Minagi, S.; Osaka, A.; Van Landuyt, K.; Van Meerbeek, B. HEMA inhibits interfacial nano-layering of the functional monomer MDP. J. Dent. Res. 2012, 91, 1060–1065. [Google Scholar] [CrossRef]
- Nurrohman, H.; Nakashima, S.; Takagaki, T.; Sadr, A.; Nikaido, T.; Asakawa, Y.; Uo, M.; Marshall, S.J.; Tagami, J. Immobilization of phosphate monomers on collagen induces biomimetic mineralization. Biomed. Mater. Eng. 2015, 25, 89–99. [Google Scholar] [CrossRef]
- Hayakawa, T.; Yoshinari, M.; Sakae, T.; Nemoto, K. Calcium phosphate formation on the phosphorylated dental bonding agent in electrolyte solution. J. Oral. Rehabil. 2004, 31, 67–73. [Google Scholar] [CrossRef]
- Teshima, I. Degradation of 10-methacryloyloxydecyl dihydrogen phosphate. J. Dent. Res. 2010, 89, 1281–1286. [Google Scholar] [CrossRef]
- Andre, C.B.; Gomes, B.P.; Duque, T.M.; Stipp, R.N.; Chan, D.C.; Ambrosano, G.M.; Giannini, M. Dentine bond strength and antimicrobial activity evaluation of adhesive systems. J. Dent. 2015, 43, 466–475. [Google Scholar] [CrossRef]
- Inoue, S.; Koshiro, K.; Yoshida, Y.; De Munck, J.; Nagakane, K.; Suzuki, K.; Sano, H.; Van Meerbeek, B. Hydrolytic stability of self-etch adhesives bonded to dentin. J. Dent. Res. 2005, 84, 1160–1164. [Google Scholar] [CrossRef]
- Sideridou, I.D.; Achilias, D.S. Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 74, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Floyd, C.J.; Dickens, S.H. Network structure of Bis-GMA- and UDMA-based resin systems. Dent. Mater. 2006, 22, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Van Landuyt, K.; De Munck, J.; Snauwaert, J.; Coutinho, E.; Poitevin, A.; Yoshida, Y.; Inoue, S.; Peumans, M.; Suzuki, K.; Lambrechts, P. Monomer-solvent phase separation in one-step self-etch adhesives. J. Dent. Res. 2005, 84, 183–188. [Google Scholar] [CrossRef]
- Spencer, P.; Wang, Y.; Walker, M.P.; Wieliczka, D.M.; Swafford, J.R. Interfacial chemistry of the dentin/adhesive bond. J. Dent. Res. 2000, 79, 1458–1463. [Google Scholar] [CrossRef]
- Sideridou, I.D.; Karabela, M.M.; Vouvoudi, E.C. Dynamic thermomechanical properties and sorption characteristics of two commercial light cured dental resin composites. Dent. Mater. 2008, 24, 737–743. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Stansbury, J.; Burke, F.J.T. Self-adhesive resin cements–chemistry, properties and clinical considerations. J. Oral Rehabil. 2011, 38, 295–314. [Google Scholar] [CrossRef]
- Elshereksi, N.W.; Ghazali, M.; Muchtar, A.; Azhari, C.H. Review of titanate coupling agents and their application for dental composite fabrication. Dent. Mater. J. 2017, 36, 539–552. [Google Scholar] [CrossRef]
- Ikemura, K.; Tay, F.R.; Endo, T.; Pashley, D.H. A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers. Dent. Mater. J. 2008, 27, 315–339. [Google Scholar] [CrossRef]
- Paffenbarger, G.C. Dental cements, direct filling resins, composite and adhesive restorative materials: A resume. J. Biomed. Mater. Res. 1972, 6, 363–393. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Yoshihara, K. Clinical recipe for durable dental bonding: Why and how? J. Adhes. Dent. 2014, 16, 94. [Google Scholar]
- Nikaido, T.; Ichikawa, C.; Li, N.; Takagaki, T.; Sadr, A.; Yoshida, Y.; Suzuki, K.; Tagami, J. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone. Dent. Mater. J. 2011, 30, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Han, F.; Yuan, X.; Chen, C. Effects of Solvents and pH Values on the Chemical Affinity of 10-Methacryloyloxydecyl Dihydrogen Phosphate toward Hydroxyapatite. ACS Omega 2021, 6, 19183–19193. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Yoshida, Y.; Hayakawa, S.; Nagaoka, N.; Kamenoue, S.; Okihara, T.; Ogawa, T.; Nakamura, M.; Osaka, A.; Van Meerbeek, B. Novel fluoro-carbon functional monomer for dental bonding. J. Dent. Res. 2014, 93, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Nagaoka, N.; Yoshida, Y.; Van Meerbeek, B.; Hayakawa, S. Atomic level observation and structural analysis of phosphoric-acid ester interaction at dentin. Acta Biomater. 2019, 97, 544–556. [Google Scholar] [CrossRef]
- Tian, F.C.; Wang, X.Y.; Huang, Q.; Niu, L.N.; Mitchell, J.; Zhang, Z.Y.; Prananik, C.; Zhang, L.; Chen, J.H.; Breschi, L.; et al. Effect of nanolayering of calcium salts of phosphoric acid ester monomers on the durability of resin-dentin bonds. Acta Biomater. 2016, 38, 190–200. [Google Scholar] [CrossRef]
- Feitosa, V.P.; Sauro, S.; Ogliari, F.A.; Ogliari, A.O.; Yoshihara, K.; Zanchi, C.H.; Correr-Sobrinho, L.; Sinhoreti, M.A.; Correr, A.B.; Watson, T.F.; et al. Impact of hydrophilicity and length of spacer chains on the bonding of functional monomers. Dent. Mater. 2014, 30, e317–e323. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Q.; Zhao, Q.; Bai, Z.; Chen, C.; Xie, H. Inhibition of matrix metalloproteinase-9 by 10-MDP and its calcium salt contributes to improved dentin-bonding durability. Int. J. Adhes. Adhes. 2023, 120, 103302. [Google Scholar] [CrossRef]
- Feitosa, V.P.; Sauro, S.; Ogliari, F.A.; Stansbury, J.W.; Carpenter, G.H.; Watson, T.F.; Sinhoreti, M.A.; Correr, A.B. The role of spacer carbon chain in acidic functional monomers on the physicochemical properties of self-etch dental adhesives. J. Dent. 2014, 42, 565–574. [Google Scholar] [CrossRef]
- Mokeem, L.S.; Garcia, I.M.; Melo, M.A. Degradation and Failure Phenomena at the Dentin Bonding Interface. Biomedicines 2023, 11, 1256. [Google Scholar] [CrossRef]
- Engelmann, J.; Janke, V.; Volk, J.; Leyhausen, G.; von Neuhoff, N.; Schlegelberger, B.; Geurtsen, W. Effects of BisGMA on glutathione metabolism and apoptosis in human gingival fibroblasts in vitro. Biomaterials 2004, 25, 4573–4580. [Google Scholar] [CrossRef]
- Geurtsen, W.; Lehmann, F.; Spahl, W.; Leyhausen, G. Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J. Biomed. Mater. Res. 1998, 41, 474–480. [Google Scholar] [CrossRef]
- Geurtsen, W.; Spahl, W.; Muller, K.; Leyhausen, G. Aqueous extracts from dentin adhesives contain cytotoxic chemicals. J. Biomed. Mater. Res. 1999, 48, 772–777. [Google Scholar] [CrossRef]
- Lewis, J.B.; Rueggeberg, F.A.; Lapp, C.A.; Ergle, J.W.; Schuster, G.S. Identification and characterization of estrogen-like components in commercial resin-based dental restorative materials. Clin. Oral. Investig. 1999, 3, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Nomura, Y.; Ishibashi, H.; Miyahara, M.; Shinohara, R.; Shiraishi, F.; Arizono, K. Effects of dental resin metabolites on estrogenic activity in vitro. J. Mater. Sci. Mater. Med. 2003, 14, 307–310. [Google Scholar] [CrossRef]
- De Nys, S.; Duca, R.C.; Vervliet, P.; Covaci, A.; Boonen, I.; Elskens, M.; Vanoirbeek, J.; Godderis, L.; Van Meerbeek, B.; Van Landuyt, K.L. Bisphenol A as degradation product of monomers used in resin-based dental materials. Dent. Mater. 2021, 37, 1020–1029. [Google Scholar] [CrossRef]
- vom Saal, F.S.; Akingbemi, B.T.; Belcher, S.M.; Birnbaum, L.S.; Crain, D.A.; Eriksen, M.; Farabollini, F.; Guillette, L.J., Jr.; Hauser, R.; Heindel, J.J.; et al. Chapel Hill bisphenol A expert panel consensus statement: Integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod. Toxicol. 2007, 24, 131–138. [Google Scholar] [CrossRef]
- Vandenberg, L.N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W.V. Human exposure to bisphenol A (BPA). Reprod. Toxicol. 2007, 24, 139–177. [Google Scholar] [CrossRef]
- Zhang, L.; Weir, M.D.; Chow, L.C.; Antonucci, J.M.; Chen, J.; Xu, H.H. Novel rechargeable calcium phosphate dental nanocomposite. Dent. Mater. 2016, 32, 285–293. [Google Scholar] [CrossRef]
- Crain, D.A.; Eriksen, M.; Iguchi, T.; Jobling, S.; Laufer, H.; LeBlanc, G.A.; Guillette, L.J., Jr. An ecological assessment of bisphenol-A: Evidence from comparative biology. Reprod. Toxicol. 2007, 24, 225–239. [Google Scholar] [CrossRef]
- Joskow, R.; Barr, D.B.; Barr, J.R.; Calafat, A.M.; Needham, L.L.; Rubin, C. Exposure to bisphenol A from bis-glycidyl dimethacrylate-based dental sealants. J. Am. Dent. Assoc. 2006, 137, 353–362. [Google Scholar] [CrossRef]
- Gayrard, V.; Lacroix, M.Z.; Collet, S.H.; Viguié, C.; Bousquet-Melou, A.; Toutain, P.-L.; Picard-Hagen, N. High bioavailability of bisphenol A from sublingual exposure. Environ. Health Perspect. 2013, 121, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Koin, P.J.; Kilislioglu, A.; Zhou, M.; Drummond, J.L.; Hanley, L. Analysis of the degradation of a model dental composite. J. Dent. Res. 2008, 87, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Dolinoy, D.C.; Huang, D.; Jirtle, R.L. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl. Acad. Sci. USA 2007, 104, 13056–13061. [Google Scholar] [CrossRef] [PubMed]
- Kuan, Y.-H.; Huang, F.-M.; Lee, S.-S.; Li, Y.-C.; Chang, Y.-C. Bisgma stimulates prostaglandin E2 production in macrophages via cyclooxygenase-2, cytosolic phospholipase A2, and mitogen-activated protein kinases family. PLoS ONE 2013, 8, e82942. [Google Scholar] [CrossRef] [PubMed]
- Sadeghinejad, L.; Cvitkovitch, D.G.; Siqueira, W.L.; Merritt, J.; Santerre, J.P.; Finer, Y. Mechanistic, genomic and proteomic study on the effects of BisGMA-derived biodegradation product on cariogenic bacteria. Dent. Mater. 2017, 33, 175–190. [Google Scholar] [CrossRef]
- Sadeghinejad, L.; Cvitkovitch, D.G.; Siqueira, W.L.; Santerre, J.P.; Finer, Y. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans. PLoS ONE 2016, 11, e0165760. [Google Scholar] [CrossRef]
- Li, Y.C.; Kuan, Y.H.; Huang, F.M.; Chang, Y.C. The role of DNA damage and caspase activation in cytotoxicity and genotoxicity of macrophages induced by bisphenol-A-glycidyldimethacrylate. Int. Endod. J. 2012, 45, 499–507. [Google Scholar] [CrossRef]
- Chang, M.C.; Chen, L.I.; Chan, C.P.; Lee, J.J.; Wang, T.M.; Yang, T.T.; Lin, P.S.; Lin, H.J.; Chang, H.H.; Jeng, J.H. The role of reactive oxygen species and hemeoxygenase-1 expression in the cytotoxicity, cell cycle alteration and apoptosis of dental pulp cells induced by BisGMA. Biomaterials 2010, 31, 8164–8171. [Google Scholar] [CrossRef]
- Nakabayashi, N.; Watanabe, A.; Gendusa, N. Dentin adhesion of “modified” 4-META/MMA-TBB resin: Function of HEMA. Dent. Mater. 1992, 8, 259–264. [Google Scholar] [CrossRef]
