Carbon Dot Micelles Synthesized from Leek Seeds in Applications for Cobalt (II) Sensing, Metal Ion Removal, and Cancer Therapy
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Leek Seed Extract
2.3. Analysis of Leek Seed Extract Through Gas Chromatography–Mass Spectrometry
2.4. Synthesis of CD-Micelles
2.5. Characterization of CD-Micelles
2.6. Selectivity and Sensitivity of CD-Micelles for Metal Ions
2.7. Metal Ion Removal Using CD-Micelles Through Liquid–Liquid Extraction
2.8. Antioxidant Activity of CD-Micelles
2.9. Cytotoxicity of CD-Micelles Against Cisplatin-Resistant Lung Cancer Cells
3. Results and Discussion
3.1. Characterization of Leek Seed Extract and CD-Micelles
3.2. Detection of Metal Ions Using CD-Micelles
3.3. CD-Micelles for Metal Ion Removal Through Liquid–Liquid Extraction
3.4. Antioxidant and Anticancer Activities of CD-Micelles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chu, H.-W.; Unnikrishnan, B.; Anand, A.; Lin, Y.-W.; Huang, C.-C. Carbon quantum dots for the detection of antibiotics and pesticides. J. Food Drug Anal. 2020, 28, 539–557. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Kang, Z.; Liu, Y.; Lee, S.-T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230–24253. [Google Scholar] [CrossRef]
- Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381. [Google Scholar] [CrossRef]
- Namdari, P.; Negahdari, B.; Eatemadi, A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed. Pharmacother. 2017, 87, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Sciortino, A.; Cannizzo, A.; Messina, F. Carbon nanodots: A review—From the current understanding of the fundamental photophysics to the full control of the optical response. C 2018, 4, 67. [Google Scholar] [CrossRef]
- Wei, S.-C.; Lin, Y.-W.; Chang, H.-T. Carbon dots as artificial peroxidases for analytical applications. J. Food Drug Anal. 2020, 28, 558–574. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S.; Das, P.; Banerjee, S.; Das, N.C. Advancement in science and technology of carbon dot-polymer hybrid composites: A review. Funct. Compos. Struct. 2019, 1, 022001. [Google Scholar] [CrossRef]
- Sachdev, A.; Gopinath, P. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst 2015, 140, 4260–4269. [Google Scholar] [CrossRef]
- Reddy Padidam, S.; Kadam, B.D.; Thakkellapati, S.; Verma, M.; Raichur, A.M.; Narashimhan Ramana, L. Single-step synthesis of self-assembled carbon dots for enhanced cancer cell retention and theranostics applications. Microchem. J. 2024, 198, 110144. [Google Scholar] [CrossRef]
- Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E.P.; Zboril, R.; Rogach, A.L. Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 2014, 9, 590–603. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, C.; Tapas, S.; Lei, J.; Matsuoka, M.; Zhang, J.; Zhang, F. Carbon dots modified mesoporous organosilica as an adsorbent for the removal of 2, 4-dichlorophenol and heavy metal ions. J. Mater. Chem. A 2015, 3, 13357–13364. [Google Scholar] [CrossRef]
- Yahaya Pudza, M.; Zainal Abidin, Z.; Abdul Rashid, S.; Md Yasin, F.; Noor, A.; Issa, M.A. Eco-friendly sustainable fluorescent carbon dots for the adsorption of heavy metal ions in aqueous environment. Nanomaterials 2020, 10, 315. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.C.; Gomes, C.G.; Pina, J.; Pereira, R.F.; Murtinho, D.; Fajardo, A.R.; Valente, A.J. Carbon quantum dots-containing poly (β-cyclodextrin) for simultaneous removal and detection of metal ions from water. Carbohydr. Polym. 2024, 323, 121464. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Tiwari, P.; Mobin, S.M. Sustainable carbon-dots: Recent advances in green carbon dots for sensing and bioimaging. J. Mater. Chem. B 2017, 5, 8904–8924. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Jiao, Y.; Gao, Y.; Liu, X.; Qian, T. Synthesis of nitrogen-doped fluorescent carbon dots for determination of nickel ions and morin from aqueous solution simultaneously. Microchem. J. 2024, 200, 110317. [Google Scholar] [CrossRef]
