Corrosion-Modulating Effect of Pharmaceutical Agents in a Hybrid Coating System on Pure Magnesium
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plasma Electrolytic Oxidation (PEO) Treatment
2.3. Polymer Coating
2.4. Surface Characterization
2.5. Electrochemical Impedance Spectroscopy (EIS)
2.6. Hydrogen Evolution Experiment
2.7. Selection of the Pharmaceutical Agents
2.8. Ion Release Analysis
3. Results
3.1. Characterization of the PEO- and PEO/PCL-Treated Surface
3.1.1. Optimization of PEO Coating
3.1.2. Selection of the PEO Coating by EIS
3.1.3. Characterization of PEO and Hybrid PEO/PCL Coatings
3.1.4. Corrosion Behaviour in H2 Evolution Test
3.2. Screening of the Pharmaceutical Agents
3.2.1. Electrochemical Impedance Spectroscopy (EIS)
3.2.2. Corrosion Behaviour by H2 Evolution Test
3.2.3. Surface Characteristics of Functionalized Duplex System
3.2.4. Corrosion Behaviour of Functionalized Hybrid System
4. Conclusions
- A range of AC PEO conditions developed for h.p. Mg in an electrolyte containing bioactive species was evaluated with respect to coating thickness and corrosion resistance, varying voltage amplitudes and frequency. The increase in peak-to-peak voltage led to an increase in the coating thickness in the range of 6–8 µm, while the increase in frequency led to a decrease in thickness from 8 to 5 µm. However, milder sparking conditions (the lowest peak-to-peak voltage) resulting in early current drop and enhanced compactness of the coating were found to be the determining factor in the corrosion resistance of a stand-alone PEO coating constituted by MgO and amorphous phase.
- A hybrid PEO/PCL coating on h.p. Mg prevented the onset of corrosion during at least 5 h, reducing the amount of evolved hydrogen gas during the following period by two times, equivalent to a degradation rate of 80 μm/year. This was due to the formation of Ca-P compounds on the surface, blocking the access of corrosive species. The precipitation is thought to be facilitated by local alkalinization in the crevice between the PEO and PCL layers.
- For screening of the corrosion-modulating effect of pharmaceutical agents on h.p. Mg, a 96 h long hydrogen evolution test was found more reliable and discriminating than a 24 h long EIS screening. Gentamicin, naproxen, streptomycin, ciprofloxacin and paracetamol (in no particular order) were found to be corrosion accelerators for bare h.p. Mg, whereas aspirin was found to inhibit the corrosion by ~two times. Streptomycin exhibited the accelerating effect sooner than other drugs, within 8 h of immersion.
- Streptomycin inhibited corrosion of both stand-alone PEO and hybrid PEO/PCL coating systems on h.p. Mg. This effect can be considered an active corrosion protection mechanism, as it is triggered upon the release of the coating and substrate cations, followed by the coating defect-blocking action of the precipitated insoluble chelates of Mg2+ and Ca2+ cations with streptomycin.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shan, Z.; Xie, X.; Wu, X.; Zhuang, S.; Zhang, C. Development of Degradable Magnesium-Based Metal Implants and Their Function in Promoting Bone Metabolism (A Review). J. Orthop. Transl. 2022, 36, 184–193. [Google Scholar] [CrossRef]
