Effect of Cleaning Protocols on Surface Roughness of Current Polymeric Denture Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Mechanical Characterization
2.3. Toothbrushing Simulation
2.4. Surface Texture Analysis
3. Results
3.1. Mechanical Characterization
3.2. Surface Texture Analysis
4. Discussion
4.1. Mechanical Characteristics
4.2. Surface Texture
4.3. Clinical Implications
4.4. Limitations
5. Conclusions
- Regardless of the choice of material, water and dish detergent cause negligible changes to the surface.
- Printed DMA-based denture base materials show no relevant damage due to abrasive cleaning.
- Both milled and pressed PMMA show considerable changes after abrasive cleaning, which can be attributed to coarse surface features. These changes are not considered critical for biofilm formation.
- PA and PEEK exhibit rough surfaces with a large specific surface area for potential biofilm adhesion after abrasive cleaning.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DMA | dimethyl methacrylate |
PMMA | polymethyl methacrylate |
PA | polyamide |
PEEK | polyether ether ketone |
VPR | V-Print dentbase |
VIO | VITA Vionic Base |
IVO | IvoBase Hybrid |
BRE | Bre.flex |
JUV | Juvora Disc |
VH | Vickers hardness |
HM | Martens hardness |
EIT | indentation modulus |
Welast | elastic plastic part of indentation work |
Wplast | plastic part of indentation work |
CIT | indentation creep |
Sa | arithmetical mean height |
Sal | autocorrelation length |
Sdr | developed interface ratio |
Sku | kurtosis |
Ssk | skewness |
Appendix A
Sa | Sal | Sdr | Sku | Ssk | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | |
S-L surface (‘Roughness’) | ||||||||||
Material | 441.3 | <0.001 | 41.1 | <0.001 | 207.0 | <0.001 | 1.7 | 0.159 | 2.3 | 0.059 |
Medium | 609.5 | <0.001 | 68.6 | <0.001 | 284.8 | <0.001 | 1.8 | 0.170 | 1.6 | 0.209 |
Time | 148.7 | <0.001 | 22.0 | <0.001 | 60.7 | <0.001 | 0.7 | 0.523 | 4.6 | 0.003 |
Material*Medium | 35.0 | <0.001 | 10.5 | <0.001 | 84.8 | <0.001 | 2.0 | 0.049 | 4.0 | <0.001 |
Material*Time | 25.5 | <0.001 | 2.6 | 0.002 | 24.1 | <0.001 | 0.7 | 0.761 | 0.6 | 0.833 |
Medium*Time | 66.0 | <0.001 | 18.9 | <0.001 | 36.3 | <0.001 | 0.7 | 0.654 | 1.8 | 0.088 |
Material*Medium*Time | 7.7 | <0.001 | 4.0 | <0.001 | 14.4 | <0.001 | 0.7 | 0.855 | 1.0 | 0.490 |
S-F surface (‘Waviness’) | ||||||||||
Material | 12.7 | <0.001 | 116.3 | <0.001 | 205.1 | <0.001 | 1.7 | 0.143 | 5.4 | 0.000 |
Medium | 187.2 | <0.001 | 514.9 | <0.001 | 287.1 | <0.001 | 1.9 | 0.145 | 1.5 | 0.216 |
Time | 57.3 | <0.001 | 106.1 | <0.001 | 61.2 | <0.001 | 0.7 | 0.538 | 4.0 | 0.007 |
Material*Medium | 19.8 | <0.001 | 90.1 | <0.001 | 83.9 | <0.001 | 2.0 | 0.049 | 4.5 | <0.001 |
Material*Time | 7.8 | <0.001 | 14.6 | <0.001 | 23.9 | <0.001 | 0.7 | 0.770 | 0.6 | 0.831 |
Medium*Time | 42.4 | <0.001 | 93.7 | <0.001 | 36.5 | <0.001 | 0.7 | 0.647 | 1.5 | 0.164 |
Material*Medium*Time | 8.1 | <0.001 | 13.7 | <0.001 | 14.3 | <0.001 | 0.7 | 0.869 | 1.3 | 0.154 |
Parameter | Effect | Partial η2 | Cohen’s f | F | Fcrit | Power |
---|---|---|---|---|---|---|
S-L surface (Roughness) | ||||||
Sa | Material | 0.608 | 1.245 | 441.28 | 2.30 | >0.999 |
Medium | 0.517 | 1.035 | 609.53 | 3.00 | >0.999 | |
Time | 0.282 | 0.626 | 148.68 | 2.61 | >0.999 | |