- Yen, Y.-T.; Lin, Y.-S.; Chen, T.-Y.; Chyueh, S.-C.; Chang, H.-T. Carbon dots functionalized papers for high-throughput sensing of 4-chloroethcathinone and its analogues in crime sites. R. Soc. Open Sci. 2019, 6, 191017. [Google Scholar] [CrossRef]
- Wei, S.; Li, Y.; Liang, H.; Yen, Y.; Lin, Y.; Chang, H. Photoluminescent carbon nanomaterials for sensing of illicit drugs: Focus. Anal. Sci. 2022, 38, 247–260. [Google Scholar] [CrossRef]
- Yen, Y.-T.; Lin, Y.-S.; Chen, T.-H.; Chyueh, S.-C.; Chang, H.-T. A carbon-dot sensing probe for screening of date rape drugs: Nitro-containing benzodiazepines. Sens. Actuators B Chem. 2020, 305, 127441. [Google Scholar] [CrossRef]
- Yang, L.; Wen, J.; Li, K.; Liu, L.; Wang, W. Carbon quantum dots: Comprehensively understanding of the internal quenching mechanism and application for catechol detection. Sens. Actuators B Chem. 2021, 333, 129557. [Google Scholar] [CrossRef]
- Zu, F.; Yan, F.; Bai, Z.; Xu, J.; Wang, Y.; Huang, Y.; Zho, X. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Mikrochim. Acta 2017, 184, 1899–1914. [Google Scholar] [CrossRef]
- Xu, D.; Lin, Q.; Chang, H.T. Recent advances and sensing applications of carbon dots. Small Methods 2020, 4, 1900387. [Google Scholar] [CrossRef]
- Nocito, G.; Calabrese, G.; Forte, S.; Petralia, S.; Puglisi, C.; Campolo, M.; Esposito, E.; Conoci, S. Carbon dots as promising tools for cancer diagnosis and therapy. Cancers 2021, 13, 1991. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Zhao, Z.; Liang, K.; Nan, F.; Li, Y.; Wang, J.; Ge, J.; Wang, P. Recent advances and prospects of carbon dots in cancer nanotheranostics. Mater. Chem. Front. 2020, 4, 449–471. [Google Scholar] [CrossRef]
- Huang, J.; Deng, Y.; Tin, M.S.; Lok, V.; Ngai, C.H.; Zhang, L.; Lucero-Prisno, D.E., III; Xu, W.; Zheng, Z.-J.; Elcarte, E. Distribution, risk factors, and temporal trends for lung cancer incidence and mortality: A global analysis. Chest 2022, 161, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Bade, B.C.; Cruz, C.S.D. Lung cancer 2020: Epidemiology, etiology, and prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef]
- Ward, R.A.; Fawell, S.; Floc’h, N.; Flemington, V.; McKerrecher, D.; Smith, P.D. Challenges and opportunities in cancer drug resistance. Chem. Rev. 2020, 121, 3297–3351. [Google Scholar] [CrossRef]
- Duan, C.; Yu, M.; Xu, J.; Li, B.-Y.; Zhao, Y.; Kankala, R.K. Overcoming cancer multi-drug resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed. Pharmacother. 2023, 162, 114643. [Google Scholar] [CrossRef]
- Feng, T.; Chua, H.J.; Zhao, Y. Carbon-dot-mediated Co-administration of chemotherapeutic agents for reversing cisplatin resistance in cancer therapy. ChemNanoMat 2018, 4, 801–806. [Google Scholar] [CrossRef]
- Lauria, A.; Lizundia, E. Luminescent carbon dots obtained from polymeric waste. J. Clean. Prod. 2020, 262, 121288. [Google Scholar] [CrossRef]
- Siswoyo, T.A.; Mardiana, E.; Lee, K.O.; Hoshokawa, K. Isolation and characterization of antioxidant protein fractions from melinjo (Gnetum gnemon) seeds. J. Agric. Food Chem. 2011, 59, 5648–5656. [Google Scholar] [CrossRef]