- Witte, F.; Ulrich, H.; Rudert, M.; Willbold, E. Biodegradable Magnesium Scaffolds: Part 1: Appropriate Inflammatory Response. J. Biomed. Mater. Res. Part A 2007, 81A, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tang, J.; Zhang, P.; Li, Y.; Wang, J.; Lai, Y.; Qin, L. Surface Modification of Magnesium Alloys Developed for Bioabsorbable Orthopedic Implants: A General Review. J. Biomed. Mater. Res. 2012, 100B, 1691–1701. [Google Scholar] [CrossRef] [PubMed]
- Loukil, N. Alloying Elements of Magnesium Alloys: A Literature Review. In Magnesium Alloys Structure and Properties; IntechOpen: London, UK, 2021; ISBN 978-1-83962-467-4. [Google Scholar]
- Igbokwe, I.O.; Igwenagu, E.; Igbokwe, N.A. Aluminium Toxicosis: A Review of Toxic Actions and Effects. Interdiscip. Toxicol. 2019, 12, 45–70. [Google Scholar] [CrossRef]
- Wang, W.; Yang, Y.; Wang, D.; Huang, L. Toxic Effects of Rare Earth Elements on Human Health: A Review. Toxics 2024, 12, 317. [Google Scholar] [CrossRef]
- Persaud-Sharma, D.; McGoron, A. Biodegradable Magnesium Alloys: A Review of Material Development and Applications. J. Biomim. Biomater. Tissue Eng. 2011, 12, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Li, W.; Chen, Z.; Fu, G.; Li, C.; Liu, W.; Li, Y.; Qin, L.; Ding, Y. Biomechanical Comparison of Pure Magnesium Interference Screw and Polylactic Acid Polymer Interference Screw in Anterior Cruciate Ligament Reconstruction—A Cadaveric Experimental Study. J. Orthop. Transl. 2017, 8, 32–39. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Wu, X.; Lou, J.; Zhang, X.; Peng, Z. Rotator Cuff Repair with Biodegradable High-Purity Magnesium Suture Anchor in Sheep Model. J. Orthop. Transl. 2022, 35, 62–71. [Google Scholar] [CrossRef]
- Wang, C.; Mei, D.; Wiese, G.; Wang, L.; Deng, M.; Lamaka, S.V.; Zheludkevich, M.L. High Rate Oxygen Reduction Reaction during Corrosion of Ultra-High-Purity Magnesium. npj Mater. Degrad. 2020, 4, 42. [Google Scholar] [CrossRef]
- Yasakau, K.A.; Höche, D.; Lamaka, S.L.; Ferreira, M.G.S.; Zheludkevich, M.L. Kelvin Microprobe Analytics on Iron-Enriched Corroded Magnesium Surface. Corrosion 2017, 73, 583–595. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, K.; Cheng, R.; Xiang, Y.; Yuan, T.; Cheng, Y.; Sarmento, B.; Cui, W. The Current Status of Biodegradable Stent to Treat Benign Luminal Disease. Mater. Today 2017, 20, 516–529. [Google Scholar] [CrossRef]
- Li, L.; Zhang, M.; Li, Y.; Zhao, J.; Qin, L.; Lai, Y. Corrosion and Biocompatibility Improvement of Magnesium-Based Alloys as Bone Implant Materials: A Review. Regen. Biomater. 2017, 4, 129–137. [Google Scholar] [CrossRef]
- Wu, G.; Chan, K.-C.; Zhu, L.; Sun, L.; Lu, J. Dual-Phase Nanostructuring as a Route to High-Strength Magnesium Alloys. Nature 2017, 545, 80–83. [Google Scholar] [CrossRef]
- Shahin, M.; Munir, K.; Wen, C.; Li, Y. Magnesium Matrix Nanocomposites for Orthopedic Applications: A Review from Mechanical, Corrosion, and Biological Perspectives. Acta Biomater. 2019, 96, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; He, S.; Wang, D.; Huang, D.; Zheng, T.; Wang, S.; Dong, P.; Chen, C. In Vitro Degradation and Electrochemical Corrosion Evaluations of Microarc Oxidized Pure Mg, Mg–Ca and Mg–Ca–Zn Alloys for Biomedical Applications. Mater. Sci. Eng. C 2015, 47, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Ma, Y.; Fan, B.; Wang, S.; Wang, Z. Investigation of Anti-Corrosion Property of Hybrid Coatings Fabricated by Combining PEC with MAO on Pure Magnesium. J. Magnes. Alloys 2022, 10, 2875–2888. [Google Scholar] [CrossRef]