Sal | Material | 0.126 | 0.380 | 41.11 | 2.38 | >0.999 |
Medium | 0.108 | 0.347 | 68.61 | 3.00 | >0.999 | |
Time | 0.055 | 0.241 | 22.04 | 2.61 | >0.999 | |
Sdr | Material | 0.421 | 0.853 | 206.95 | 2.38 | >0.999 |
Medium | 0.334 | 0.707 | 284.81 | 3.00 | >0.999 | |
Time | 0.138 | 0.400 | 60.72 | 2.61 | >0.999 | |
Sku | Material | 0.006 | 0.076 | 1.65 | 2.38 | 0.511 |
Medium | 0.003 | 0.056 | 1.78 | 3.00 | 0.375 | |
Time | 0.002 | 0.044 | 0.75 | 2.61 | 0.209 | |
Ssk | Material | 0.008 | 0.089 | 2.28 | 2.38 | 0.664 |
Medium | 0.003 | 0.052 | 1.57 | 3.00 | 0.329 | |
Time | 0.012 | 0.111 | 4.64 | 2.61 | 0.897 | |
S-F surface (Waviness) | ||||||
Sa) | Material | 0.043 | 0.211 | 12.66 | 2.30 | >0.999 |
Medium | 0.248 | 0.574 | 187.24 | 3.00 | >0.999 | |
Time | 0.131 | 0.389 | 57.30 | 2.61 | >0.999 | |
Sal | Material | 0.290 | 0.640 | 116.27 | 2.38 | >0.999 |
Medium | 0.475 | 0.952 | 514.91 | 3.00 | >0.999 | |
Time | 0.219 | 0.529 | 106.12 | 2.61 | >0.999 | |
Sdr | Material | 0.419 | 0.849 | 205.07 | 2.38 | >0.999 |
Medium | 0.335 | 0.710 | 287.10 | 3.00 | >0.999 | |
Time | 0.139 | 0.402 | 61.16 | 2.61 | >0.999 | |
Sku | Material | 0.006 | 0.078 | 1.72 | 2.38 | 0.535 |
Medium | 0.003 | 0.058 | 1.94 | 3.00 | 0.400 | |
Time | 0.002 | 0.044 | 0.72 | 2.61 | 0.209 | |
Ssk | Material | 0.019 | 0.138 | 5.43 | 2.38 | 0.976 |
Medium | 0.003 | 0.052 | 1.54 | 3.00 | 0.329 | |
Time | 0.011 | 0.103 | 4.03 | 2.61 | 0.843 |
References
- Gerritsen, A.E.; Allen, P.F.; Witter, D.J.; Bronkhorst, E.M.; Creugers, N.H.J. Tooth loss and oral health-related quality of life: A systematic review and meta-analysis. Health Qual. Life Outcomes 2010, 8, 126. [Google Scholar] [CrossRef]
- Wöstmann, B.; Samietz, S.; Jordan, A.R.; Kuhr, K.; Nitschke, I.; Stark, H. Tooth loss and denture status: Results of the 6th German Oral Health Study (DMS • 6). Quintessence Int. 2025, 56, S60–S68. [Google Scholar] [CrossRef]
- Zafar, M.S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Pan, Y.; Wang, M.; Wang, Y.; Lin, H.; Jiang, L.; Lin, D.; Cheng, H. Comparative analysis of leaching residual monomer and biological effects of four types of conventional and CAD/CAM dental polymers: An in vitro study. Clin. Oral Investig. 2022, 26, 2887–2898. [Google Scholar] [CrossRef] [PubMed]
- Jasiūnaitė, A.; Verenis, A.M.; Ivanauskienė, E.; Žilinskas, J. A comparison of mechanic properties regarding complete removable dentures, which were made from polymethylmethacrilate (PMMA) during conventional and CAD/CAM processes: Systemic literature review. Stomatologija 2022, 2022, 3–12. [Google Scholar]
- Schmutzler, A.; Stingu, C.S.; Günther, E.; Lang, R.; Fuchs, F.; Koenig, A.; Rauch, A.; Hahnel, S. Attachment of Respiratory Pathogens and Candida to Denture Base Materials-A Pilot Study. J. Clin. Med. 2023, 12, 6127. [Google Scholar] [CrossRef] [PubMed]
- Raszewski, Z.; Nowakowska-Toporowska, A.; Nowakowska, D.; Więckiewicz, W. Update on Acrylic Resins Used in Dentistry. Mini Rev. Med. Chem. 2021, 21, 2130–2137. [Google Scholar] [CrossRef]
- Polychronakis, N.C.; Polyzois, G.L.; Lagouvardos, P.E.; Papadopoulos, T.D. Effects of cleansing methods on 3-D surface roughness, gloss and color of a polyamide denture base material. Acta Odontol. Scand. 2015, 73, 353–363. [Google Scholar] [CrossRef]