- Nakaoki, Y.; Nikaido, T.; Pereira, P.; Inokoshi, S.; Tagami, J. Dimensional changes of demineralized dentin treated with HEMA primers. Dent. Mater. 2000, 16, 441–446. [Google Scholar] [CrossRef]
- Spagnuolo, G.; Mauro, C.; Leonardi, A.; Santillo, M.; Paterno, R.; Schweikl, H.; Avvedimento, E.V.; Rengo, S. NF-kappaB protection against apoptosis induced by HEMA. J. Dent. Res. 2004, 83, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, G.; D’Anto, V.; Cosentino, C.; Schmalz, G.; Schweikl, H.; Rengo, S. Effect of N-acetyl-L-cysteine on ROS production and cell death caused by HEMA in human primary gingival fibroblasts. Biomaterials 2006, 27, 1803–1809. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Ho, Y.C.; Lee, S.S.; Li, Y.C.; Lai, M.Y.; Kuan, Y.H. Cytotoxicity and Apoptotic Mechanism of 2-Hydroxyethyl Methacrylate via Genotoxicity and the Mitochondrial-Dependent Intrinsic Caspase Pathway and Intracellular Reactive Oxygen Species Accumulation in Macrophages. Polymers 2022, 14, 3378. [Google Scholar] [CrossRef]
- Imazato, S. Bio-active restorative materials with antibacterial effects: New dimension of innovation in restorative dentistry. Dent. Mater. J. 2009, 28, 11–19. [Google Scholar] [CrossRef]
- Toledano, M.; Osorio, R.; Albaladejo, A.; Aguilera, F.S.; Osorio, E. Differential effect of in vitro degradation on resin-dentin bonds produced by self-etch versus total-etch adhesives. J. Biomed. Mater. Res. A 2006, 77, 128–135. [Google Scholar] [CrossRef]
- Osorio, R.; Pisani-Proenca, J.; Erhardt, M.C.; Osorio, E.; Aguilera, F.S.; Tay, F.R.; Toledano, M. Resistance of ten contemporary adhesives to resin-dentine bond degradation. J. Dent. 2008, 36, 163–169. [Google Scholar] [CrossRef]
- Ozer, F.; Blatz, M.B. Self-etch and etch-and-rinse adhesive systems in clinical dentistry. Compend. Contin. Educ. Dent. 2013, 34, 12–14, 16, 18; quiz 20, 30. [Google Scholar]
- Reis, A.; Carrilho, M.; Breschi, L.; Loguercio, A.D. Overview of clinical alternatives to minimize the degradation of the resin-dentin bonds. Oper. Dent. 2013, 38, E103–E127. [Google Scholar] [CrossRef]
- Toledano, M.; Osorio, R.; Albaladejo, A.; Aguilera, F.S.; Tay, F.R.; Ferrari, M. Effect of cyclic loading on the microtensile bond strengths of total-etch and self-etch adhesives. Oper. Dent. 2006, 31, 25–32. [Google Scholar] [CrossRef]
- Tjäderhane, L.; Nascimento, F.D.; Breschi, L.; Mazzoni, A.; Tersariol, I.L.; Geraldeli, S.; Tezvergil-Mutluay, A.; Carrilho, M.R.; Carvalho, R.M.; Tay, F.R. Optimizing dentin bond durability: Control of collagen degradation by matrix metalloproteinases and cysteine cathepsins. Dent. Mater. 2013, 29, 116–135. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, S.; Zhou, X.; Hannig, M.; Rupf, S.; Feng, J.; Peng, X.; Cheng, L. Modifying adhesive materials to improve the longevity of resinous restorations. Int. J. Mol. Sci. 2019, 20, 723. [Google Scholar] [CrossRef] [PubMed]
- Hannas, A.R.; Pereira, J.C.; Granjeiro, J.M.; Tjäderhane, L. The role of matrix metalloproteinases in the oral environment. Acta Odontol. Scand. 2007, 65, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Betancourt, D.; Baldion, P.; Castellanos, J. Resin-dentin bonding interface: Mechanisms of degradation and strategies for stabilization of the hybrid layer. Int. J. Biomater. 2019, 2019, 5268342. [Google Scholar] [CrossRef]
- Lehmann, N.; Debret, R.; Roméas, A.; Magloire, H.; Degrange, M.; Bleicher, F.; Sommer, P.; Seux, D. Self-etching increases matrix metalloproteinase expression in the dentin-pulp complex. J. Dent. Res. 2009, 88, 77–82. [Google Scholar] [CrossRef]
- Nascimento, F.; Minciotti, C.; Geraldeli, S.; Carrilho, M.; Pashley, D.H.; Tay, F.; Nader, H.; Salo, T.; Tjäderhane, L.; Tersariol, I. Cysteine cathepsins in human carious dentin. J. Dent. Res. 2011, 90, 506–511. [Google Scholar] [CrossRef]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003, 24, 655–665. [Google Scholar] [CrossRef]
- Huang, B.; Siqueira, W.L.; Cvitkovitch, D.G.; Finer, Y. Esterase from a cariogenic bacterium hydrolyzes dental resins. Acta Biomater. 2018, 71, 330–338. [Google Scholar] [CrossRef]
- Yiu, C.K.; King, N.M.; Pashley, D.H.; Suh, B.I.; Carvalho, R.M.; Carrilho, M.R.; Tay, F.R. Effect of resin hydrophilicity and water storage on resin strength. Biomaterials 2004, 25, 5789–5796. [Google Scholar] [CrossRef]
- Armstrong, S.R.; Keller, J.C.; Boyer, D.B. The influence of water storage and C-factor on the dentin-resin composite microtensile bond strength and debond pathway utilizing a filled and unfilled adhesive resin. Dent. Mater. 2001, 17, 268–276. [Google Scholar] [CrossRef]
- Manappallil, J.J. Basic Dental Materials; JP Medical Ltd.: London, UK, 2015. [Google Scholar]
- de Moraes, I.Q.S.; do Nascimento, T.G.; da Silva, A.T.; de Lira, L.M.S.S.; Parolia, A.; de Moraes Porto, I.C.C. Inhibition of matrix metalloproteinases: A troubleshooting for dentin adhesion. Restor. Dent. Endod. 2020, 45, e31. [Google Scholar] [CrossRef]
- Hosaka, K.; Nishitani, Y.; Tagami, J.; Yoshiyama, M.; Brackett, W.W.; Agee, K.; Tay, F.; Pashley, D.H. Durability of resin-dentin bonds to water-vs. ethanol-saturated dentin. J. Dent. Res. 2009, 88, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Spencer, P.; Wang, Y. Adhesive phase separation at the dentin interface under wet bonding conditions. J. Biomed. Mater. Res. 2002, 620, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, R.M.; Chersoni, S.; Frankenberger, R.; Pashley, D.H.; Prati, C.; Tay, F.R. A challenge to the conventional wisdom that simultaneous etching and resin infiltration always occurs in self-etch adhesives. Biomaterials 2005, 26, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Lueckel, H.; Paris, S. Improved resin infiltration of natural caries lesions. J. Dent. Res. 2008, 87, 1112–1116. [Google Scholar] [CrossRef]
- Hashimoto, M.; Tay, F.R.; Svizero, N.R.; de Gee, A.J.; Feilzer, A.J.; Sano, H.; Kaga, M.; Pashley, D.H. The effects of common errors on sealing ability of total-etch adhesives. Dent. Mater. 2006, 22, 560–568. [Google Scholar] [CrossRef]
- Amin, F.; Fareed, M.A.; Zafar, M.S.; Khurshid, Z.; Palma, P.J.; Kumar, N. Degradation and stabilization of resin-dentine interfaces in polymeric dental adhesives: An updated review. Coatings 2022, 12, 1094. [Google Scholar] [CrossRef]
- Zhang, S.c.; Kern, M. The role of host-derived dentinal matrix metalloproteinases in reducing dentin bonding of resin adhesives. Int. J. Oral Sci. 2009, 1, 163–176. [Google Scholar] [CrossRef]
- Arias, V.G.; Campos, I.T.; Pimenta, L.A.F. Microleakage study of three adhesive systems. Braz. Dent. J. 2004, 15, 194–198. [Google Scholar] [CrossRef]
- Cavalcanti, A.N.; Lavigne, C.; Fontes, C.M.; Mathias, P. Microleakage at the composite-repair interface: Effect of different adhesive systems. J. Appl. Oral. Sci. 2004, 12, 219–222. [Google Scholar] [CrossRef]
- Fortin, D.; Swift, E.J., Jr.; Denehy, G.E.; Reinhardt, J.W. Bond strength and microleakage of current dentin adhesives. Dent. Mater. 1994, 10, 253–258. [Google Scholar] [CrossRef]
- Silveira de Araújo, C.; Incerti da Silva, T.; Ogliari, F.; Meireles, S.; Piva, E.; Demarco, F. Microleakage of seven adhesive systems in enamel and dentin. J. Contemp. Dent. Pract. 2006, 7, 26–33. [Google Scholar] [PubMed]
- Dung, S.-Z.; Gregory, R.; Li, Y.; Stookey, G. Effect of lactic acid and proteolytic enzymes on the release of organic matrix components from human root dentin. Caries Res. 1995, 29, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Chaussain, C.; Boukpessi, T.; Khaddam, M.; Tjaderhane, L.; George, A.; Menashi, S. Dentin matrix degradation by host matrix metalloproteinases: Inhibition and clinical perspectives toward regeneration. Front. Physiol. 2013, 4, 308. [Google Scholar] [CrossRef]
- Femiano, F.; Femiano, R.; Femiano, L.; Jamilian, A.; Rullo, R.; Perillo, L. Dentin caries progression and the role of metalloproteinases: An update. Eur. J. Paediatr. Dent. 2016, 17, 243–247. [Google Scholar]
- Pitts, N.B.; Drummond, J.; Guggenberger, R.; Ferrillo, P.; Johnston, S. Incorporating new materials and techniques into clinical practice. Adv. Dent. Res. 2013, 25, 33–40. [Google Scholar] [CrossRef]
- Daood, U.; Sauro, S.; Pichika, M.R.; Omar, H.; Liang Lin, S.; Fawzy, A.S. Novel riboflavin/VE-TPGS modified universal dentine adhesive with superior dentine bond strength and self-crosslinking potential. Dent. Mater. 2020, 36, 145–156. [Google Scholar] [CrossRef]
- Eusufzai, S.Z.; Barman, A.; Jamayet, N.B.; Ahmad, W.; Mahdi, S.S.; Sheikh, Z.; Daood, U. Effects of Riboflavin Collagen Crosslinker on Dentin Adhesive Bonding Efficiency: A Systematic Review and Meta-Analysis. Materials 2023, 16, 1701. [Google Scholar] [CrossRef]
- Park, J.G.; Ye, Q.; Topp, E.M.; Kostoryz, E.L.; Wang, Y.; Kieweg, S.L.; Spencer, P. Preparation and Properties of Novel Dentin Adhesives with Esterase Resistance. J. Appl. Polym. Sci. Symp. 2008, 107, 3588–3597. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, Z.; Jiang, H.; Duan, Y.; Li, J.; Liu, X.; Hong, L.; Zhao, C. Preparation and evaluation of novel bio-based Bis-GMA-free dental composites with low estrogenic activity. Dent. Mater. 2022, 38, 281–293. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Zhao, C.; Bu, W.; Zhang, Y.; Na, H. Synthesis, characterization and evaluation of a fluorinated resin monomer with low water sorption. J. Mech. Behav. Biomed. Mater. 2018, 77, 446–454. [Google Scholar] [CrossRef]
- Liang, X.; Liu, F.; He, J. Synthesis of none Bisphenol A structure dimethacrylate monomer and characterization for dental composite applications. Dent. Mater. 2014, 30, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Kerby, R.E.; Knobloch, L.A.; Schricker, S.; Gregg, B. Synthesis and evaluation of modified urethane dimethacrylate resins with reduced water sorption and solubility. Dent. Mater. 2009, 25, 302–313. [Google Scholar] [CrossRef]