- Ognyanov, M.; Nikolova, M.; Yanakieva, I.; Kussovski, V.; Kratchanova, M. Influence of composition on the biological activity of pectic polysaccharides from leek. J. BioSci. Biotechnol. 2013, 2, 13–20. [Google Scholar]
- Hong, J.; Chen, T.-T.; Hu, P.; Wang, S.-Y. A novel antibacterial tripeptide from Chinese leek seeds. Eur. Food Res. Technol. 2015, 240, 327–333. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, J.; Cheng, L.; Li, C.; Yan, X.; Deng, Z.; Zhang, Y.; Liang, J.; Liu, C.; Zhang, M. Versatile carbon dots with superoxide dismutase-like nanozyme activity and red fluorescence for inflammatory bowel disease therapeutics. Carbon 2023, 204, 526–537. [Google Scholar] [CrossRef]
- Geng, H.; Chen, J.; Tu, K.; Tuo, H.; Wu, Q.; Guo, J.; Zhu, Q.; Zhang, Z.; Zhang, Y.; Huang, D. Carbon dot nanozymes as free radicals scavengers for the management of hepatic ischemia-reperfusion injury by regulating the liver inflammatory network and inhibiting apoptosis. J. Nanobiotechnol. 2023, 21, 500. [Google Scholar] [CrossRef]
- Yang, G.-G.; Pan, Z.-Y.; Zhang, D.-Y.; Cao, Q.; Ji, L.-N.; Mao, Z.-W. Precisely assembled nanoparticles against cisplatin resistance via cancer-specific targeting of mitochondria and imaging-guided chemo-photothermal therapy. ACS Appl. Mater. Interfaces 2020, 12, 43444–43455. [Google Scholar] [CrossRef]
- Sui, X.; Luo, C.; Wang, C.; Zhang, F.; Zhang, J.; Guo, S. Graphene quantum dots enhance anticancer activity of cisplatin via increasing its cellular and nuclear uptake. Nanomedicine 2016, 12, 1997–2006. [Google Scholar] [CrossRef]
- Yamane, Y.; Furuichi, M.; Song, R.; Van, N.T.; Mulcahy, R.T.; Ishikawa, T.; Kuo, M.T. Expression of multidrug resistance protein/GS-X pump and gamma-glutamylcysteine synthetase genes is regulated by oxidative stress. J. Biol. Chem. 1998, 273, 31075–31085. [Google Scholar] [CrossRef]
- Song, I.S.; Savaraj, N.; Siddik, Z.H.; Liu, P.; Wei, Y.; Wu, C.J.; Kuo, M.T. Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells. Mol. Cancer Ther. 2004, 3, 1543–1549. [Google Scholar] [CrossRef]
- Wang, Y.; Bian, T.; Song, L.; Jiang, Y.; Huo, Z.; Salloum, R.G.; Warren, G.W.; Kaye, F.J.; Fujioka, N.; Jin, L.; et al. Reducing Chemotherapy-Induced DNA Damage via nAChR-Mediated Redox Reprograming-A New Mechanism for SCLC Chemoresistance Boosted by Nicotinem. Cancers 2022, 14, 2272. [Google Scholar] [CrossRef]
- Norodin, N.; Salleh, L.; Mustafa, N.M. Supercritical carbon dioxide (SC-CO2) extraction of essential oil from swietenia mahagoni seeds. IOP Conf. Ser. Mater. Sci. Eng. 2016, 162, 012030. [Google Scholar] [CrossRef]
- Singh, A.; Ahmad, A. Antioxidant activity of essential oil extracted by SC-CO2 from seeds of Trachyspermum ammi. Medicines 2017, 4, 53. [Google Scholar] [CrossRef] [PubMed]
- Nehdi, I.A.; Sbihi, H.M.; Tan, C.P.; Al-Resayes, S.I.; Rashid, U.; Al-Misned, F.A.; El-Serehy, H.A. Chemical composition, oxidative stability, and antioxidant activity of Allium ampeloprasum L. (Wild Leek) seed oil. J. Oleo Sci. 2020, 69, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.-C.; Chang, H.-T. Synthesis of high-quality carbon nanodots from hydrophilic compounds: Role of functional groups. Chem. Commun. 2012, 48, 3984–3986. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Chen, P.-C.; Periasamy, A.P.; Chen, Y.-N.; Chang, H.-T. Photoluminescent carbon nanodots: Synthesis, physicochemical properties and analytical applications. Mater. Today 2015, 18, 447–458. [Google Scholar] [CrossRef]
- XianáGuo, C. Na+-functionalized carbon quantum dots: A new draw solute in forward osmosis for seawater desalination. Chem. Commun. 2014, 50, 7318–7321. [Google Scholar] [CrossRef]