- Dong, J.; Zhong, J.; Hou, R.; Hu, X.; Chen, Y.; Weng, H.; Zhang, Z.; Liu, B.; Yang, S.; Peng, Z. Polymer Bilayer-Micro Arc Oxidation Surface Coating on Pure Magnesium for Bone Implantation. J. Orthop. Transl. 2023, 40, 27–36. [Google Scholar] [CrossRef]
- Farshid, S.; Kharaziha, M.; Atapour, M. A Self-Healing and Bioactive Coating Based on Duplex Plasma Electrolytic Oxidation/Polydopamine on AZ91 Alloy for Bone Implants. J. Magnes. Alloys 2023, 11, 592–606. [Google Scholar] [CrossRef]
- Makkar, P.; Kang, H.J.; Padalhin, A.R.; Park, I.; Moon, B.-G.; Lee, B.T. Development and Properties of Duplex MgF2/PCL Coatings on Biodegradable Magnesium Alloy for Biomedical Applications. PLoS ONE 2018, 13, e0193927. [Google Scholar] [CrossRef]
- Kim, B.-S.; Yang, S.-S.; Kim, C.S. Incorporation of BMP-2 Nanoparticles on the Surface of a 3D-Printed Hydroxyapatite Scaffold Using an ε-Polycaprolactone Polymer Emulsion Coating Method for Bone Tissue Engineering. Colloids Surf. B Biointerfaces 2018, 170, 421–429. [Google Scholar] [CrossRef]
- Ye, Q.; Zhou, F.; Liu, W. Bioinspired Catecholic Chemistry for Surface Modification. Chem. Soc. Rev. 2011, 40, 4244–4258. [Google Scholar] [CrossRef] [PubMed]
- Kröger, N.; Kopp, A.; Staudt, M.; Rusu, M.; Schuh, A.; Liehn, E.A. Hemocompatibility of plasma electrolytic oxidation (PEO) coated Mg-RE and Mg-Zn-Ca alloys for vascular scaffold applications. Mater. Sci. Eng. C. 2018, 92, 819–826. [Google Scholar] [CrossRef]
- Nicolao-Gómez, A.; Martínez-Campos, E.; Moreno, L.; Rodríguez-Hernández, J.; Matykina, E. Hierarchical Hybrid Coatings with Drug-Eluting Capacity for Mg Alloy Biomaterials. Materials 2023, 16, 7688. [Google Scholar] [CrossRef]
- Ikeuba, A.I.; Okafor, P.C. Green Corrosion Protection for Mild Steel in Acidic Media: Saponins and Crude Extracts of Gongronema Latifolium. Pigment. Resin Technol. 2018, 48, 57–64. [Google Scholar] [CrossRef]
- Tanwer, S.; Shukla, S.K. Recent Advances in the Applicability of Drugs as Corrosion Inhibitor on Metal Surface: A Review. Curr. Res. Green Sustain. Chem. 2022, 5, 100227. [Google Scholar] [CrossRef]
- Lamaka, S.V.; Vaghefinazari, B.; Mei, D.; Petrauskas, R.P.; Höche, D.; Zheludkevich, M.L. Comprehensive Screening of Mg Corrosion Inhibitors. Corros. Sci. 2017, 128, 224–240. [Google Scholar] [CrossRef]
- Zaffora, A.; Di Franco, F.; Santamaria, M. Corrosion of Stainless Steel in Food and Pharmaceutical Industry. Curr. Opin. Electrochem. 2021, 29, 100760. [Google Scholar] [CrossRef]
- Rotaru, I.; Varvara, S.; Gaina, L.; Muresan, L.M. Antibacterial Drugs as Corrosion Inhibitors for Bronze Surfaces in Acidic Solutions. Appl. Surf. Sci. 2014, 321, 188–196. [Google Scholar] [CrossRef]
- Varvara, S. Reusing an Expired Drug as a Sustainable Corrosion Inhibitor for Bronze in 3.5% NaCl and Simulated Acid Rain Solutions. Appl. Sci. 2025, 15, 6637. [Google Scholar] [CrossRef]
- Moreno, L.; Wang, C.; Lamaka, S.V.; Zheludkevich, M.L.; Rodríguez-Hernández, J.; Arrabal, R.; Matykina, E. Ciprofloxacin Release and Corrosion Behaviour of a Hybrid PEO/PCL Coating on Mg3Zn0.4Ca Alloy. J. Funct. Biomater. 2023, 14, 65. [Google Scholar] [CrossRef] [PubMed]
- PCL—Natureplast. Available online: https://natureplast.eu/en/lexique/pcl/ (accessed on 8 April 2025).