- Hong, L.; Wang, Y.; Wang, L.; Zhang, H.; Na, H.; Zhang, Z. Synthesis and characterization of a novel resin monomer with low viscosity. J. Dent. 2017, 59, 11–17. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.; Hass, V.; Peng, Z.; Wang, Y. Methacrylate-functionalized proanthocyanidins as novel polymerizable collagen cross-linkers—Part 2: Effects on polymerization, microhardness and leaching of adhesives. Dent. Mater. 2021, 37, 1193–1201. [Google Scholar] [CrossRef]
- Hass, V.; Li, Y.; Wang, R.; Nguyen, D.; Peng, Z.; Wang, Y. Methacrylate-functionalized proanthocyanidins as novel polymerizable collagen cross-linkers—Part 1: Efficacy in dentin collagen bio-stabilization and cross-linking. Dent. Mater. 2021, 37, 1183–1192. [Google Scholar] [CrossRef]
- Chroszcz-Porebska, M.; Kazek-Kesik, A.; Chladek, G.; Barszczewska-Rybarek, I. Novel mechanically strong and antibacterial dimethacrylate copolymers based on quaternary ammonium urethane-dimethacrylate analogues. Dent. Mater. 2023, 39, 659–664. [Google Scholar] [CrossRef]
- Fugolin, A.P.; de Paula, A.B.; Dobson, A.; Huynh, V.; Consani, R.; Ferracane, J.L.; Pfeifer, C.S. Alternative monomer for BisGMA-free resin composites formulations. Dent. Mater. 2020, 36, 884–892. [Google Scholar] [CrossRef]
- Gotti, V.B.; Correr, A.B.; Lewis, S.H.; Feitosa, V.P.; Correr-Sobrinho, L.; Stansbury, J.W. Influence of nanogel additive hydrophilicity on dental adhesive mechanical performance and dentin bonding. Dent. Mater. 2016, 32, 1406–1413. [Google Scholar] [CrossRef]
- Yuca, E.; Xie, S.X.; Song, L.; Boone, K.; Kamathewatta, N.; Woolfolk, S.K.; Elrod, P.; Spencer, P.; Tamerler, C. Reconfigurable Dual Peptide Tethered Polymer System Offers a Synergistic Solution for Next Generation Dental Adhesives. Int. J. Mol. Sci. 2021, 22, 6552. [Google Scholar] [CrossRef]
- Perez-Mondragon, A.A.; Cuevas-Suarez, C.E.; Suarez Castillo, O.R.; Gonzalez-Lopez, J.A.; Herrera-Gonzalez, A.M. Evaluation of biocompatible monomers as substitutes for TEGDMA in resin-based dental composites. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 93, 80–87. [Google Scholar] [CrossRef]
- Yamauchi, S.; Wang, X.; Egusa, H.; Sun, J. High-Performance Dental Adhesives Containing an Ether-Based Monomer. J. Dent. Res. 2020, 99, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Fugolin, A.P.P.; Navarro, O.; Logan, M.G.; Huynh, V.; Franca, C.M.; Ferracane, J.L.; Pfeifer, C.S. Synthesis of di- and triacrylamides with tertiary amine cores and their evaluation as monomers in dental adhesive interfaces. Acta Biomater. 2020, 115, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Moszner, N.; Zeuner, F.; Angermann, J.; Fischer, U.K.; Rheinberger, V. Monomers for adhesive polymers, 4. Macromol. Mater. Eng. 2003, 288, 621–628. [Google Scholar] [CrossRef]
- Yin, M.; Liu, F.; He, J. Preparation and characterization of Bis-GMA free dental resin system with synthesized dimethacrylate monomer TDDMMA derived from tricyclo [5.2.1.0(2,6)]-decanedimethanol. J. Mech. Behav. Biomed. Mater. 2016, 57, 157–163. [Google Scholar] [CrossRef]
- Luo, S.; Zhu, W.; Liu, F.; He, J. Preparation of a Bis-GMA-Free Dental Resin System with Synthesized Fluorinated Dimethacrylate Monomers. Int. J. Mol. Sci. 2016, 17, 2014. [Google Scholar] [CrossRef]
- He, J.; Stenhagen, I.S.R.; Dragland, I.S.; Kopperud, H.M. Preparation of a fluorinated dental resin system and its anti-adhesive properties against S. mutans. Dent. Mater. 2023, 39, 402–409. [Google Scholar] [CrossRef]
- Zhang, S.; Liao, M.; Liu, F.; Huang, X.; Mai, S.; He, J. Preparation of Bis-GMA free dental resin composites with anti-adhesion effect against Streptococcus mutans using synthesized fluorine-containing methacrylate (DFMA). J. Mech. Behav. Biomed. Mater. 2022, 131, 105263. [Google Scholar] [CrossRef]
- Yin, M.; Guo, S.; Liu, F.; He, J. Synthesis of fluorinated dimethacrylate monomer and its application in preparing Bis-GMA free dental resin. J. Mech. Behav. Biomed. Mater. 2015, 51, 337–344. [Google Scholar] [CrossRef]
- Ashraf, U.; Tsoi, J.K.; He, J.; Shah, A.T.; Khan, A.S.; Pow, E.H.; Matinlinna, J.P. Effect of novel FUDMA-TEGDMA resin on resin-dentine adhesion strength. Int. J. Adhes. Adhes. 2022, 118, 103229. [Google Scholar] [CrossRef]
- Zhao, Y.; He, X.; Wang, H.; Zhu, J.; Wang, H.; Zheng, Y.; Zhu, S.; Cui, Z. Synthesis of an urushiol derivative and its use for hydrolysis resistance in dentin adhesive. RSC Adv. 2021, 11, 18448–18457. [Google Scholar] [CrossRef]
- Wang, X.; Cai, Q.; Zhang, X.; Wei, Y.; Xu, M.; Yang, X.; Ma, Q.; Cheng, Y.; Deng, X. Improved performance of Bis-GMA/TEGDMA dental composites by net-like structures formed from SiO2 nanofiber fillers. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Jandt, K.D.; Sigusch, B.W. Future perspectives of resin-based dental materials. Dent. Mater. 2009, 25, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Urbas, A.; Gonzalez-Bonet, A.; Sheridan, R.J.; Seppala, J.E.; Beers, K.L.; Sun, J.R. A composition-controlled cross-linking resin network through rapid visible-light photo-copolymerization. Polym. Chem. 2016, 7, 5023–5030. [Google Scholar] [CrossRef]
- Huyang, G.; Sun, J. Clinically Applicable Self-Healing Dental Resin Composites. MRS Adv. 2016, 1, 547–552. [Google Scholar] [CrossRef]
- Huyang, G.; Debertin, A.E.; Sun, J. Design and development of self-healing dental composites. Mater. Des. 2016, 94, 295–302. [Google Scholar] [CrossRef]
- Gonzalez-Bonet, A.; Kaufman, G.; Yang, Y.; Wong, C.; Jackson, A.; Huyang, G.; Bowen, R.; Sun, J. Preparation of dental resins resistant to enzymatic and hydrolytic degradation in oral environments. Biomacromolecules 2015, 16, 3381–3388. [Google Scholar] [CrossRef]
- Xi, W.X.; Scott, T.F.; Kloxin, C.J.; Bowman, C.N. Click chemistry in materials science. Adv. Funct. Mater. 2014, 24, 2572–2590. [Google Scholar] [CrossRef]
- Kloxin, C.J.; Bowman, C.N. Covalent adaptable networks: Smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 2013, 42, 7161–7173. [Google Scholar] [CrossRef]
- Boulden, J.E.; Cramer, N.B.; Schreck, K.M.; Couch, C.L.; Bracho-Troconis, C.; Stansbury, J.W.; Bowman, C.N. Thiol-ene-methacrylate composites as dental restorative materials. Dent. Mater. 2011, 27, 267–272. [Google Scholar] [CrossRef]
- Cramer, N.B.; Couch, C.L.; Schreck, K.M.; Carioscia, J.A.; Boulden, J.E.; Stansbury, J.W.; Bowman, C.N. Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials. Dent. Mater. 2010, 26, 21–28. [Google Scholar] [CrossRef]
- Bacchi, A.; Pfeifer, C.S. Rheological and mechanical properties and interfacial stress development of composite cements modified with thio-urethane oligomers. Dent. Mater. 2016, 32, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Palin, W.M.; Fleming, G.J.P.; Nathwani, H.; Burke, F.J.T.; Randall, R.C. In vitro cuspal deflection and microleakage of maxillary premolars restored with novel low-shrink dental composites. Dent. Mater. 2005, 21, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Weinmann, W.; Thalacker, C.; Guggenberger, R. Siloranes in dental composites. Dent. Mater. 2005, 21, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Bacchi, A.; Consani, R.L.; Martim, G.C.; Pfeifer, C.S. Thio-urethane oligomers improve the properties of light-cured resin cements. Dent. Mater. 2015, 31, 565–574. [Google Scholar] [CrossRef]
- Bacchi, A.; Dobson, A.; Ferracane, J.L.; Consani, R.; Pfeifer, C.S. Thio-urethanes Improve Properties of Dual-cured Composite Cements. J. Dent. Res. 2014, 93, 1320–1325. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y. Photopolymerization of phosphoric acid ester-based self-etch dental adhesives. Dent. Mater. J. 2013, 32, 10–18. [Google Scholar] [CrossRef]
- Wang, X.; Yamauchi, S. Improve Dentin Bonding Performance Using a Hydrolytically Stable, Ether-Based Primer. J. Funct. Biomater. 2022, 13, 128. [Google Scholar] [CrossRef]
- Gutiérrez, M.F.; Malaquias, P.; Matos, T.P.; Szesz, A.; Souza, S.; Bermudez, J.; Reis, A.; Loguercio, A.D.; Farago, P.V. Mechanical and microbiological properties and drug release modeling of an etch-and-rinse adhesive containing copper nanoparticles. Dent. Mater. 2017, 33, 309–320. [Google Scholar] [CrossRef]
- Wernik, J.; Meguid, S. On the mechanical characterization of carbon nanotube reinforced epoxy adhesives. Mater. Des. 2014, 59, 19–32. [Google Scholar] [CrossRef]
- Rodríguez-Quirós, H.A.; Casanova-Yepes, H.F. Effect of the functionalization of silica nanoparticles as a reinforcing agent on dental composite materials. Rev. Fac. De Ing. Univ. De Antioq. 2015, 36–45. [Google Scholar] [CrossRef]
- Assery, M.K.; Ajwa, N.; Alshamrani, A.; Alanazi, B.J.; Durgesh, B.H.; Matinlinna, J.P. Titanium dioxide nanoparticles reinforced experimental resin composite for orthodontic bonding. Mater. Res. Express 2019, 6, 125098. [Google Scholar] [CrossRef]
- Lohbauer, U.; Wagner, A.; Belli, R.; Stoetzel, C.; Hilpert, A.; Kurland, H.-D.; Grabow, J.; Müller, F.A. Zirconia nanoparticles prepared by laser vaporization as fillers for dental adhesives. Acta Biomater. 2010, 6, 4539–4546. [Google Scholar] [CrossRef] [PubMed]
- Almahdy, A.; Koller, G.; Sauro, S.; Bartsch, J.; Sherriff, M.; Watson, T.; Banerjee, A. Effects of MMP inhibitors incorporated within dental adhesives. J. Dent. Res. 2012, 91, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.H.; Swetha, B.; Priya, B.D.; Mohan, T.M.; Malini, D.L.; Sravya, M.S. Effect of collagen cross-linking agents on the depth of penetration of bioceramic sealer and release of hydroxyproline: An in vitro study. J. Conserv. Dent. Endod. 2024, 27, 170–174. [Google Scholar] [CrossRef]
- Hardan, L.; Daood, U.; Bourgi, R.; Cuevas-Suarez, C.E.; Devoto, W.; Zarow, M.; Jakubowicz, N.; Zamarripa-Calderon, J.E.; Radwanski, M.; Orsini, G.; et al. Effect of Collagen Crosslinkers on Dentin Bond Strength of Adhesive Systems: A Systematic Review and Meta-Analysis. Cells 2022, 11, 2417. [Google Scholar] [CrossRef]
- Dionysopoulos, D. Effect of digluconate chlorhexidine on bond strength between dental adhesive systems and dentin: A systematic review. J. Conserv. Dent. Endod. 2016, 19, 11–16. [Google Scholar] [CrossRef]
- Kalagi, S.; Feitosa, S.A.; Münchow, E.A.; Martins, V.M.; Karczewski, A.E.; Cook, N.B.; Diefenderfer, K.; Eckert, G.J.; Geraldeli, S.; Bottino, M.C. Chlorhexidine-modified nanotubes and their effects on the polymerization and bonding performance of a dental adhesive. Dent. Mater. 2020, 36, 687–697. [Google Scholar] [CrossRef]