- Kasinathan, K.; Samayanan, S.; Marimuthu, K.; Yim, J.-H. Green synthesis of multicolour fluorescence carbon quantum dots from sugarcane waste: Investigation of mercury (II) ion sensing, and bio-imaging applications. Appl. Surf. Sci. 2022, 601, 154266. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Supchocksoonthorn, P.; Hanchaina, R.; Sinoy, M.C.A.; de Luna, M.D.G.; Kangsamaksin, T.; Paoprasert, P. Novel solution-and paper-based sensors based on label-free fluorescent carbon dots for the selective detection of pyrimethanil. Appl. Surf. Sci. 2021, 564, 150372. [Google Scholar] [CrossRef]
- De, B.; Karak, N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv. 2013, 3, 8286–8290. [Google Scholar] [CrossRef]
- Wu, F.; Su, H.; Wang, K.; Wong, W.K.; Zhu, X. Facile synthesis of N-rich carbon quantum dots from porphyrins as efficient probes for bioimaging and biosensing in living cells. Int. J. Nanomed. 2017, 12, 7375–7391. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, I.; Bera, M.K. Microwave-Assisted Green Synthesis of Carbon Quantum Dots Derived from Calotropis Gigantea as a Fluorescent Probe for Bioimaging. J. Fluoresc. 2022, 32, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Charisiadis, P.; Kontogianni, V.G.; Tsiafoulis, C.G.; Tzakos, A.G.; Siskos, M.; Gerothanassis, I.P. 1H-NMR as a structural and analytical tool of intra- and intermolecular hydrogen bonds of phenol-containing natural products and model compounds. Molecules 2014, 19, 13643–13682. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Chen, X.; Wang, C.; Zheng, H.; Huang, Z.; Chen, D.; Xie, H. Photoluminescent carbon dots derived from sugarcane molasses: Synthesis, properties, and applications. RSC Adv. 2017, 7, 47840–47847. [Google Scholar] [CrossRef]
- Kamel, G.N.; El-Shaheny, R.; Shabana, R.A.; Hassan, A.H. Inherent photocatalytic activity of luminescent multi-doped carbon dots manufactured from expired medicine and its application for efficient water remediation and nanosensing. Microchem. J. 2024, 201, 110576. [Google Scholar] [CrossRef]
- Alaseem, A.M.; Alhazzani, K.; Alanazi, A.Z.; Alsanad, S.M.; Alkhamees, O.A.; Alasiri, G.; El-Wekil, M.M.; Ali, A.-M.B.H. Dual-Modulation ratiometric fluorescence strategy for cobalt and topotecan detection using Red-Emissive carbon dots. Microchem. J. 2024, 201, 110645. [Google Scholar] [CrossRef]
- Yoo, H.J.; Kwak, B.E.; Kim, D.H. Self-quenching origin of carbon dots and the guideline for their solid-state luminescence. J. Phys. Chem. C 2019, 123, 27124–27131. [Google Scholar] [CrossRef]
- Ru, Y.; Waterhouse, G.I.N.; Lu, S. Aggregation in carbon dots. Aggregate 2022, 3, e296. [Google Scholar] [CrossRef]
- Shi, W.; Guan, L.; Ren, X.; Zhang, J.; Luo, T.; Liu, C.; Lan, Y.; Chen, Z.; Chen, X.; Li, X. Effect of aggregation configuration of molecular fluorophore CZA on photoluminescence properties of carbon dots. J. Colloid Interface Sci. 2024, 659, 213–224. [Google Scholar] [CrossRef]
- Salem, J.K.; El-Nahhal, I.M.; Salama, S.F. Determination of the critical micelle concentration by absorbance and fluorescence techniques using fluorescein probe. Chem. Phys. Lett. 2019, 730, 445–450. [Google Scholar] [CrossRef]
- Noun, F.; Jury, E.A.; Naccache, R. Elucidating the quenching mechanism in carbon dot-metal interactions–designing sensitive and selective optical probes. Sensors 2021, 21, 1391. [Google Scholar] [CrossRef]
- Fan, L.; Wang, Y.; Li, L.; Zhou, J. Carbon quantum dots activated metal organic frameworks for selective detection of Cu (II) and Fe (III). Colloids Surf. A Physicochem. Eng. Asp. 2020, 588, 124378. [Google Scholar] [CrossRef]