- Kim, Y.-K.; Jang, Y.-S.; Lee, Y.-H.; Yi, H.-K.; Bae, T.-S.; Lee, M.-H. Effect of Ca-P Compound Formed by Hydrothermal Treatment on Biodegradation and Biocompatibility of Mg-3Al-1Zn-1.5Ca Alloy; in Vitro and in Vivo Evaluation. Sci. Rep. 2017, 7, 712. [Google Scholar] [CrossRef]
- Daavari, M.; Atapour, M.; Mohedano, M.; Sánchez, H.M.; Rodríguez-Hernández, J.; Matykina, E.; Arrabal, R.; Taherizadeh, A. Quasi-in Vivo Corrosion Behavior of AZ31B Mg Alloy with Hybrid MWCNTs-PEO/PCL Based Coatings. J. Magnes. Alloys 2021, 10, 3217–3233. [Google Scholar] [CrossRef]
- An, L.; Ma, Y.; Liu, Y.; Sun, L.; Wang, S.; Wang, Z. Effects of Additives, Voltage and Their Interactions on PEO Coatings Formed on Magnesium Alloys. Surf. Coat. Technol. 2018, 354, 226–235. [Google Scholar] [CrossRef]
- Rahmati, M.; Raeissi, K.; Toroghinejad, M.R.; Hakimizad, A.; Santamaria, M. Effect of Pulse Current Mode on Microstructure, Composition and Corrosion Performance of the Coatings Produced by Plasma Electrolytic Oxidation on AZ31 Mg Alloy. Coatings 2019, 9, 688. [Google Scholar] [CrossRef]
- Wierzbicka, E.; Vaghefinazari, B.; Lamaka, S.V.; Zheludkevich, M.L.; Mohedano, M.; Moreno, L.; Visser, P.; Rodriguez, A.; Velasco, J.; Arrabal, R.; et al. Flash-PEO as an Alternative to Chromate Conversion Coatings for Corrosion Protection of Mg Alloy. Corros. Sci. 2021, 180, 109189. [Google Scholar] [CrossRef]
- Zhang, R.F.; Shan, D.Y.; Chen, R.S.; Han, E.H. Effects of Electric Parameters on Properties of Anodic Coatings Formed on Magnesium Alloys. Mater. Chem. Phys. 2008, 107, 356–363. [Google Scholar] [CrossRef]
- Bala Srinivasan, P.; Liang, J.; Balajeee, R.G.; Blawert, C.; Störmer, M.; Dietzel, W. Effect of Pulse Frequency on the Microstructure, Phase Composition and Corrosion Performance of a Phosphate-Based Plasma Electrolytic Oxidation Coated AM50 Magnesium Alloy. Appl. Surf. Sci. 2010, 256, 3928–3935. [Google Scholar] [CrossRef]
- Lv, G.-H.; Chen, H.; Gu, W.-C.; Li, L.; Niu, E.-W.; Zhang, X.-H.; Yang, S.-Z. Effects of Current Frequency on the Structural Characteristics and Corrosion Property of Ceramic Coatings Formed on Magnesium Alloy by PEO Technology. J. Mater. Process. Technol. 2008, 208, 9–13. [Google Scholar] [CrossRef]
- Gan, J.; Tan, L.; Yang, K.; Hu, Z.; Zhang, Q.; Fan, X.; Li, Y.; Li, W. Bioactive Ca–P Coating with Self-Sealing Structure on Pure Magnesium. J. Mater. Sci. Mater. Med. 2013, 24, 889–901. [Google Scholar] [CrossRef]
- Matykina, E.; Doucet, G.; Monfort, F.; Berkani, A.; Skeldon, P.; Thompson, G.E. Destruction of Coating Material during Spark Anodizing of Titanium. Electrochim. Acta 2006, 51, 4709–4715. [Google Scholar] [CrossRef]