- Yiu, C.K.; Hiraishi, N.; Tay, F.R.; King, N.M. Effect of chlorhexidine incorporation into dental adhesive resin on durability of resin-dentin bond. J. Adhes. Dent. 2012, 14, 355. [Google Scholar]
- Stanislawczuk, R.; Reis, A.; Loguercio, A.D. A 2-year in vitro evaluation of a chlorhexidine-containing acid on the durability of resin-dentin interfaces. J. Dent. 2011, 39, 40–47. [Google Scholar] [CrossRef]
- Lee, J.; Sabatini, C. Glutaraldehyde collagen cross-linking stabilizes resin–dentin interfaces and reduces bond degradation. Eur. J. Oral Sci. 2017, 125, 63–71. [Google Scholar] [CrossRef]
- Boksman, L.; Swift, J.; Edward, J. Current usage of glutaraldehyde/HEMA. J. Esthet. Restor. Dent. 2011, 23, 410–416. [Google Scholar] [CrossRef]
- Schmidlin, P.R.; Zehnder, M.; Göhring, T.N.; Waltimo, T.M. Glutaraldehyde in bonding systems disinfects dentin in vitro. J. Adhes. Dent. 2004, 6, 61. [Google Scholar] [PubMed]
- Cilli, R.; Prakki, A.; de Araújo, P.A.; Pereira, J.C. Influence of glutaraldehyde priming on bond strength of an experimental adhesive system applied to wet and dry dentine. J. Dent. 2009, 37, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Osorio, R.; Yamauti, M.; Osorio, E.; Román, J.S.; Toledano, M. Zinc-doped dentin adhesive for collagen protection at the hybrid layer. Eur. J. Oral Sci. 2011, 119, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Osorio, R.; Cabello, I.; Toledano, M. Bioactivity of zinc-doped dental adhesives. J. Dent. 2014, 42, 403–412. [Google Scholar] [CrossRef]
- Green, B.; Yao, X.; Ganguly, A.; Xu, C.; Dusevich, V.; Walker, M.P.; Wang, Y. Grape seed proanthocyanidins increase collagen biodegradation resistance in the dentin/adhesive interface when included in an adhesive. J. Dent. 2010, 38, 908–915. [Google Scholar] [CrossRef]
- Liu, Y.; Dusevich, V.; Wang, Y. Addition of Grape Seed Extract Renders Phosphoric Acid a Collagen-stabilizing Etchant. J. Dent. Res. 2014, 93, 821–827. [Google Scholar] [CrossRef]
- Khaddam, M.; Salmon, B.; Le Denmat, D.; Tjaderhane, L.; Menashi, S.; Chaussain, C.; Rochefort, G.Y.; Boukpessi, T. Grape seed extracts inhibit dentin matrix degradation by MMP-3. Front. Physiol. 2014, 5, 425. [Google Scholar] [CrossRef]
- Ghorab, S.; Ibraheim, A. Effect of hesperidin on antibacterial activity and adhesive properti es of an etch-and-rinse adhesive system. Egypt. Dent. J. 2018, 64, 3801–3812. [Google Scholar] [CrossRef]
- Ahmed, O.Q.; Alkassar, A.A.H.; Gabbar, A.A.; Jameel, M.I.; Kamel, M.F.; Mohammed, B.S. Antimicrobial Property and Cytotoxicity of Hesperidin Incorporated. J. Popul. Ther. Clin. Pharmacol. 2023. [Google Scholar] [CrossRef]
- Hiraishi, N.; Maruno, T.; Tochio, N.; Sono, R.; Otsuki, M.; Takatsuka, T.; Tagami, J.; Kobayashi, Y. Hesperidin interaction to collagen detected by physico-chemical techniques. Dent. Mater. 2017, 33, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, K.; Yan, H.; Liu, S.; Wang, Y.; Huang, C. High-performance therapeutic quercetin-doped adhesive for adhesive–dentin interfaces. Sci. Rep. 2017, 7, 8189. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Yang, H.; Yan, H.; Sun, Y.; Chen, X.; Guo, J.; Yue, J.; Huang, C. Quercetin as a simple but versatile primer in dentin bonding. RSC Adv. 2017, 7, 36392–36402. [Google Scholar] [CrossRef]
- Liu, Z.; Feng, X.; Wang, X.; Yang, S.; Mao, J.; Gong, S. Quercetin as an auxiliary endodontic irrigant for root canal treatment: Anti-biofilm and dentin collagen-stabilizing effects in vitro. Materials 2021, 14, 1178. [Google Scholar] [CrossRef]
- Mazzoni, A.; Apolonio, F.; Saboia, V.; Santi, S.; Angeloni, V.; Checchi, V.; Curci, R.; Di Lenarda, R.; Tay, F.; Pashley, D.H. Carbodiimide inactivation of MMPs and effect on dentin bonding. J. Dent. Res. 2014, 93, 263–268. [Google Scholar] [CrossRef]
- Josic, U.; Mazzitelli, C.; Maravic, T.; Comba, A.; Cadenaro, M.; Radovic, I.; Sebold, M.; Turco, G.; Breschi, L.; Mazzoni, A. The effect of carbodiimide on push-out bond strength of fiber posts and endogenous enzymatic activity. BMC Oral Health 2023, 23, 399. [Google Scholar] [CrossRef]
- Thompson, J.M.; Agee, K.; Sidow, S.J.; McNally, K.; Lindsey, K.; Borke, J.; Elsalanty, M.; Tay, F.R.; Pashley, D.H. Inhibition of endogenous dentin matrix metalloproteinases by ethylenediaminetetraacetic acid. J. Endod. 2012, 38, 62–65. [Google Scholar] [CrossRef]
- Breschi, L.; Martin, P.; Mazzoni, A.; Nato, F.; Carrilho, M.; Tjäderhane, L.; Visintini, E.; Cadenaro, M.; Tay, F.R.; Dorigo, E.D.S. Use of a specific MMP-inhibitor (galardin) for preservation of hybrid layer. Dent. Mater. 2010, 26, 571–578. [Google Scholar] [CrossRef]
- Du, X.; Huang, X.; Huang, C.; Wang, Y.; Zhang, Y. Epigallocatechin-3-gallate (EGCG) enhances the therapeutic activity of a dental adhesive. J. Dent. 2012, 40, 485–492. [Google Scholar] [CrossRef]
- Ma, S.; Niu, L.; Li, F.; Fang, M.; Zhang, L.; Tay, F.R.; Imazato, S.; Chen, J. Adhesive materials with bioprotective/biopromoting functions. Curr. Oral Health Rep. 2014, 1, 213–221. [Google Scholar] [CrossRef]
- Niu, L.-N.; Zhang, W.; Pashley, D.H.; Breschi, L.; Mao, J.; Chen, J.-H.; Tay, F.R. Biomimetic remineralization of dentin. Dent. Mater. 2014, 30, 77–96. [Google Scholar] [CrossRef]
- Yue, S.; Wu, J.; Zhang, Q.; Zhang, K.; Weir, M.D.; Imazato, S.; Bai, Y.; Xu, H.H. Novel dental adhesive resin with crack self-healing, antimicrobial and remineralization properties. J. Dent. 2018, 75, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Mai, S.; Mazzoni, A.; Liu, Y.; Tezvergil-Mutluay, A.; Takahashi, K.; Zhang, K.; Pashley, D.H.; Tay, F.R. Biomimetic remineralization as a progressive dehydration mechanism of collagen matrices–implications in the aging of resin–dentin bonds. Acta Biomater. 2010, 6, 3729–3739. [Google Scholar] [CrossRef] [PubMed]
- Braga, R.R.; Fronza, B.M. The use of bioactive particles and biomimetic analogues for increasing the longevity of resin-dentin interfaces: A literature review. Dent. Mater. J. 2020, 39, 62–68. [Google Scholar] [CrossRef]
- Tao, S.; He, L.; Xu, H.H.; Weir, M.D.; Fan, M.; Yu, Z.; Zhang, M.; Zhou, X.; Liang, K.; Li, J. Dentin remineralization via adhesive containing amorphous calcium phosphate nanoparticles in a biofilm-challenged environment. J. Dent. 2019, 89, 103193. [Google Scholar] [CrossRef]
- Melo, M.A.S.; Cheng, L.; Zhang, K.; Weir, M.D.; Rodrigues, L.K.; Xu, H.H. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent. Mater. 2013, 29, 199–210. [Google Scholar] [CrossRef]
- Fernando, D.; Attik, N.; Pradelle-Plasse, N.; Jackson, P.; Grosgogeat, B.; Colon, P. Bioactive glass for dentin remineralization: A systematic review. Mater. Sci. Eng. C 2017, 76, 1369–1377. [Google Scholar] [CrossRef]
- Rifane, T.O.; Cordeiro, K.E.M.; Silvestre, F.A.; Souza, M.T.; Zanotto, E.D.; Araújo-Neto, V.G.; Giannini, M.; Sauro, S.; de Paula, D.M.; Feitosa, V.P. Impact of silanization of different bioactive glasses in simplified adhesives on degree of conversion, dentin bonding and collagen remineralization. Dent. Mater. 2023, 39, 217–226. [Google Scholar] [CrossRef]
- Oltramare, R.; Par, M.; Mohn, D.; Wiedemeier, D.B.; Attin, T.; Tauböck, T.T. Short-and long-term dentin bond strength of bioactive glass-modified dental adhesives. Nanomaterials 2021, 11, 1894. [Google Scholar] [CrossRef]
- Sauro, S.; Osorio, R.; Watson, T.F.; Toledano, M. Influence of phosphoproteins’ biomimetic analogs on remineralization of mineral-depleted resin–dentin interfaces created with ion-releasing resin-based systems. Dent. Mater. 2015, 31, 759–777. [Google Scholar] [CrossRef]
- Mai, S.; Kim, Y.K.; Toledano, M.; Breschi, L.; Ling, J.Q.; Pashley, D.H.; Tay, F.R. Phosphoric acid esters cannot replace polyvinylphosphonic acid as phosphoprotein analogs in biomimetic remineralization of resin-bonded dentin. Dent. Mater. 2009, 25, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- Kavrik, F.; Kucukyilmaz, E. Effect of Nano-sized Hydroxyapatite Filler on Remineralization Efficacy of an Adhesive Resin: An in vitro study. J. Adhes. Sci. Technol. 2024, 38, 1334–1352. [Google Scholar] [CrossRef]
- Jardim, R.N.; Rocha, A.A.; Rossi, A.M.; de Almeida Neves, A.; Portela, M.B.; Lopes, R.T.; Dos Santos, T.M.P.; Xing, Y.; da Silva, E.M. Fabrication and characterization of remineralizing dental composites containing hydroxyapatite nanoparticles. J. Mech. Behav. Biomed. Mater. 2020, 109, 103817. [Google Scholar] [CrossRef] [PubMed]
- Slutzky, H.; Matalon, S.; Weiss, E.I. Antibacterial surface properties of polymerized single-bottle bonding agents: Part II. Quintessence Int. 2004, 35, 275. [Google Scholar]
- Lopes, S.R.; Matuda, A.G.N.; Campos, R.P.; Mafetano, A.; Barnabe, A.H.M.; Chagas, G.S.; Barcellos, D.C.; Niu, L.N.; Tay, F.R.; Pucci, C.R. Development of an Antibacterial Dentin Adhesive. Polymers 2022, 14, 2502. [Google Scholar] [CrossRef]
- Alhussein, A.; Alsahafi, R.; Wang, X.; Mitwalli, H.; Filemban, H.; Hack, G.D.; Oates, T.W.; Sun, J.; Weir, M.D.; Xu, H.H.K. Novel Dental Low-Shrinkage-Stress Composite with Antibacterial Dimethylaminododecyl Methacrylate Monomer. J. Funct. Biomater. 2023, 14, 335. [Google Scholar] [CrossRef]
- Tebyaniyan, H.; Hussain, A.; Vivian, M. Current antibacterial agents in dental bonding systems: A comprehensive overview. Future Microbiol. 2023, 18, 825–844. [Google Scholar] [CrossRef]
- Elsaka, S.E. Antibacterial activity and adhesive properties of a chitosan-containing dental adhesive. Quintessence Int. 2012, 43, 603. [Google Scholar]
- Korbmacher, H.M.; Huck, L.; Kahl-Nieke, B. Fluoride-releasing adhesive and antimicrobial self-etching primer effects on shear bond strength of orthodontic brackets. Angle Orthod. 2006, 76, 845–850. [Google Scholar]
- Makvandi, P.; Jamaledin, R.; Jabbari, M.; Nikfarjam, N.; Borzacchiello, A. Antibacterial quaternary ammonium compounds in dental materials: A systematic review. Dent. Mater. 2018, 34, 851–867. [Google Scholar] [CrossRef]
- Zalega, M.; Bociong, K. Antibacterial Agents Used in Modifications of Dental Resin Composites: A Systematic Review. Appl. Sci. 2024, 14, 3710. [Google Scholar] [CrossRef]