- Parate, K.P.; Naranje, N.; Vishnani, R.; Paul, P. Polyetheretherketone Material in Dentistry. Cureus 2023, 15, e46485. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, G.; Padhiary, S.K.; Schimmel, M.; Schenk, N.; Çakmak, G.; Roccuzzo, A.; Molinero-Mourelle, P. Performance of polyetheretherketone (PEEK) versus cobalt chromium to fabricate removable partial denture frameworks: A systematic review. J. Prosthet. Dent. 2025, 134, 652.e1–652.e10. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Eichberger, M.; Uhrenbacher, J.; Wimmer, T.; Edelhoff, D.; Schmidlin, P.R. Three-unit reinforced polyetheretherketone composite FDPs: Influence of fabrication method on load-bearing capacity and failure types. Dent. Mater. J. 2015, 34, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Schönhoff, L.M.; Mayinger, F.; Eichberger, M.; Reznikova, E.; Stawarczyk, B. 3D printing of dental restorations: Mechanical properties of thermoplastic polymer materials. J. Mech. Behav. Biomed. Mater. 2021, 119, 104544. [Google Scholar] [CrossRef] [PubMed]
- Arutyunov, S.D.; Nikitin, A.D.; Grachev, D.I.; Bagdasaryan, G.G. Critical stress analysis for the basis of a denture prosthesis. IOP Conf. Ser. Mater. Sci. Eng. 2020, 927, 12008. [Google Scholar] [CrossRef]
- Takaichi, A.; Fueki, K.; Murakami, N.; Ueno, T.; Inamochi, Y.; Wada, J.; Arai, Y.; Wakabayashi, N. A systematic review of digital removable partial dentures. Part II: CAD/CAM framework, artificial teeth, and denture base. J. Prosthodont. Res. 2022, 66, 53–67. [Google Scholar] [CrossRef]
- Luo, C.; Liu, Y.; Peng, B.; Chen, M.; Liu, Z.; Li, Z.; Kuang, H.; Gong, B.; Li, Z.; Sun, H. PEEK for Oral Applications: Recent Advances in Mechanical and Adhesive Properties. Polymers 2023, 15, 386. [Google Scholar] [CrossRef]
- Barjini, N.; Katebi, T.; Bahadoran, R.; Youssefi, N. Flexural strength of polyether ether ketone high-performance polyether in comparison with base metal alloy and Zirconia ceramic. J. Oral Res. 2020, 9, 63–71. [Google Scholar] [CrossRef]
- Limaye, N.; Veschini, L.; Coward, T. Assessing biocompatibility & mechanical testing of 3D-printed PEEK versus milled PEEK. Heliyon 2022, 8, e12314. [Google Scholar] [CrossRef]
- Geiger, V.; Mayinger, F.; Hoffmann, M.; Reymus, M.; Stawarczyk, B. Fracture toughness, work of fracture, flexural strength and elastic modulus of 3D-printed denture base resins in two measurement environments after artificial aging. J. Mech. Behav. Biomed. Mater. 2024, 150, 106234. [Google Scholar] [CrossRef]
- Kreitczick, J.; Schmohl, L.; Hahnel, S.; Vejjasilpa, K.; Schulz-Siegmund, M.; Koenig, A. Aging processes in dental thermoplastics—Thermoanalytical investigations and effects on Vickers as well as Martens hardness. J. Mech. Behav. Biomed. Mater. 2024, 154, 106501. [Google Scholar] [CrossRef] [PubMed]
- Fouda, S.; Ji, W.; Gad, M.M.; AlGhamdi, M.A.; Rohr, N. Flexural Strength and Surface Properties of 3D-Printed Denture Base Resins-Effect of Build Angle, Layer Thickness and Aging. Materials 2025, 18, 913. [Google Scholar] [CrossRef]
- Ali, I.L.; Yunus, N.; Abu-Hassan, M.I. Hardness, flexural strength, and flexural modulus comparisons of three differently cured denture base systems. J. Prosthodont. 2008, 17, 545–549. [Google Scholar] [CrossRef]