- Nominé, A.; Martin, J.; Noël, C.; Henrion, G.; Belmonte, T.; Bardin, I.V.; Kovalev, V.L.; Rakoch, A.G. The Evidence of Cathodic Micro-Discharges during Plasma Electrolytic Oxidation Process. Appl. Phys. Lett. 2014, 104, 081603. [Google Scholar] [CrossRef]
- Nominé, A.; Martin, J.; Henrion, G.; Belmonte, T. Effect of Cathodic Micro-Discharges on Oxide Growth during Plasma Electrolytic Oxidation (PEO). Surf. Coat. Technol. 2015, 269, 131–137. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, C.; Bandopadhyay, S.; Ning, C.; Zhang, Y.; Guo, Y. Corrosion Mechanism and Model of Pulsed DC Microarc Oxidation Treated AZ31 Alloy in Simulated Body Fluid. Appl. Surf. Sci. 2012, 258, 6116–6126. [Google Scholar] [CrossRef]
- Tang, H.; Han, Y.; Wu, T.; Tao, W.; Jian, X.; Wu, Y.; Xu, F. Synthesis and Properties of Hydroxyapatite-Containing Coating on AZ31 Magnesium Alloy by Micro-Arc Oxidation. Appl. Surf. Sci. 2017, 400, 391–404. [Google Scholar] [CrossRef]
- Mei, D.; Lamaka, S.V.; Gonzalez, J.; Feyerabend, F.; Willumeit-Römer, R.; Zheludkevich, M.L. The Role of Individual Components of Simulated Body Fluid on the Corrosion Behavior of Commercially Pure Mg. Corros. Sci. 2019, 147, 81–93. [Google Scholar] [CrossRef]
- Echeverry-Rendon, M.; Duque, V.; Quintero, D.; Robledo, S.M.; Harmsen, M.C.; Echeverria, F. Improved Corrosion Resistance of Commercially Pure Magnesium after Its Modification by Plasma Electrolytic Oxidation with Organic Additives. J. Biomater. Appl. 2018, 33, 725–740. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, C.; Lou, T.; Chen, B.; Yi, R.; Wang, W.; Zhang, R.; Zuo, M.; Xu, H.; Han, P.; et al. Crevice Corrosion—A Newly Observed Mechanism of Degradation in Biomedical Magnesium. Acta Biomater. 2019, 98, 152–159. [Google Scholar] [CrossRef]
- Gonzalez, J.; Hou, R.Q.; Nidadavolu, E.P.S.; Willumeit-Römer, R.; Feyerabend, F. Magnesium Degradation under Physiological Conditions—Best Practice. Bioact. Mater. 2018, 3, 174–185. [Google Scholar] [CrossRef]
- Moreno, L.; Mohedano, M.; Arrabal, R.; Matykina, E. Screening of Fluoride-Free PEO Coatings on Cast Mg3Zn0.4Ca Alloy for Orthopaedic Implants. Surf. Coat. Technol. 2024, 476, 130184. [Google Scholar] [CrossRef]
- Cao, F.; Song, G.-L.; Atrens, A. Corrosion and Passivation of Magnesium Alloys. Corros. Sci. 2016, 111, 835–845. [Google Scholar] [CrossRef]
- Refat, M.S.; Sharshar, T.; Elsabawy, K.M.; Heiba, Z.K. Physicochemical Impact Studies of Gamma Rays on “Aspirin” Analgesics Drug and Its Metal Complexes in Solid Form: Synthesis, Spectroscopic and Biological Assessment of Ca(II), Mg(II), Sr(II) and Ba(II) Aspirinate Complexes. J. Mol. Struct. 2013, 1047, 37–47. [Google Scholar] [CrossRef]