- Peralta, L.C.F.; Almeida, N.L.M.; Pontes, F.M.L.; Rinaldo, D.; Carneiro, C.A.; Neppelenbroek, K.H.; Lara, V.S.; Porto, V.C. Silver nanoparticles in denture adhesive: An antimicrobial approach against Candida albicans. J. Dent. 2023, 131, 104445. [Google Scholar] [CrossRef] [PubMed]
- Miki, S.; Kitagawa, H.; Kitagawa, R.; Kiba, W.; Hayashi, M.; Imazato, S. Antibacterial activity of resin composites containing surface pre-reacted glass-ionomer (S-PRG) filler. Dent. Mater. 2016, 32, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Alsunbul, H.; Alfawaz, Y.F.; Alhamdan, E.M.; Farooq, I.; Vohra, F.; Abduljabbar, T. Influence of carbon and graphene oxide nanoparticle on the adhesive properties of dentin bonding polymer: A SEM, EDX, FTIR study. J. Appl. Biomater. Funct. Mater. 2023, 21, 22808000231159238. [Google Scholar] [CrossRef]
- Almutairi, B.; Kattan, H.F.; BinMahfooz, A.M.; Qutub, O.A.; Basunbul, G.; ArRejaie, A.S.; Farooq, I.; Vohra, F.; Abduljabbar, T. Synergistic effect of graphene oxide/calcium phosphate nanofiller in a dentin adhesive on its dentin bond integrity and degree of conversion. A scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared, micro-Raman, and bond strength study. Microsc. Res. Tech. 2021, 84, 2082–2094. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, N.; Weir, M.D.; Reynolds, M.A.; Bai, Y.; Xu, H.H.K. Bioactive Dental Composites and Bonding Agents Having Remineralizing and Antibacterial Characteristics. Dent. Clin. N. Am. 2017, 61, 669–687. [Google Scholar] [CrossRef]
- Wu, J.; Weir, M.D.; Melo, M.A.; Xu, H.H. Development of novel self-healing and antibacterial dental composite containing calcium phosphate nanoparticles. J. Dent. 2015, 43, 317–326. [Google Scholar] [CrossRef]
- Gutiérrez, M.F.; Bermudez, J.; Dávila-Sánchez, A.; Alegría-Acevedo, L.F.; Méndez-Bauer, L.; Hernández, M.; Astorga, J.; Reis, A.; Loguercio, A.D.; Farago, P.V.; et al. Zinc oxide and copper nanoparticles addition in universal adhesive systems improve interface stability on caries-affected dentin. J. Mech. Behav. Biomed. Mater. 2019, 100, 103366. [Google Scholar] [CrossRef]
- Gutiérrez, M.F.; Alegría-Acevedo, L.F.; Méndez-Bauer, L.; Bermudez, J.; Dávila-Sánchez, A.; Buvinic, S.; Hernández-Moya, N.; Reis, A.; Loguercio, A.D.; Farago, P.V.; et al. Biological, mechanical and adhesive properties of universal adhesives containing zinc and copper nanoparticles. J. Dent. 2019, 82, 45–55. [Google Scholar] [CrossRef]
- Gutiérrez, M.F.; Malaquias, P.; Hass, V.; Matos, T.P.; Lourenço, L.; Reis, A.; Loguercio, A.D.; Farago, P.V. The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces. J. Dent. 2017, 61, 12–20. [Google Scholar] [CrossRef]
- Vidal, O.; de Paris Matos, T.; Núñez, A.; Méndez-Bauer, L.; Sutil, E.; Ñaupari-Villasante, R.; Souta, M.C.; Pitlovanciv, M.; Gutiérrez, M.F.; Loguercio, A.D. A universal adhesive containing copper nanoparticles improves the stability of hybrid layer in a cariogenic oral environment: An in situ study. J. Mech. Behav. Biomed. Mater. 2022, 126, 105017. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhang, Z.; Guo, R.; Peng, W.; Yang, H.; Huang, C. Epigallocatechin-3-gallate/nanohydroxyapatite platform delivery approach to adhesive-dentin interface stability. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 122, 111918. [Google Scholar] [CrossRef] [PubMed]
- Gonapa, P.; Sajjan, G.S.; Bhupathi, A.; Podugu, U.K.; Sundar, S.; Gondi, D.; Rathod, R.T. Evaluation of Bond Durability, Surface Morphology, and Remineralization at the Adhesive Interface with Dentin Bonding Agents Modified with Silica-doped Nanohydroxyapatite. Contemp. Clin. Dent. 2022, 13, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Freitas, P.H.; André, C.B.; Fronza, B.M.; Giannini, M.; Rosalen, P.L.; Consani, S.; França, R. Physicochemical properties, metalloproteinases inhibition, and antibiofilm activity of doxycycline-doped dental adhesive. J. Dent. 2021, 104, 103550. [Google Scholar] [CrossRef]
- Kharouf, N.; Eid, A.; Hardan, L.; Bourgi, R.; Arntz, Y.; Jmal, H.; Foschi, F.; Sauro, S.; Ball, V.; Haikel, Y.; et al. Antibacterial and Bonding Properties of Universal Adhesive Dental Polymers Doped with Pyrogallol. Polymers 2021, 13, 1538. [Google Scholar] [CrossRef]
- Garcia, I.M.; Balhaddad, A.A.; Lan, Y.; Simionato, A.; Ibrahim, M.S.; Weir, M.D.; Masri, R.; Xu, H.H.K.; Collares, F.M.; Melo, M.A.S. Magnetic motion of superparamagnetic iron oxide nanoparticles-loaded dental adhesives: Physicochemical/biological properties, and dentin bonding performance studied through the tooth pulpal pressure model. Acta Biomater. 2021, 134, 337–347. [Google Scholar] [CrossRef]
- Garcia, I.M.; Balhaddad, A.A.; Ibrahim, M.S.; Weir, M.D.; Xu, H.H.K.; Collares, F.M.; Melo, M.A.S. Antibacterial response of oral microcosm biofilm to nano-zinc oxide in adhesive resin. Dent. Mater. 2021, 37, e182–e193. [Google Scholar] [CrossRef]
- Garcia, I.M.; Leitune, V.C.B.; Visioli, F.; Samuel, S.M.W.; Collares, F.M. Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin. J. Dent. 2018, 73, 57–60. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Wang, S.; Wang, B.; Wang, X.; Mi, Z.; Fu, J.; Zhang, Z.; Yan, W. Enhancing the Stability of the Resin-Dentin Bonding Interface with Ag+- and Zn2+-Exchanged Zeolite A. ACS Biomater. Sci. Eng. 2022, 8, 1717–1725. [Google Scholar] [CrossRef]
- Gomes, T.G. Effect of Bioactive Restorative Materials on Tooth Demineralization: An In Vitro and Comparative Study. Master’s Thesis, The University of Alabama at Birmingham, Birmingham, AL, USA, 2024. [Google Scholar]
- Al-Dulaijan, Y.A.; Cheng, L.; Weir, M.D.; Melo, M.A.S.; Liu, H.; Oates, T.W.; Wang, L.; Xu, H.H.K. Novel rechargeable calcium phosphate nanocomposite with antibacterial activity to suppress biofilm acids and dental caries. J. Dent. 2018, 72, 44–52. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Y.; Chen, Y.; Xing, X.; Wang, Y.; Wu, G. Evaluation of Chitosan-Oleuropein Nanoparticles on the Durability of Dentin Bonding. Drug Des. Devel Ther. 2023, 17, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Bettiol, H.E.; Vieira-Junior, W.F.; França, F.M.; Amaral, F.L.; Basting, R.T. Bonding strategy of a universal adhesive system containing chitosan: Influence on dentin permeability, and effect on adhesive layer micromorphology. Acta Odontol. Latinoam. 2022, 35, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Boutsiouki, C.; Frankenberger, R.; Lücker, S.; Krämer, N. Effect of Chlorhexidine-containing Etch-and-Rinse Adhesives on Dentin Microtensile Bond Strength after Biological Loading. J. Adhes. Dent. 2023, 25, 13–22. [Google Scholar] [CrossRef]
- Stanislawczuk, R.; Pereira, F.; Muñoz, M.A.; Luque, I.; Farago, P.V.; Reis, A.; Loguercio, A.D. Effects of chlorhexidine-containing adhesives on the durability of resin-dentine interfaces. J. Dent. 2014, 42, 39–47. [Google Scholar] [CrossRef]
- Meng, Y.C.; Huang, F.; Wang, S.L.; Li, M.W.; Lu, Y.; Pei, D.D. [Effect of hydroxyapatite based agents on the bonding properties of universal adhesives]. Chin. J. Stomatol. 2022, 57, 173–181. [Google Scholar] [CrossRef]
- Meng, Y.; Huang, F.; Wang, S.; Huang, X.; Lu, Y.; Pei, D. Bonding properties of mild universal adhesives to dentin pretreated with hydroxyapatite-based desensitizing agents. West China J. Stomatol. 2022, 40, 668–675. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, W.; Liang, J.; Ran, S. Influence of silver nanoparticles on the resin-dentin bond strength and antibacterial activity of a self-etch adhesive system. J. Prosthet. Dent. 2022, 128, 1363.e1–1363.e10. [Google Scholar] [CrossRef]
- Jenabi, N.; Sadeghian, S.; Karimzadeh, F.; Pour, M.S.; Rakhshan, V. Antibacterial activity and shear bond strength of fiber-reinforced composites and bonding agents containing 0.5%, 1%, 2.5%, and 5% silver nanoparticles. Dent. Res. J. 2023, 20, 23. [Google Scholar] [CrossRef]
- Tristán-López, J.D.; Niño-Martínez, N.; Kolosovas-Machuca, E.S.; Patiño-Marín, N.; De Alba-Montero, I.; Bach, H.; Martínez-Castañón, G.A. Application of Silver Nanoparticles to Improve the Antibacterial Activity of Orthodontic Adhesives: An In Vitro Study. Int. J. Mol. Sci. 2023, 24, 1401. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Y.; Deng, J.; Nie, R.; Meng, X. Antibacterial one-step self-etching dental adhesive with silver nanoparticles synthesized in situ. J. Dent. 2023, 129, 104411. [Google Scholar] [CrossRef]
- Aguiar, J.D.; Pedrosa, M.D.S.; Toma, S.H.; Araki, K.; Marques, M.M.; Medeiros, I.S. Antibacterial effect, cytotoxicity, and bond strength of a modified dental adhesive containing silver nanoparticles. Odontology 2023, 111, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Weir, M.D.; Chen, J.; Xu, H.H. Comparison of quaternary ammonium-containing with nano-silver-containing adhesive in antibacterial properties and cytotoxicity. Dent. Mater. 2013, 29, 450–461. [Google Scholar] [CrossRef]
- Jia, H.; Hou, W.; Wei, L.; Xu, B.; Liu, X. The structures and antibacterial properties of nano-SiO2 supported silver/zinc-silver materials. Dent. Mater. 2008, 24, 244–249. [Google Scholar] [CrossRef]
- Welch, K.; Cai, Y.; Engqvist, H.; Strømme, M. Dental adhesives with bioactive and on-demand bactericidal properties. Dent. Mater. 2010, 26, 491–499. [Google Scholar] [CrossRef]
- Stürmer, M.; Garcia, I.M.; Souza, V.S.; Visioli, F.; Scholten, J.D.; Samuel, S.M.W.; Leitune, V.C.B.; Collares, F.M. Titanium dioxide nanotubes with triazine-methacrylate monomer to improve physicochemical and biological properties of adhesives. Dent. Mater. 2021, 37, 223–235. [Google Scholar] [CrossRef]
- Degrazia, F.W.; Leitune, V.C.B.; Samuel, S.M.W.; Collares, F.M. Boron nitride nanotubes as novel fillers for improving the properties of dental adhesives. J. Dent. 2017, 62, 85–90. [Google Scholar] [CrossRef]
- Bregnocchi, A.; Zanni, E.; Uccelletti, D.; Marra, F.; Cavallini, D.; De Angelis, F.; De Bellis, G.; Bossù, M.; Ierardo, G.; Polimeni, A. Graphene-based dental adhesive with anti-biofilm activity. J. Nanobiotechnol. 2017, 15, 1–13. [Google Scholar] [CrossRef]