- Vohra, M. Comparative Evaluation of Two Body Wear of PEEK vs Milled PMMA vs Indirect Composite After Chewing Simulation- An In Vitro Study. Nanotechnol. Percept. 2024, 20, 1094–1101. [Google Scholar]
- Ayaz, E.A.; Bağış, B.; Turgut, S. Effects of thermal cycling on surface roughness, hardness and flexural strength of polymethylmethacrylate and polyamide denture base resins. J. Appl. Biomater. Funct. Mater. 2015, 13, e280–e286. [Google Scholar] [CrossRef]
- Shan, G.-F.; Yang, W.; Yang, M.; Xie, B.; Feng, J.; Fu, Q. Effect of temperature and strain rate on the tensile deformation of polyamide 6. Polymer 2007, 48, 2958–2968. [Google Scholar] [CrossRef]
- Hampe, R.; Lümkemann, N.; Sener, B.; Stawarczyk, B. The effect of artificial aging on Martens hardness and indentation modulus of different dental CAD/CAM restorative materials. J. Mech. Behav. Biomed. Mater. 2018, 86, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Rosentritt, M.; Hahnel, S.; Schneider-Feyrer, S.; Strasser, T.; Schmid, A. Martens Hardness of CAD/CAM Resin-Based Composites. Appl. Sci. 2022, 12, 7698. [Google Scholar] [CrossRef]
- Rosentritt, M.; Hickl, V.; Rauch, A.; Schmidt, M. Effects of storage and toothbrush simulation on Martens hardness of CAD/CAM, hand-cast, thermoforming, and 3D-printed splint materials. Clin. Oral Investig. 2023, 27, 7859–7869. [Google Scholar] [CrossRef]
- Dakka, A.; Nazir, Z.; Shamim, H.; Jean, M.; Umair, M.; Muddaloor, P.; Farinango, M.; Ansary, A.; Khan, S. Ill Effects and Complications Associated to Removable Dentures With Improper Use and Poor Oral Hygiene: A Systematic Review. Cureus 2022, 14, e28144. [Google Scholar] [CrossRef]
- Axe, A.S.; Varghese, R.; Bosma, M.; Kitson, N.; Bradshaw, D.J. Dental health professional recommendation and consumer habits in denture cleansing. J. Prosthet. Dent. 2016, 115, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Schmutzler, A.; Rauch, A.; Nitschke, I.; Lethaus, B.; Hahnel, S. Cleaning of Removable Dental Prostheses—A Systematic Review. J. Evid. Based Dent. Pract. 2021, 21, 101644. [Google Scholar] [CrossRef] [PubMed]
- Panariello, B.H.D.; Izumida, F.E.; Moffa, E.B.; Pavarina, A.C.; Jorge, J.H.; Giampaolo, E.T. Effects of short-term immersion and brushing with different denture cleansers on the roughness, hardness, and color of two types of acrylic resin. Am. J. Dent. 2015, 28, 150–156. [Google Scholar]
- Ozyilmaz, O.Y.; Akin, C. Effect of cleansers on denture base resins’ structural properties. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800019827797. [Google Scholar] [CrossRef] [PubMed]
- Campos, D.E.S.; Ferreira Muniz, Í.d.A.; Da Costa, T.K.V.L.; Lima, R.B.W.; Neppelenbroek, K.H.; Batista, A.U.D. Effect of simulated brushing with dentifrices on surface roughness and the mass loss of acrylic resin: A systematic review and meta-analysis of in vitro studies. J. Prosthet. Dent. 2023, 133, 1209–1220. [Google Scholar] [CrossRef]
- Žilinskas, J.; Junevičius, J.; Česaitis, K.; Junevičiūtė, G. The effect of cleaning substances on the surface of denture base material. Med. Sci. Monit. 2013, 19, 1142–1145. [Google Scholar] [CrossRef]
- ISO 25178-2:2021; Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 2021.