- Merimi, C.; Hammouti, B.; Zaidi, K.; Hafez, B.; Elmsellem, H.; Touzani, R.; Kaya, S. Acetylsalicylic Acid as an Environmentally Friendly Corrosion Inhibitor for Carbon Steel XC48 in Chloride Environment. J. Mol. Struct. 2023, 1278, 134883. [Google Scholar] [CrossRef]
- Gnedenkov, A.S.; Sinebryukhov, S.L.; Nomerovskii, A.D.; Marchenko, V.S.; Ustinov, A.Y.; Gnedenkov, S.V. Carboxylates as Green Corrosion Inhibitors of Magnesium Alloy for Biomedical Application. J. Magnes. Alloys 2024, 12, 2909–2936. [Google Scholar] [CrossRef]
- Keyvani, A.; Kamkar, N.; Chaharmahali, R.; Bahamirian, M.; Kaseem, M.; Fattah-alhosseini, A. Improving Anti-Corrosion Properties AZ31 Mg Alloy Corrosion Behavior in a Simulated Body Fluid Using Plasma Electrolytic Oxidation Coating Containing Hydroxyapatite Nanoparticles. Inorg. Chem. Commun. 2023, 158, 111470. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, R.; Su, Y.; Shi, B.; You, X.; Guo, W.; Ma, Y.; Yuan, J.; Wang, F.; Jiang, Z. Polydopamine-Modulated Covalent Organic Framework Membranes for Molecular Separation. J. Mater. Chem. A 2019, 7, 18063–18071. [Google Scholar] [CrossRef]
- Jeong, H.; Rho, J.; Shin, J.-Y.; Lee, D.Y.; Hwang, T.; Kim, K.J. Mechanical Properties and Cytotoxicity of PLA/PCL Films. Biomed. Eng. Lett. 2018, 8, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Waters, M.; Tadi, P. Streptomycin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Sun, H.; He, S.; Wu, P.; Gao, C.; Feng, P.; Xiao, T.; Deng, Y.; Shuai, C. A Novel MgO-CaO-SiO2 System for Fabricating Bone Scaffolds with Improved Overall Performance. Materials 2016, 9, 287. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; He, G.; Zheng, W.; Bian, T.; Li, M.; Zhang, D. Study on Antibacterial Mechanism of Mg(OH)2 Nanoparticles. Mater. Lett. 2014, 134, 286–289. [Google Scholar] [CrossRef]
- Wang, C.; Xu, S.; Zhang, K.; Li, M.; Li, Q.; Xiao, R.; Wang, S. Streptomycin-Modified Fe3O4–Au@Ag Core–Satellite Magnetic Nanoparticles as an Effective Antibacterial Agent. J. Mater. Sci. 2017, 52, 1357–1368. [Google Scholar] [CrossRef]
- Foye, W.O.; Lange, W.E.; Swintosky, J.V.; Chamberlain, R.E.; Guarini, J.R. Metal Chelates of Streptomycin. J. Am. Pharm. Assoc. Am. Pharm. Assoc. 1955, 44, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.D.; Kadner, R.J. Relation of Aerobiosis and Ionic Strength to the Uptake of Dihydrostreptomycin in Escherichia coli. Biochim. Biophys. Acta 1980, 593, 1–10. [Google Scholar] [CrossRef] [PubMed]














| Mg | Ag | Al | Ca | Ce | Cu | Fe | La |
|---|---|---|---|---|---|---|---|
| 99.915 | 0.000075 | 0.01235 | 0.005925 | 0.001865 | 0.00092 | 0.00455 | 0.00065 |
| Mn | Ni | Pb | Si | Sn | Zn | Zr | Be |
| 0.02895 | 0.000725 | 0.000205 | 0.0265 | 0.0004 | 0.002195 | 0.00275 | 0.000021 |