- Szebeni, D.; Told, R.; Kunsagi-Mate, S.; Szalma, J.; Maroti, P.; Boddi, K.; Lempel, E. Monomer elution and shrinkage stress analysis of addition-fragmentation chain-transfer-modified resin composites in relation to the curing protocol. Dent. Mater. 2024, 40, 1611–1623. [Google Scholar] [CrossRef]
- Martini Garcia, I.; Jung Ferreira, C.; de Souza, V.S.; Castelo Branco Leitune, V.; Samuel, S.M.W.; de Souza Balbinot, G.; de Souza da Motta, A.; Visioli, F.; Damiani Scholten, J.; Mezzomo Collares, F. Ionic liquid as antibacterial agent for an experimental orthodontic adhesive. Dent. Mater. 2019, 35, 1155–1165. [Google Scholar] [CrossRef]
- Tziafas, D.; Koliniotou-Koumpia, E.; Tziafa, C.; Papadimitriou, S. Effects of a new antibacterial adhesive on the repair capacity of the pulp-dentine complex in infected teeth. Int. Endod. J. 2007, 40, 58–66. [Google Scholar] [CrossRef]
- Imazato, S.; Ebi, N.; Takahashi, Y.; Kaneko, T.; Ebisu, S.; Russell, R.R. Antibacterial activity of bactericide-immobilized filler for resin-based restoratives. Biomaterials 2003, 24, 3605–3609. [Google Scholar] [CrossRef] [PubMed]
- Bendary, I.M.; Garcia, I.M.; Collares, F.M.; Takimi, A.; Samuel, S.M.W.; Leitune, V.C.B. Wollastonite as filler of an experimental dental adhesive. J. Dent. 2020, 102, 103472. [Google Scholar] [CrossRef] [PubMed]
- Mokeem, L.S.; Balhaddad, A.A.; Garcia, I.M.; Collares, F.M.; Melo, M.A.S. Benzyldimethyldodecyl Ammonium Chloride Doped Dental Adhesive: Impact on Core’s Properties, Biosafety, and Antibacterial/Bonding Performance after Aging. J. Funct. Biomater. 2022, 13, 190. [Google Scholar] [CrossRef] [PubMed]
- Almaroof, A.; Niazi, S.A.; Rojo, L.; Mannocci, F.; Deb, S. Evaluation of dental adhesive systems incorporating an antibacterial monomer eugenyl methacrylate (EgMA) for endodontic restorations. Dent. Mater. 2017, 33, e239–e254. [Google Scholar] [CrossRef]
- Leyva del Rio, D.; Sartori, N.; Tomblin, N.B.; Phark, J.-H.; Pardi, V.; Murata, R.M.; Duarte, S., Jr. Bioactive dental adhesive system with tt-farnesol: Effects on dental biofilm and bonding properties. Front. Bioeng. Biotechnol. 2020, 8, 865. [Google Scholar] [CrossRef]
- Silvestrin, L.B.; Garcia, I.M.; Visioli, F.; Collares, F.M.; Leitune, V.C.B. Physicochemical and biological properties of experimental dental adhesives doped with a guanidine-based polymer: An in vitro study. Clin. Oral Investig. 2022, 26, 3627–3636. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, J.; Zhu, X.; Tian, Z.; Zhu, S. Triclosan to Improve the Antimicrobial Performance of Universal Adhesives. Polymers 2023, 15, 304. [Google Scholar] [CrossRef]
- Guo, R.; Peng, W.; Yang, H.; Yao, C.; Yu, J.; Huang, C. Evaluation of resveratrol-doped adhesive with advanced dentin bond durability. J. Dent. 2021, 114, 103817. [Google Scholar] [CrossRef]
- Yu, S.Y.; Zhang, J.H.; Li, K.X.; Chen, H.; Wang, H.M.; He, X.; Shi, Z.S.; Zhu, S.; Cui, Z.C. A Novel Chemical Binding Primer to Improve Dentin Bonding Durability. J. Dent. Res. 2022, 101, 777–784. [Google Scholar] [CrossRef]
- Pashley, D.H.; Tay, F.R.; Breschi, L.; Tjaderhane, L.; Carvalho, R.M.; Carrilho, M.; Tezvergil-Mutluay, A. State of the art etch-and-rinse adhesives. Dent. Mater. 2011, 27, 1–16. [Google Scholar] [CrossRef]
- Chen, H.; Feng, S.; Jin, Y.; Hou, Y.; Zhu, S. Comparison of bond strength of universal adhesives using different etching modes: A systematic review and meta-analysis. Dent. Mater. J. 2022, 41, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Iwabuchi, H.; Inoue, G.; Chen, X.; Ikeda, M.; Shimada, Y. Acid resistance and bond strength of calcium-containing adhesive on ename. Int. Dent. J. 2025. In press. [Google Scholar] [CrossRef]
- Hardan, L.; Bourgi, R.; Kharouf, N.; Mancino, D.; Zarow, M.; Jakubowicz, N.; Haikel, Y.; Cuevas-Suarez, C.E. Bond Strength of Universal Adhesives to Dentin: A Systematic Review and Meta-Analysis. Polymers 2021, 13, 814. [Google Scholar] [CrossRef] [PubMed]
- Tsujimoto, A.; Fischer, N.G.; Barkmeier, W.W.; Latta, M.A. Bond Durability of Two-Step HEMA-Free Universal Adhesive. J. Funct. Biomater. 2022, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Perdigao, J.; Geraldeli, S. Bonding characteristics of self-etching adhesives to intact versus prepared enamel. J. Esthet. Restor. Dent. 2003, 15, 32–41; discussion 42. [Google Scholar] [CrossRef]
- Andre, C.B.; Chan, D.C.; Giannini, M. Antibacterial-containing dental adhesives’ effects on oral pathogens and on Streptococcus mutans biofilm: Current perspectives. Am. J. Dent. 2018, 31, 37B–41B. [Google Scholar]
- Kameyama, A.; Tsumori, M.; Ushiki, T.; Muto, Y.; Koga, H.; Matsukubo, T.; Hirai, Y. Fluoride release from newly developed dental adhesives. Bull. Tokyo Dent. Coll. 2002, 43, 193–197. [Google Scholar] [CrossRef]
- Burrer, P.; Simoni, S.; Zwicky, P.; Attin, T.; Tauböck, T.T. Effect of different adhesive application approaches on bond strength in over-etched dentin. Am. J. Dent. 2023, 36, 118–122. [Google Scholar]
- Neves, P.; Pires, S.; Marto, C.M.; Amaro, I.; Coelho, A.; Sousa, J.; Ferreira, M.M.; Botelho, M.F.; Carrilho, E.; Abrantes, A.M. Evaluation of microleakage of a new bioactive material for restoration of posterior teeth: An in vitro radioactive model. Appl. Sci. 2022, 12, 11827. [Google Scholar] [CrossRef]
- Kitahara, S.; Shimizu, S.; Takagaki, T.; Inokoshi, M.; Abdou, A.; Burrow, M.F.; Nikaido, T. Dentin Bonding Durability of Four Different Recently Introduced Self-Etch Adhesives. Materials 2024, 17, 4296. [Google Scholar] [CrossRef]
- Brkanović, S.; Sever, E.K.; Vukelja, J.; Ivica, A.; Miletić, I.; Krmek, S.J. Comparison of different universal adhesive systems on dentin bond strength. Materials 2023, 16, 1530. [Google Scholar] [CrossRef]
- Rizk, M.; Pohle, A.; Dieckmann, P.; Tauböck, T.T.; Biehl, R.; Wiegand, A. Mineral precipitation, polymerization properties and bonding performance of universal dental adhesives doped with polyhedral oligomeric silsesquioxanes. Int. J. Adhes. Adhes. 2020, 100, 102573. [Google Scholar] [CrossRef]
- Whitworth, S.A. Self-assembling peptide nano-apatite hybrid material for dentine mineralisation. Ph.D. Thesis, University of Leeds, Leeds, England, 2018. [Google Scholar]
- Conti, G.; Veneri, F.; Amadori, F.; Garzoni, A.; Majorana, A.; Bardellini, E. Evaluation of antibacterial activity of a bioactive restorative material versus a Glass-Ionomer cement on Streptococcus mutans: In-vitro study. Dent. J. 2023, 11, 149. [Google Scholar] [CrossRef] [PubMed]
- Kakinuma, H.; Honda, K.; Arita, A.; Kumagai, T. Shear Bond Strength of G-Premio BOND to Dentin under Moist Conditions. J. Adhes. Dent. 2019, 21, 453. [Google Scholar]
- Shin, J.; Hwang, E.; Kim, J. An Evaluation of shear bond strength of new dentin bonding agents. J. Korean Acad. Pediatr. Dent. 2017, 44, 358–364. [Google Scholar] [CrossRef]
- Hegde, N.; Attavar, S.; Hegde, M.N.; Hegde, N.D. Comparative analysis of bond strength and microleakage of newer generation bonding agents to enamel and dentin: An: In vitro: Study. J. Conserv. Dent. 2020, 23, 593–597. [Google Scholar] [CrossRef]
- Sellan, P.L.B.; Zanatta, R.F.; Torres, C.R.G.; Tian, F.-c.; Bergeron, B.E.; Niu, L.-n.; Pucci, C.R. Effects of calcium-phosphate, laser and adhesive on dentin permeability and bond strength. Heliyon 2020, 6, e03925. [Google Scholar] [CrossRef]
- Batista, G.R.; Barcellos, D.C.; Gomes Torres, C.R.; Damião, Á.J.; de Oliveira, H.P.M.; de Paiva Gonçalves, S.E. Effect of Nd: YAG laser on the solvent evaporation of adhesive systems. Int. J. Esthet. Dent. 2015, 10, 598. [Google Scholar]
- Zhang, Y.; Yu, Q.; Wang, Y. Non-thermal atmospheric plasmas in dental restoration: Improved resin adhesive penetration. J. Dent. 2014, 42, 1033–1042. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, J.; Yao, C.; Yang, H.; Huang, C. New perspective to improve dentin–adhesive interface stability by using dimethyl sulfoxide wet-bonding and epigallocatechin-3-gallate. Dent. Mater. 2020, 36, 1452–1463. [Google Scholar] [CrossRef]
- Stape, T.H.S.; Tjäderhane, L.; Tezvergil-Mutluay, A.; Yanikian, C.R.F.; Szesz, A.L.; Loguercio, A.D.; Martins, L.R.M. Dentin bond optimization using the dimethyl sulfoxide-wet bonding strategy: A 2-year in vitro study. Dent. Mater. 2016, 32, 1472–1481. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, K.; Yang, H.; Yu, J.; Huang, C. The influence of dimethyl sulfoxide on resin–dentin bonding: A systematic review. Int. J. Adhes. Adhes. 2022, 113, 103037. [Google Scholar] [CrossRef]
- Li, F.; Liu, X.-Y.; Zhang, L.; Kang, J.-J.; Chen, J.-H. Ethanol-wet bonding technique may enhance the bonding performance of contemporary etch-and-rinse dental adhesives. J. Adhes. Dent. 2012, 14, 113. [Google Scholar] [PubMed]
- Grégoire, G.; Sharrock, P.; Delannée, M.; Delisle, M.-B. Depletion of water molecules during ethanol wet-bonding with etch and rinse dental adhesives. Mater. Sci. Eng. C 2013, 33, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Sadek, F.; Braga, R.R.; Muench, A.; Liu, Y.; Pashley, D.H.; Tay, F. Ethanol wet-bonding challenges current anti-degradation strategy. J. Dent. Res. 2010, 89, 1499–1504. [Google Scholar] [CrossRef]
- Eick, J.D.; Robinson, S.J.; Byerley, T.J.; Chappelow, C.C. Adhesives and nonshrinking dental resins of the future. Quintessence Int. 1993, 24, 632. [Google Scholar]
- Moszner, N.; Hirt, T. New polymer-chemical developments in clinical dental polymer materials: Enamel–dentin adhesives and restorative composites. J. Polym. Sci. Part. A Polym. Chem. 2012, 50, 4369–4402. [Google Scholar] [CrossRef]
- Melo, M.A.S.; Garcia, I.M.; Mokeem, L.; Weir, M.D.; Xu, H.H.K.; Montoya, C.; Orrego, S. Developing Bioactive Dental Resins for Restorative Dentistry. J. Dent. Res. 2023, 102, 1180–1190. [Google Scholar] [CrossRef]
- Bazos, P.; Magne, P. Bio-emulation: Biomimetically emulating nature utilizing a histo-anatomic approach; structural analysis. Eur. J. Esthet. Dent. 2011, 6, 8–19. [Google Scholar]
- Bazos, P.; Magne, P. Bio-Emulation: Biomimetically emulating nature utilizing a histoanatomic approach; visual synthesis. Int. J. Esthet. Dent. 2014, 9, 330–352. [Google Scholar]