- Roesner, A.J.; Schmohl, L.; Hahnel, S.; Fuchs, F.; König, A.; Rauch, A. Acid resistance of self-adhesive resin luting cements—Changes in surface texture parameters and microhardness. Dent. Mater. 2022, 38, 1376–1384. [Google Scholar] [CrossRef]
- DIN EN ISO 21920-1:2022-12; Geometrische Produktspezifikation_(GPS)_- Oberflächenbeschaffenheit: Profile_- Teil_1: Angabe der Oberflächenbeschaffenheit (ISO_21920-1:2021); Deutsche Fassung EN_ISO_21920-1:2022. DIN Media GmbH: Berlin, Germany, 2022.
- ISO 14577-1:2015; Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 1: Test Method. International Organization for Standardization: Geneva, Switzerland, 2015.
- DIN EN ISO 6507-1:2024-01; Metallische Werkstoffe_- Härteprüfung nach Vickers_- Teil_1: Prüfverfahren (ISO_6507-1:2023); Deutsche Fassung EN_ISO_6507-1:2023. DIN Media GmbH: Berlin, Germany, 2024.
- Fuchs, F.; Koenig, A.; Poppitz, D.; Hahnel, S. Application of macro photography in dental materials science. J. Dent. 2020, 102, 103495. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates Publishers: Hillsdale, NJ, USA, 1988; ISBN 9781134742707. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Momber, A.W.; Irmer, M.; Marquardt, T. Effects of polymer hardness on the abrasive wear resistance of thick organic offshore coatings. Prog. Org. Coat. 2020, 146, 105720. [Google Scholar] [CrossRef]
- Ligier, K.; Olejniczak, K.; Napiórkowski, J. Wear of polyethylene and polyurethane elastomers used for components working in natural abrasive environments. Polym. Test. 2021, 100, 107247. [Google Scholar] [CrossRef]
- Zeidan, A.A.E.-L.; Sherif, A.F.; Baraka, Y.; Abualsaud, R.; Abdelrahim, R.A.; Gad, M.M.; Helal, M.A. Evaluation of the Effect of Different Construction Techniques of CAD-CAM Milled, 3D-Printed, and Polyamide Denture Base Resins on Flexural Strength: An In Vitro Comparative Study. J. Prosthodont. 2023, 32, 77–82. [Google Scholar] [CrossRef]
- Tinastepe, N.; Malkondu, O.; Kazazoglu, E. Hardness and surface roughness of differently processed denture base acrylic resins after immersion in simulated gastric acid. J. Prosthet. Dent. 2023, 129, 364.e1–364.e9. [Google Scholar] [CrossRef]
- Coldea, A.; Mayinger, F.; Meinen, J.; Hoffmann, M.; Stawarczyk, B. Mechanical properties of 3D printed denture base polymers. J. Prosthet. Dent. 2025, 133, 1361.e1–1361.e8. [Google Scholar] [CrossRef] [PubMed]
- Stafford, G. The use of nylon as a denture-base material. J. Dent. 1986, 14, 18–22. [Google Scholar] [CrossRef]
- Murat, S.; Alp, G.; Alatalı, C.; Uzun, M. In Vitro Evaluation of Adhesion of Candida albicans on CAD/CAM PMMA-Based Polymers. J. Prosthodont. 2019, 28, e873–e879. [Google Scholar] [CrossRef]
- de Freitas, R.F.C.P.; Duarte, S.; Feitosa, S.; Dutra, V.; Lin, W.-S.; Panariello, B.H.D.; Da Carreiro, A.F.P. Physical, Mechanical, and Anti-Biofilm Formation Properties of CAD-CAM Milled or 3D Printed Denture Base Resins: In Vitro Analysis. J. Prosthodont. 2023, 32, 38–44. [Google Scholar] [CrossRef]