| Sample | Vp-p (V) | Frequency (Hz) | Thickness (μm) | Eapp (KW·h/m2·µm) |
|---|---|---|---|---|
| PEO_1 | 360 | 50 | 3.0 ± 0.6 | 3.70 |
| PEO_2 | 380 | 5.0 ± 0.5 | 9.53 | |
| PEO_3 | 400 | 8.7 ± 0.5 | 5.96 | |
| PEO_4 | 450 | 8.0 ± 1.0 | 6.31 | |
| PEO_5 | 380 | 400 | 5.0 ± 0.4 | 6.26 |
| PEO_6 | 400 | 5.4 ± 0.3 | 5.48 | |
| PEO_7 | 450 | 6.4 ± 0.4 | 4.93 |
| Sample | Point | C | O | Na | Mg | Si | P | K | Ca | Ca/P |
|---|---|---|---|---|---|---|---|---|---|---|
| PEO | Plan view | 23.0 | 47.5 | 0.4 | 22.6 | 4.6 | 1.8 | 0.02 | 0.04 | 0.02 |
| 1 | 55.5 | 30.7 | 0.2 | 10.5 | 2.4 | 0.7 | 0.01 | 0.01 | 0.02 | |
| 2 | 40.9 | 35.2 | 0.2 | 19.6 | 3.3 | 0.9 | 0.00 | 0.02 | 0.02 | |
| 3 | 21.3 | 27.5 | 0.1 | 46.3 | 4.2 | 0.6 | 0.01 | 0.01 | 0.02 | |
| PEO/PCL | Plan view | 67.0 | 20.6 | 0.1 | 9.7 | 2.5 | - | 0.01 | - | - |
| 4 | 82.0 | 15.7 | 0.01 | 2.0 | 0.5 | - | 0.01 | - | - |
| Sample | Point | C | O | Na | Mg | Si | P | Cl | Ca | Ca/P |
|---|---|---|---|---|---|---|---|---|---|---|
| h.p. Mg | 1 | 31.2 | 54.5 | 0.0 | 13.5 | 0.0 | 0.5 | 0.2 | 0.1 | 6.71 |
| 2 | 33.4 | 47.4 | 0.4 | 5.4 | 0.1 | 6.3 | 0.1 | 7.0 | 0.91 | |
| PEO | 3 | 46.2 | 40.4 | 0.1 | 7.2 | 3.8 | 1.7 | 0.1 | 0.6 | 0.35 |
| 4 | 38.5 | 44.7 | 0.02 | 15.4 | 0.4 | 0.3 | 0.6 | 0.1 | 0.40 | |
| PEO/PCL | 5 | 21.0 | 52.3 | 0.3 | 19.9 | 4.4 | 1.6 | 0.01 | 0.6 | 2.73 |
| 6 | 26.9 | 52.9 | 0.3 | 2.6 | 0.1 | 8.3 | - | 9.1 | 0.91 | |
| 7 | 24.3 | 54.3 | 0.3 | 10.0 | 3.0 | 4.3 | 0.02 | 3.7 | 1.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno, L.; Belarra-Rodriguez, A.; Mohedano, M.; Castro, L.; Chevalier, M.; Arrabal, R.; Matykina, E. Corrosion-Modulating Effect of Pharmaceutical Agents in a Hybrid Coating System on Pure Magnesium. J. Funct. Biomater. 2025, 16, 406. https://doi.org/10.3390/jfb16110406
Moreno L, Belarra-Rodriguez A, Mohedano M, Castro L, Chevalier M, Arrabal R, Matykina E. Corrosion-Modulating Effect of Pharmaceutical Agents in a Hybrid Coating System on Pure Magnesium. Journal of Functional Biomaterials. 2025; 16(11):406. https://doi.org/10.3390/jfb16110406
Chicago/Turabian StyleMoreno, Lara, Adrián Belarra-Rodriguez, Marta Mohedano, Laura Castro, Margarita Chevalier, Raul Arrabal, and Endzhe Matykina. 2025. "Corrosion-Modulating Effect of Pharmaceutical Agents in a Hybrid Coating System on Pure Magnesium" Journal of Functional Biomaterials 16, no. 11: 406. https://doi.org/10.3390/jfb16110406
APA StyleMoreno, L., Belarra-Rodriguez, A., Mohedano, M., Castro, L., Chevalier, M., Arrabal, R., & Matykina, E. (2025). Corrosion-Modulating Effect of Pharmaceutical Agents in a Hybrid Coating System on Pure Magnesium. Journal of Functional Biomaterials, 16(11), 406. https://doi.org/10.3390/jfb16110406