- Zafar, M.S.; Amin, F.; Fareed, M.A.; Ghabbani, H.; Riaz, S.; Khurshid, Z.; Kumar, N. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics 2020, 5, 34. [Google Scholar] [CrossRef]
- Singer, L.; Fouda, A.; Bourauel, C. Biomimetic approaches and materials in restorative and regenerative dentistry: Review article. BMC Oral Health 2023, 23, 105. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Bae, H.; Ahn, J.; Kang, T.; Seo, D.-G.; Hwang, D.S. Catechol-thiol-based dental adhesive inspired by underwater mussel adhesion. Acta Biomater. 2020, 103, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Yucesoy, D.T.; Fong, H.; Hamann, J.; Hall, E.; Dogan, S.; Sarikaya, M. Biomimetic Dentin Repair: Amelogenin-Derived Peptide Guides Occlusion and Peritubular Mineralization of Human Teeth. ACS Biomater. Sci. Eng. 2023, 9, 1486–1495. [Google Scholar] [CrossRef]
- Chang, R.; Liu, Y.J.; Zhang, Y.L.; Zhang, S.Y.; Han, B.B.; Chen, F.; Chen, Y.X. Phosphorylated and Phosphonated Low-Complexity Protein Segments for Biomimetic Mineralization and Repair of Tooth Enamel. Adv. Sci. 2022, 9, e2103829. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.T.; Rao, C.Y.; Li, T.; Zhou, R.H. [Research Progress in Biomimetic Synthesis of Nano-Hydroxyapatite in Bone Tissue Engineering]. Sichuan Da Xue Xue Bao Yi Xue Ban 2021, 52, 740–746. [Google Scholar] [CrossRef]
- Tay, F.R.; Pashley, D.H. Biomimetic remineralization of resin-bonded acid-etched dentin. J. Dent. Res. 2009, 88, 719–724. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, K.; Zhang, N.; Melo, M.A.S.; Weir, M.D.; Zhou, X.D.; Bai, Y.X.; Reynolds, M.A.; Xu, H.H.K. Developing a New Generation of Antimicrobial and Bioactive Dental Resins. J. Dent. Res. 2017, 96, 855–863. [Google Scholar] [CrossRef]
- Spencer, P.; Ye, Q.; Song, L.; Parthasarathy, R.; Boone, K.; Misra, A.; Tamerler, C. Threats to adhesive/dentin interfacial integrity and next generation bio-enabled multifunctional adhesives. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 2673–2683. [Google Scholar] [CrossRef]
- Reymus, M.; Roos, M.; Eichberger, M.; Edelhoff, D.; Hickel, R.; Stawarczyk, B. Bonding to new CAD/CAM resin composites: Influence of air abrasion and conditioning agents as pretreatment strategy. Clin. Oral Investig. 2019, 23, 529–538. [Google Scholar] [CrossRef]
- Revilla-Leon, M.; Gomez-Polo, M.; Vyas, S.; Barmak, A.B.; Ozcan, M.; Att, W.; Krishnamurthy, V.R. Artificial intelligence applications in restorative dentistry: A systematic review. J. Prosthet. Dent. 2022, 128, 867–875. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Li, H.; Imazato, S. Materials informatics for developing new restorative dental materials: A narrative review. Front. Dent. Med. 2023, 4, 1123976. [Google Scholar] [CrossRef] [PubMed]
- Mallineni, S.K.; Sethi, M.; Punugoti, D.; Kotha, S.B.; Alkhayal, Z.; Mubaraki, S.; Almotawah, F.N.; Kotha, S.L.; Sajja, R.; Nettam, V.; et al. Artificial Intelligence in Dentistry: A Descriptive Review. Bioengineering 2024, 11, 1267. [Google Scholar] [CrossRef] [PubMed]
- Suwardi, A.; Wang, F.; Xue, K.; Han, M.Y.; Teo, P.; Wang, P.; Wang, S.; Liu, Y.; Ye, E.; Li, Z.; et al. Machine Learning-Driven Biomaterials Evolution. Adv. Mater. 2022, 34, e2102703. [Google Scholar] [CrossRef] [PubMed]
Generation | Chemical Composition and Technique Used | Bonding Mechanism and Bond Strength (MPa) | Challenges | Example Brands |
---|---|---|---|---|
First; (1950s) [40,41,65] | Glycerophosphoric acid dimethacrylate (NPG-GMA) containing resin; Etch and rinse. | Chemical bonding; 1–3 | Poor clinical performance due to the high interfacial stress and thermal expansion | Sevriton Cavity Seal. |
Second; (1970s) [41,44] | Polymerizable phosphonate in bis-GMA; Etch and rinse | Chemical bonding; 4–6 | Prone to degradation and microleakage. | Scotchbond 1 (3M) |
Third; (Late 1970s) [10,47] | Urethane dimethacrylate (UDMA), Bis-GMA, Primers (PENTA mix, HEMA, and ethanol), Mild acids; Etch and rinse, multi-step | Micro-mechanical interlocking and chemical bonding; 15–20 | Unable to infiltrate the smear layer. | OptiBond FL (Kerr), Prime a Bond (Dentsply), Scotchbond Multi-Purpose (3M) |
Forth; (late 1980s) [10,41] | Bis-GMA, Hydrophilic primer HEMA, Glass filler, Phosphoric acid etchant; Total-etch. | Micro-mechanical interlocking and chemical bonding; 20–25 | Time-consuming, sensitive to technique and moisture control. | OptiBond FL (Kerr), Prime & Bond (Dentsply) |
Fifth; (1990s) [10,51] | Bis-GMA, HEMA (merging primer and adhesive resin); One-step, total-etch. | Micro-mechanical interlocking; 20–30 | Prone to water sorption and degradation overtime. | Single Bond (3M), Excite (Ivoclar Vivadent) |
Sixth; (2000s) [10,51,53,66] | Addition of Silanes, adhesion promoters, mild acids; Self-etch, no rinse. | Micro-mechanical interlocking and chemical bonding; 25–30 | Less durable bond than 4th/5th generations. | Adper Prompt (3M), Clearfil SE Bond (Kuraray) |
Seventh; (2010s) [10,56,57] | All-in-one adhesives, various methacrylate, and HEMA; One-step, self-etch | Micro-mechanical interlocking and chemical bonding; 25–30 | Lower cross-linking, higher hydrophilicity, decreased polymerization, polymer plasticization, potential allergic reactions, oxidative stress, and cytotoxicity. | G-Bond (GC), iBond (Heraeus Kulzer) |
Eighth; (Recent) [10,67] | Functional monomers (e.g., 10-MDP, PENTA and GPMD); both etch-and-rise and self-etch strategies | Micro-mechanical interlocking and chemical bonding; 35–40+ | Complexity in choice and application methods. | Universal Bond (3M), Tetric EvoFlow (Ivoclar Vivadent) |
Aspect | 7th-Generation Adhesives | 8th-Generation Adhesives |
---|---|---|
Application mode | Self-etch only | Multi-mode (se, er, selective etch) |
Bond strength | Moderate, weaker on enamel | Superior, especially in er mode |
Technique sensitivity | High (moisture-sensitive) | Low (more forgiving) |
Durability | Prone to hydrolytic degradation | Improved resistance to degradation |
Versatility | Limited to self-etch approach | Compatible with multiple substrates and modes |
Monomer technology | Basic acidic monomers (e.g., MDP, 4-META) | Advanced monomers (e.g., 10-MDP) |
Resin Network | Properties Improved | Drawbacks | Reference |
---|---|---|---|
Bis-GMA/HEMA | Aesthetics, handling, high bond strength, flexibility, and stress distribution. | Biologic safety of bisphenol A. HEMA leaching and water degradation. | [42,77,78,79,80,81,82,83,84,85,86,87] |
Bis-GMA/TEGDMA | Good handling, chemical stability, and strong acrylic bonds with inorganic fillers. | High water sorption, reduced mechanical properties, and low color stability. | [86,87] |
UDMA/HEMA | Higher FS, EM and hardness as well as improved monomer conversion compared to Bis-GMA. | HEMA leaching and water degradation. | [85,86,87,88] |
UDMA/HEMA/4-MET | Addition of 4-MET significantly increased mean SBS to dentin. | HEMA leaching and water degradation. | [89] |
UDMA/TEGDMA | Higher FS, EM and hardness as well as improved monomer conversion compared to Bis-GMA. | High water sorption, reduced mechanical properties, and low color stability. | [86,87,88] |
Bis-GMA/TEGDMA/UDMA | Improved the overall degree of conversion and mechanical properties. | Biologic safety of bisphenol A. High water sorption. | [86,87,88,90] |
UDMA/Bis-GMA/HDDMA | Lowers the overall viscosity of the composite, allowing more filler or additional components. | Low FS and FM | [91] |
UDMA/GDMA | Improve mechanical properties, hydrolytic resistance and reduce cytotoxicity. | GPDM-Ca salts are more prone to hydrolytic degradation than other functional monomers. | [9,92,93] |
UDMA/Bis-GMA/TEGDMA | Acceptable mechanical properties. | Biologic safety of bisphenol A. | [91] |
UDMA/Bis-GMA/TEGDMA/HEMA | Improved mechanical properties, such as hardness, TBS, FS and FM, and lower shrinkage stress compared to Bis-GMA. | Biologic safety of bisphenol A. HEMA leaching and water degradation. | [91] |
UDMA/Bis-GMA/HEMA | Acceptable mechanical properties. | Biologic safety of bisphenol A. HEMA leaching and water degradation. | [91] |
Bis-GMA/HEMA/GPDM | Promotes adhesive diffusion into the demineralized dentin and forms an instable GPDM-Ca salt with hydroxyapatite. | GPDM-Ca salts are more prone to hydrolytic degradation compared to other functional monomers, e.g., 10-MDP. | [9,94] |
Bis-GMA/HEMA/4-META | 4-Meta is a functional monomer that forms 4-META-Ca salt with the hydroxyapatite. | Faster solubilization of 4-META-Ca compared to 10-MDP-Ca, resulting in lower molecule stability. | [4,94,95,96] |
Bis-GMA/HEMA/10-MDP | Remarkable bond strength and longevity with 10-MDP-based adhesives. | Chemical interaction with HAp crystals in unetched enamel is less effective than in dentin. | [8,94,96,97,98,99,100,101,102,103] |
Resin Network | Properties Improved | Drawbacks | Reference |
---|---|---|---|
Bis-GMA /HEMA/Riboflavin and D-Alpha 1000 Succinate polyethylene (VE-TPGS) | Facilitate resin penetration in dentine and the distribution and uptake of riboflavin through extracellular and collagen matrices. VE-TPGS effectively quenches harmful reactive-oxygen species. | Long-term clinical studies are required to validate these findings. | [180,181] |
HEMA/Bis-GMA/TMPEDMA | TMPEDMA improved the esterase resistance. | Long-term clinical studies are required to validate these findings. | [182] |
BCF-EA/TEGDMA (5E5T) BCF-EA/TEGDMA (5G5T)/1 wt% DMAEMA | Derived from renewable bio-based raw materials Lower cytotoxicity. | Long-term clinical studies are required to validate these findings. | [183] |
4-TF-PQEA/TEGDMA | Lower polymerization shrinkage, water sorption, and higher DC values compared to Bis-GMA/ TEGDMA resin system. | Lower mechanical properties. | [184] |
SiMA/TEGDMA/Silanization of BaAlSiO2 microfillers. /0.7 wt% DMAEMA | Reduced human exposure to Bisphenol A derivatives. | Mechanical properties of SiMA based resins need improvement, and further research on their biocompatibility is required. | [185] |
UDMA/SiMA/TEGDMA | Eliminates bisphenol A derivatives in the oral environment. Higher DC, less shrinkage, comparable FM, lower WS, and water solubility compared to Bis-GMA/TEGDMA | Further research is needed to optimize resin formulations and assess biocompatibility. | [185] |