- Alqarawi, F.K.; Gad, M.M. Tendency of microbial adhesion to denture base resins: A systematic review. Front. Oral Health 2024, 5, 1375186. [Google Scholar] [CrossRef] [PubMed]
- Bollen, C.M.; Papaioanno, W.; van Eldere, J.; Schepers, E.; Quirynen, M.; van Steenberghe, D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin. Oral Implant. Res. 1996, 7, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Bollen, C.M.; Lambrechts, P.; Quirynen, M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997, 13, 258–269. [Google Scholar] [CrossRef]
- Teughels, W.; van Assche, N.; Sliepen, I.; Quirynen, M. Effect of material characteristics and/or surface topography on biofilm development. Clin. Oral Implant. Res. 2006, 17 (Suppl. 2), 68–81. [Google Scholar] [CrossRef]
- Schubert, A.; Wassmann, T.; Holtappels, M.; Kurbad, O.; Krohn, S.; Bürgers, R. Predictability of Microbial Adhesion to Dental Materials by Roughness Parameters. Coatings 2019, 9, 456. [Google Scholar] [CrossRef]
- Rosentritt, M.; Schmutzler, A.; Hahnel, S.; Kurzendorfer-Brose, L. The Influence of CLSM Magnification on the Measured Roughness of Differently Prepared Dental Materials. Materials 2024, 17, 5954. [Google Scholar] [CrossRef] [PubMed]
- Verran, J.; Jackson, S.; Coulthwaite, L.; Scallan, A.; Loewy, Z.; Whitehead, K. The effect of dentifrice abrasion on denture topography and the subsequent retention of microorganisms on abraded surfaces. J. Prosthet. Dent. 2014, 112, 1513–1522. [Google Scholar] [CrossRef]
- Monteiro, D.R.; de Souza Batista, V.E.; Caldeirão, A.C.M.; Jacinto, R.d.C.; Pessan, J.P. Oral prosthetic microbiology: Aspects related to the oral microbiome, surface properties, and strategies for controlling biofilms. Biofouling 2021, 37, 353–371. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Jo, Y.-H.; Luke Yeo, I.-S.; Yoon, H.-I.; Lee, J.-H.; Han, J.-S. The effect of surface material, roughness and wettability on the adhesion and proliferation of Streptococcus gordonii, Fusobacterium nucleatum and Porphyromonas gingivalis. J. Dent. Sci. 2023, 18, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.L.; Mark Welch, J.L.; Kauffman, K.M.; McLean, J.S.; He, X. The oral microbiome: Diversity, biogeography and human health. Nat. Rev. Microbiol. 2024, 22, 89–104. [Google Scholar] [CrossRef]
- Alqutaibi, A.Y.; Alghauli, M.A.; Algabri, R.S.; Hamadallah, H.H.; Aboalrejal, A.N.; Zafar, M.S.; Fareed, M.A. Applications, modifications, and manufacturing of polyetheretherketone (PEEK) in dental implantology: A comprehensive critical review. Int. Mater. Rev. 2025, 70, 103–136. [Google Scholar] [CrossRef]
Code | Material | Preparation | Composition | Name | Manufacturer | LOT |
---|---|---|---|---|---|---|