- Li, B.; Suo, T.; Xie, S.; Xia, A.; Ma, Y.-J.; Huang, H.; Zhang, X.; Hu, Q. Rational design, synthesis, and applications of carbon dots@ metal–organic frameworks (CD@MOF) based sensors. TrAC Trends Anal. Chem. 2021, 135, 116163. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Shi, H.; Zhang, H.; Zhao, J.; Zheng, Z.; Yang, H.; Yang, P. Dynamic aggregation of carbon dots self-stabilizes symmetry breaking for exceptional hydrogen production with near-infrared light. Aggregate 2024, 5, e424. [Google Scholar] [CrossRef]
- Kong, D.; Yan, F.; Han, Z.; Xu, J.; Guo, X.; Chen, L. Cobalt(II) ions detection using carbon dots as an sensitive and selective fluorescent probe. RSC Adv. 2016, 6, 67481–67487. [Google Scholar] [CrossRef]
- Ravera, E. Phase distortion-free paramagnetic NMR spectra. J. Magn. Reson. 2021, 8–9, 100022. [Google Scholar] [CrossRef]
- Hu, G.; Ge, L.; Li, Y.; Mukhtar, M.; Shen, B.; Yang, D.; Li, J. Carbon dots derived from flax straw for highly sensitive and selective detections of cobalt, chromium, and ascorbic acid. J. Colloid Interface Sci. 2020, 579, 96–108. [Google Scholar] [CrossRef]
- Alkian, I.; Sutanto, H.; Hadiyanto, B.; Prasetio, A.; Aprimanti Utami, B. Facile synthesized carbon dots for simple and selective detection of cobalt ions in aqueous media. Cogent Eng. 2022, 9, 2033467. [Google Scholar] [CrossRef]
- Zhao, C.; Li, X.; Cheng, C.; Yang, Y. Green and microwave-assisted synthesis of carbon dots and application for visual detection of cobalt (II) ions and pH sensing. Microchem. J. 2019, 147, 183–190. [Google Scholar] [CrossRef]
- Olatunji, M.A.; Salam, K.A.; Evuti, A.M. Continuous removal of Pb (II) and Cu (II) ions from synthetic aqueous solutions in a fixed-bed packed column with surfactant-modified activated carbon. Sep. Sci. Technol. 2024, 59, 561–579. [Google Scholar] [CrossRef]
- Abhari, P.; Abdi, S.; Nasiri, M. Effect of various types of anions and anionic surfactants on the performance of micellar-enhanced ultrafiltration process in the removal of Pb (II) ions: An optimization with the response surface methodology. Chem. Eng. Res. Des. 2022, 187, 332–346. [Google Scholar] [CrossRef]
- Amiri Zare, S.; Raouf, F.; Miveei, L.; Roshan Zekavat, S.; Abedin Pour Farahmand, R. Investigation on the lead adsorption capacity of Iranian natural zeolite: Modifications, structural effects, adsorption isotherms, kinetics, and mechanism studies. Sep. Sci. Technol. 2022, 57, 2691–2707. [Google Scholar] [CrossRef]
- Song, X.-L.; Zhang, M.-W.; Zhang, Y.; Huang, S.-T.; Geng, B.-Y.; Meng, R.-B.; Yang, Y.-Z.; Zhong, Y.-S.; Liu, H.-Y. Surface modification of coconut-based activated carbon by SDS and its effects on Pb2+ adsorption. J. Cent. South Univ. 2013, 20, 1156–1160. [Google Scholar] [CrossRef]
- Khan, Z.; Singh, T.; Hussain, J.I.; Hashmi, A.A. Au (III)–CTAB reduction by ascorbic acid: Preparation and characterization of gold nanoparticles. J. Colloid Interface Sci. 2013, 104, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, J.; Du, A.; Zhang, Z.; Gao, G.; Yang, H.; Wu, J. Facile synthesis of silver nanoparticles with high concentration via a CTAB-induced silver mirror reaction. Colloids Surf. A Physicochem. Eng. Asp. 2012, 400, 73–79. [Google Scholar] [CrossRef]
- Nagireddi, S. Effect of cetrimonium bromide (CTAB) surfactant on Pd (II) removal efficiency from electroless plating solutions. Mater. Today Proc. 2022, 68, 830–835. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, H.; Geng, H.; Yang, Q.; Tong, Y.; He, W. Au/N-doped carbon dot nanozymes as light-controlled anti-and pro-oxidants. ACS Appl. Nano Mater. 2021, 4, 7253–7263. [Google Scholar] [CrossRef]