UXY modified urethane resin/HDDMA | New aliphatic and aromatic urethane dimethacrylate monomers containing pendant phenyl methoxy significantly reduced water sorption and water solubility of urethane based dimethacrylate systems. | Further studies are needed to evaluate the bonding values and other mechanical properties. | [186] |
TMBPF-Ac or TMBPF-Ac/TEGDMA | Eliminates bisphenol A derivatives in the oral environment and exhibits superior mechanical properties and lower cytotoxicity compared to Bis-GMA/TEGDMA formulations. | The in vitro results are promising, but extensive long-term clinical studies are required to validate these findings. | [187] |
Polymerizable collagen cross-linker methacrylate-functionalized proanthocyanidins (MAPA): MAPA-1, MAPA-2, and MAPA-3/0.5 wt% CQ/EDMAB/DPIHP | MAPA is a novel collagen cross-linker that stabilizes dentin collagen and improves polymerization, mechanical properties, and stability of HEMA-based adhesives. | Further research is needed to evaluate the effects of MAPA in commercial adhesives and as a primer in clinical settings. | [188,189] |
Bis-GMA/QAUDMA-m/TEGDMA | QAUDMA-m demonstrates good mechanical performance and high antibacterial activity against S. aureus and E. coli. | The in vitro results are promising, but long-term clinical studies must validate these findings. | [190] |
2EMATE-BDI/UDMA | Bis-GMA-free dental resin composites reduce polymerization stress without compromising mechanical properties while maintaining hydrophobicity and minimizing biofilm formation and stress. | Further studies are needed to balance this new monomer with other antibacterial monomers to reduce biofilm formation and improve the longevity of dental composite restorations. | [191] |
A series of three nanogels: NG1—IBMA/UDMA; NG2—HEMA/Bis-GMA; NG3—HEMA/TE-EGDMA. That are dispersed in solvent, HEMA or Bis-GMA/HEMA. | Nanogels with varying hydrophilicity influenced mechanical performance and dentin bond strength. Generally, the more hydrophobic IBMA/UDMA nanogel exhibited better bulk material mechanical properties. | The in vitro results are promising, but extensive long-term clinical studies are required to validate these findings. | [192] |
Dual Peptide Tethered Polymer: K-GSGGG-HABP: AMPM7 Polymer. | AMPM7 exhibited antimicrobial activity, and HABP provided peptide-mediated remineralization and high mineral binding properties. | Lack of mechanical and physical properties testing. Future studies must address the long-term retention of the antimicrobial activity under relevant in vivo conditions. | [193] |
Bis-GMA/HMFBM | Comparable flexural strength and degree of conversion, low volumetric contraction excellent and cellular viability of fibroblasts. | The in vitro results are promising, but extensive long-term clinical studies are required to validate these findings. | [194] |
UDMA/TEG-DVBE (U/V) PMGDM/TEG-DVBE (P/V) | However, TEG-DVBE-containing adhesives showed comparable shear and tensile bonding strengths to the dentin and resin composites, with superior stability after thermocycling. This performance was linked to improved mechanical properties, better dentin infiltration, and reduced water sorption/solubility. | Further studies are needed to evaluate the curing characteristics, polymerization shrinkage, and in vitro release of unreacted substances from the selected urethane monomers. | [195] |
Multi-functional acrylamides: DEBAAP/UDMA/BMAAPMA TMAAEA/UDMA/BMAAPMA BAADA/UDMA/BMAAPMA UDMA/BMAAPMA | Interfacial bond strength was more significant and stable in the long term than methacrylate. (less than 4% reduction vs. 42% reduction in 6 months). HEMA degraded by almost 90%, while the acrylamides showed no degradation in acidic conditions. | Compared to methacrylate, these acrylamides had a lower overall degree of polymerization conversion. Long-term clinical studies are needed to validate these findings. | [196,197] |
TDDMMA/TEGDMA | Bisphenol-A is free, with higher double bond conversion, lower solubility, and better mechanical properties after water immersion compared to Bis-GMA. | Higher water sorption. Further research is needed to investigate biocompatibility and resistance to oral microbial attachment. | [198] |
FDMA/TEGDMA | FDMA-based resin had several advantages over Bis-GMA-based resin, such as higher double bond conversion, lower volumetric shrinkage, and better water resistance. | FDMA-based resin has higher viscosity than Bis-GMA-based. Further research is needed on biocompatibility and resistance to oral microbial attachment. | [199,200,201] |
FDMA/FBMA FDMA/TEGDMA | Fluorinated methacrylate-based resin reduced S. mutans adhesion, with higher double bond conversion and lower water sorption and solubility than Bis-GMA/TEGDMA. | The in vitro results are promising, but long-term clinical studies must validate these findings. | [200] |
FUDMA/TEGDMA/5 wt% of bioactive glass fillers | Bis-GMA free dental resin, with improved physicochemical properties | The in vitro results are promising, but extensive long-term clinical studies are required to validate these findings. | [202,203] |
Urushiol derivative/HEMA | Urushiol is a natural renewable monomer and is Bis-GMA free. | Mechanical and adhesive properties need to be improved. | [204] |
Bis-GMA/TEGDMA/SiO2 nanofiber fillers | Improved mechanical properties, especially for the composite resin fillings by increasing the wear resistance and lowering polymerization shrinkage. | The in vitro results are promising, but extensive long-term clinical studies are required to validate these findings. | [205] |
Functional Filler/Additive | Added Benefit |
---|---|
Carbon nanoparticles | Increase bond strength and improve mechanical properties [278,279]. |
Calcium phosphate nanoparticles (cap) | Helps regenerate hydroxyapatite at the adhesive interface, improving dentin remineralization and reducing secondary caries risk [281,295]. |
Chitosan | Increase bond strength [296], reduce dentin permeability [297], and enhance adhesive antibacterial properties. |
Chlorhexidine | Helps maintain bond strength by inhibiting enzymatic degradation [298,299]. |
Copper nanoparticles | Reduce bacteria and biofilm [222,282,283,284,285], inhibit MMP activity [282], reduce degradation of adhesive [284], and increase bond strength [222,285] |
Hydroxyapatite | Reduces post-operative sensitivity [300,301], stabilizes the adhesive-dentin interface, and improves the bonding durability [286,287]. |
Doxycycline | Inhibit MMP activity [288] and bacterial growth, improving the adhesives longevity [288]. |
Iron oxide nanoparticles | Improve bond strength and mechanical performance [289,290]. |
Silver nanoparticles | Increase antibacterial activity by preventing bacterial adhesion and biofilm formation [293,302,303,304,305,306,307,308]. |
Zinc oxide nanoparticles | Inhibit bacteria and biofilm formation, strengthen the hybrid layer, and reduce enzymatic degradation [282,291,292]. |
Titania nanoparticles | Improves interfacial bond strength [309], inhibits bacterial growth [309,310], and improves physicochemical properties [310]. |
Boron nitride nanotubes (bnnts) | Enhance mineral deposition and bonding durability without compromising biocompatibility [311]. |
Graphene nanoplatelets | Prevent secondary caries while maintaining bond strength; currently undergoing long-term effectiveness testing [312]. |
Bis(methacryloyl)imidazolium ntf2 (bmi.ntf2) | Acts as an ionic liquid additive, reducing polymerization stress and enhancing the mechanical properties of adhesives [313]. It also exhibits antibacterial properties [314]. |
Thio-urethane monomer | Reduces polymerization shrinkage and enhances fatigue resistance. |
Quaternary ammonium compounds (qacs), e.g., mdpb | Provides antibacterial properties to inhibit bacterial growth at the adhesive interface [315,316] without relevant changes in physicochemical and mechanical properties [307]. |
Pre-reacted glass ionomer (prg) fillers | Enhance bonding durability and prevent secondary caries by strengthening dentin through ion uptake in fluoride-releasing adhesives [312]. |
Wollastonite | Calcium silicate (CaSiO3) enhances dental adhesives by improving mechanical properties, promoting mineral deposition, and maintaining bonding stability over time [317]. |
Other materials | Increase antibacterial activities—benzyldimethyldodecyl ammonium chloride [318], eugenyl methacrylate [319], nisin [269], tt-farnesol [320], pyrogallol (py), polyhexamethylene guanidine hydrochloride [321], and triclosan [322]. Improve bond strength—Resveratrol [323], and 4-formylphenyl acrylate [324]. |
Function | Adhesive | Added Benefit |
---|---|---|
Reminealizing Dental Adhesives. | Clearfil SE Protect (Kuraray Noritake) |
|
OptiBond™ FL (Kerr) |
| |
One-up Bond F (Tokuyama). | ||
Antibacterial Dental Adhesive | GLUMA Bond Universal (Heraeus Kulzer) |
|
Prime & Bond Active (Dentsply Sirona) |
| |
Peak Universal Bond (Ultradent) |
| |
G2-BOND Universal (GC) |
| |
Functionalized And Innovative Dental Adhesives | Bioactive iBOND Universal (Kulzer) |
|
ACTIVA BioACTIVE Cement (Pulpdent) |
| |
G-Premio BOND (GC) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alomran, W.K.; Nizami, M.Z.I.; Xu, H.H.K.; Sun, J. Evolution of Dental Resin Adhesives—A Comprehensive Review. J. Funct. Biomater. 2025, 16, 104. https://doi.org/10.3390/jfb16030104
Alomran WK, Nizami MZI, Xu HHK, Sun J. Evolution of Dental Resin Adhesives—A Comprehensive Review. Journal of Functional Biomaterials. 2025; 16(3):104. https://doi.org/10.3390/jfb16030104
Chicago/Turabian StyleAlomran, Waad Khalid, Mohammed Zahedul Islam Nizami, Hockin H. K. Xu, and Jirun Sun. 2025. "Evolution of Dental Resin Adhesives—A Comprehensive Review" Journal of Functional Biomaterials 16, no. 3: 104. https://doi.org/10.3390/jfb16030104
APA StyleAlomran, W. K., Nizami, M. Z. I., Xu, H. H. K., & Sun, J. (2025). Evolution of Dental Resin Adhesives—A Comprehensive Review. Journal of Functional Biomaterials, 16(3), 104. https://doi.org/10.3390/jfb16030104