VPR | DMA-based | 3D-printed | 50–75 wt% aliphatic UDMA 2.5–10 wt% TEGDMA 0.1–1 wt% photoinitiator | V-Print dentbase | VOCO GmbH | 2143120 |
VIO | PMMA | milled | 99 wt% PMMA 1 wt% pigments | Vita Vionic Base | VITA Zahnfabrik | 76380 |
IVO | PMMA | pressed | >95 wt% PMMA <2.5 wt% dibenzoyl peroxide | IvoBase Hybrid | Ivoclar Vivadent | YB38C7 |
BRE | PA | pressed | >99.9 wt% PA <0.1 wt% pigments | Bre.flex 2nd Edition | bredent | 383425 |
JUV | PEEK | milled | 100% PEEK | Juvora Disc | JUVORA | M000910 |
Group | HM | EIT | CIT | Welast | Wplast | HV1 |
---|---|---|---|---|---|---|
MPa | kN/mm2 | % | Nmm | Nmm | - | |
VPR | 182.3 ± 0.9 | 4.4 ± 0.1 | 6.9 ± 0.2 | 0.074 ± 0.001 | 0.104 ± 0.001 | 26.5 ± 1.7 |
VIO | 165.4 ± 0.8 | 4.4 ± 0.1 | 9.6 ± 0.2 | 0.066 ± 0.001 | 0.130 ± 0.001 | 21.9 ± 0.4 |
IVO | 185.2 ± 3.5 | 4.2 ± 0.2 | 9.2 ± 0.6 | 0.068 ± 0.001 | 0.135 ± 0.001 | 22.2 ± 0.6 |
BRE | 67.1 ± 1.6 | 1.7 ± 0.1 | 5.8 ± 0.3 | 0.112 ± 0.001 | 0.200 ± 0.001 | 9.0 ± 0.1 |
JUV | 220.1 ± 2.5 | 5.3 ± 0.1 | 3.5 ± 0.1 | 0.066 ± 0.001 | 0.084 ± 0.001 | 27.9 ± 0.9 |
Sa | Sal | Sdr | Sku | Ssk | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | |
S-L surface (Roughness) | ||||||||||
Material | 441.3 | <0.001 | 41.1 | <0.001 | 207.0 | <0.001 | 1.7 | 0.159 | 2.3 | 0.059 |
Medium | 609.5 | <0.001 | 68.6 | <0.001 | 284.8 | <0.001 | 1.8 | 0.170 | 1.6 | 0.209 |
Time | 148.7 | <0.001 | 22.0 | <0.001 | 60.7 | <0.001 | 0.7 | 0.523 | 4.6 | 0.003 |
S-F surface (Waviness) | ||||||||||
Material | 12.7 | <0.001 | 116.3 | <0.001 | 205.1 | <0.001 | 1.7 | 0.143 | 5.4 | <0.001 |
Medium | 187.2 | <0.001 | 514.9 | <0.001 | 287.1 | <0.001 | 1.9 | 0.145 | 1.5 | 0.216 |
Time | 57.3 | <0.001 | 106.1 | <0.001 | 61.2 | <0.001 | 0.7 | 0.538 | 4.0 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brinkmann, L.; Fuchs, F.; Rosentritt, M.; Schierz, O.; Koenig, A.; Reissmann, D.R. Effect of Cleaning Protocols on Surface Roughness of Current Polymeric Denture Materials. J. Funct. Biomater. 2025, 16, 359. https://doi.org/10.3390/jfb16100359
Brinkmann L, Fuchs F, Rosentritt M, Schierz O, Koenig A, Reissmann DR. Effect of Cleaning Protocols on Surface Roughness of Current Polymeric Denture Materials. Journal of Functional Biomaterials. 2025; 16(10):359. https://doi.org/10.3390/jfb16100359
Chicago/Turabian StyleBrinkmann, Lisa, Florian Fuchs, Martin Rosentritt, Oliver Schierz, Andreas Koenig, and Daniel R. Reissmann. 2025. "Effect of Cleaning Protocols on Surface Roughness of Current Polymeric Denture Materials" Journal of Functional Biomaterials 16, no. 10: 359. https://doi.org/10.3390/jfb16100359
APA StyleBrinkmann, L., Fuchs, F., Rosentritt, M., Schierz, O., Koenig, A., & Reissmann, D. R. (2025). Effect of Cleaning Protocols on Surface Roughness of Current Polymeric Denture Materials. Journal of Functional Biomaterials, 16(10), 359. https://doi.org/10.3390/jfb16100359