- Guan, H.; Wang, D.; Sun, B. Dual-mode colorimetric/fluorometric sensor for the detection of glutathione based on the peroxidase-like activity of carbon quantum dots. Inorg. Chem. Commun. 2022, 136, 109147. [Google Scholar] [CrossRef]
- Koyuncu, I. Evaluation of anticancer, antioxidant activity and phenolic compounds of Artemisia absinthium L. extract. Cell. Mol. Biol. 2018, 64, 25–34. [Google Scholar] [CrossRef]
- Alaklabi, A.; Arif, I.A.; Ahamed, A.; Kumar, R.S.; Idhayadhulla, A. Evaluation of antioxidant and anticancer activities of chemical constituents of the Saururus chinensis root extracts. Saudi J. Biol. Sci. 2018, 25, 1387–1392. [Google Scholar] [CrossRef]
- Luo, M.; Zhou, L.; Huang, Z.; Li, B.; Nice, E.; Xu, J.; Huang, C. Antioxidant therapy in cancer: Rationale and progress. Antioxidants 2022, 11, 1128. [Google Scholar] [CrossRef]
- George, S.; Abrahamse, H. Redox potential of antioxidants in cancer progression and prevention. Antioxidants 2020, 9, 1156. [Google Scholar] [CrossRef] [PubMed]
- Memarzia, A.; Saadat, S.; Asgharzadeh, F.; Behrouz, S.; Folkerts, G.; Boskabady, M.H. Therapeutic effects of medicinal plants and their constituents on lung cancer, in vitro, in vivo and clinical evidence. J. Cell. Mol. Med. 2023, 27, 2841–2863. [Google Scholar] [CrossRef] [PubMed]
- Thara, C.R.; Mathew, S.; Chacko, A.R.; Mathew, B. Dual functional carbon nitride dots as electrochemical sensor and anticancer agent with chemotherapic and photodynamic effect. Microchem. J. 2023, 187, 108379. [Google Scholar] [CrossRef]
- Ruzycka-Ayoush, M.; Kowalik, P.; Kowalczyk, A.; Bujak, P.; Nowicka, A.M.; Wojewodzka, M.; Kruszewski, M.; Grudzinski, I.P. Quantum dots as targeted doxorubicin drug delivery nanosystems in human lung cancer cells. Cancer Nanotechnol. 2021, 12, 8. [Google Scholar] [CrossRef]
Item | Compound | Retention Time (min) |
---|---|---|
1 | n-Hexadecanoic acid | 3.43 |
2 | 9(Z),12(Z)-Octadecadienoic acid | 3.75 |
3 | Octadecanoic acid | 3.78 |
4 | (Z, E)-7,11-Hexadecadien-1-yl acetate | 4.14 |
5 | Eicosanoic acid | 4.22 |
6 | Butyl 9,12-octadecadienoate | 4.53 |
7 | Palmitin [hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester] | 4.65 |
8 | Linolein [9,12-octadecadienoic acid (Z, Z)-, 2-hydroxy-1-(Hydroxymethyl)ethyl ester] | 5.31 |
9 | Squalene | 5.82 |
10 | Cholesterol | 8.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, T.-H.; Lo, W.; Wang, H.-Y.; Tsai, T.-L. Carbon Dot Micelles Synthesized from Leek Seeds in Applications for Cobalt (II) Sensing, Metal Ion Removal, and Cancer Therapy. J. Funct. Biomater. 2024, 15, 347. https://doi.org/10.3390/jfb15110347
Tsai T-H, Lo W, Wang H-Y, Tsai T-L. Carbon Dot Micelles Synthesized from Leek Seeds in Applications for Cobalt (II) Sensing, Metal Ion Removal, and Cancer Therapy. Journal of Functional Biomaterials. 2024; 15(11):347. https://doi.org/10.3390/jfb15110347
Chicago/Turabian StyleTsai, Teh-Hua, Wei Lo, Hsiu-Yun Wang, and Tsung-Lin Tsai. 2024. "Carbon Dot Micelles Synthesized from Leek Seeds in Applications for Cobalt (II) Sensing, Metal Ion Removal, and Cancer Therapy" Journal of Functional Biomaterials 15, no. 11: 347. https://doi.org/10.3390/jfb15110347
APA StyleTsai, T.-H., Lo, W., Wang, H.-Y., & Tsai, T.-L. (2024). Carbon Dot Micelles Synthesized from Leek Seeds in Applications for Cobalt (II) Sensing, Metal Ion Removal, and Cancer Therapy. Journal of Functional Biomaterials, 15(11), 347. https://doi.org/10.3390/jfb15110347