Short-Term Storage and Executive Working Memory Processing Predict Fluid Intelligence in Primary School Children
Abstract
:1. Introduction
1.1. Definition of Key Concepts
1.2. Measurement Challenges in WM
1.3. Relationship between WM and Gf
1.4. The Present Study
2. Materials and Methods
2.1. Participants
2.2. Tasks
2.2.1. Assessment of Gf
2.2.2. Assessment of WM Aspects (Simple and Complex Span Tasks)
2.3. Procedure
2.4. Data Analysis
3. Results
3.1. Descriptive Statistics
3.2. Inter-Relations between Simple and Complex Span Tasks
3.3. Relationship between WM and Gf
4. Discussion
4.1. Inter-Relations between Simple and Complex Span Tasks
4.2. Relationship between WM and Gf
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Deary, I.J. Intelligence. Annu. Rev. Psychol. 2012, 63, 453–482. [Google Scholar] [CrossRef]
- Kail, R.V.; Lervåg, A.; Hulme, C. Longitudinal evidence linking processing speed to the development of reasoning. Dev. Sci. 2015, 19, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Voelke, A.E.; Roebers, C.M. Sustained attention and its relationship to fluid intelligence and working memory in children. J. Educ. Dev. Psychol. 2016, 6, 131–139. [Google Scholar] [CrossRef]
- Bayliss, D.M.; Jarrold, C.; Baddeley, A.D.; Gunn, D.M.; Leigh, E. Mapping the developmental constraints on working memory span performance. Dev. Psychol. 2005, 41, 579–597. [Google Scholar] [CrossRef] [PubMed]
- Tourva, A.; Spanoudis, G.; Demetriou, A. Cognitive correlates of developing intelligence: The contribution of working memory, processing speed and attention. Intelligence 2016, 54, 136–146. [Google Scholar] [CrossRef]
- Swanson, H.L. Working memory and intelligence in children: What develops? J. Educ. Psychol. 2008, 100, 581–602. [Google Scholar] [CrossRef]
- Tillman, C.M.; Bohlin, G.; Sorensen, L.; Lundervold, A.J. Intelligence and specific cognitive abilities in children. J. Individ. Differ. 2009, 30, 209–219. [Google Scholar] [CrossRef]
- Shahabi, S.R.; Abad, F.J.; Colom, R. Short-term storage is a stable predictor of fluid intelligence whereas working memory capacity and executive function are not: A comprehensive study with iranian schoolchildren. Intelligence 2014, 44, 134–141. [Google Scholar] [CrossRef]
- Kane, M.J.; Hambrick, D.Z.; Conway, A.R.A. Working memory capacity and fluid intelligence are atrongly related constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychol. Bull. 2005, 131, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Oberauer, K.; Schulze, R.; Wilhelm, O.; Süß, H.-M. Working memory and intelligence—Their correlation and their relation: Comment on Ackerman, Beier, and Boyle (2005). Psychol. Bull. 2005, 131, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Voelke, A.E.; Troche, S.J.; Rammsayer, T.H.; Wagner, F.L.; Roebers, C.M. Relations among fluid intelligence, sensory discrimination and working memory in middle to late childhood—A latent variable approach. Cogn. Dev. 2014, 32, 58–73. [Google Scholar] [CrossRef]
- Kuhn, J.-T. Controlled attention and storage: An investigation of the relationship between working memory, short-term memory, scope of attention, and intelligence in children. Learn. Individ. Differ. 2015, 52, 167–177. [Google Scholar] [CrossRef]
- Cowan, N.; Alloway, T. Development of working memory in childhood. In The Development of Memory in Infancy and Childhood; Courage, M.L., Cowan, N., Eds.; Psychology Press: Hove, UK, 2006; pp. 303–342. [Google Scholar]
- Swanson, H.L. Intellectual growth in children as a function of domain specific and domain general working memory subgroups. Intelligence 2011, 39, 481–492. [Google Scholar] [CrossRef]
- Henry, L. The Development of Working Memory in Children; Sage: London, UK, 2012. [Google Scholar]
- Bjorklund, D.F. Children’s Thinking: Cognitive Development and Individual Differences, 5th ed.; Wadsworth: Belmont, CA, USA, 2012. [Google Scholar]
- Archibald, L.M.; Gathercole, S.E. Short-term and working memory in specific language impairment. Int. J. Lang. Commun. Disord. 2006, 41, 675–693. [Google Scholar] [CrossRef] [PubMed]
- Conway, A.R.A.; Getz, S.J.; Macnamara, B.; Engel de Abreu, P.M.J. Working memory and intelligence. In The Cambridge Handbook of Intelligence; Sternberg, R.J., Kaufman, S.B., Eds.; Cambridge University: Cambridge, UK, 2011. [Google Scholar]
- Baddeley, A. Working memory: Theories, models, and controversies. Annu. Rev. Psychol. 2012, 63, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Colom, R.; Rebollo, I.; Abad, F.J.; Shih, P.C. Complex span tasks, simple span tasks, and cognitive abilities: A reanalysis of key studies. Mem. Cognit. 2006, 34, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Cattell, R.B. Theory of fluid and crystallized intelligence: A critical experiment. J. Educ. Psychol. 1963, 54, 1–22. [Google Scholar] [CrossRef]
- Rindermann, H.; Flores-Mendoza, C.; Mansur-Alves, M. Reciprocal effects between fluid and crystallized intelligence and their dependence on parents’ socioeconomic status and education. Learn. Individ. Differ. 2010, 20, 544–548. [Google Scholar] [CrossRef]
- Hunt, E. Human Intelligence; Cambridge University: Cambridge, UK, 2011. [Google Scholar]
- Friedman, N.P.; Miyake, A. Differential roles for visuospatial and verbal working memory in situation model construction. J. Exp. Psychol. Gen. 2000, 129, 61–83. [Google Scholar] [CrossRef]
- Engle, R.W.; Tuholski, S.W.; Laughlin, J.E.; Conway, A.R.A. Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. J. Exp. Psychol. Gen. 1999, 128, 309–331. [Google Scholar] [CrossRef] [PubMed]
- Hitch, G.J. Working memory in children: A cognitive approach. In Lifespan Cognition: Mechanisms of Change; Bialystok, E., Craik, F.I.M., Eds.; Oxford University: Oxford, UK, 2006; pp. 112–127. [Google Scholar]
- Oberauer, K.; Süß, H.-M.; Wilhelm, O.; Wittman, W.W. The multiple faces of working memory: Storage, processing, supervision, and coordination. Intelligence 2003, 31, 167–193. [Google Scholar] [CrossRef]
- Unsworth, N.; Fukuda, K.; Awh, E.; Vogel, E.K. Working memory and fluid intelligence: Capacity, attention control, and secondary memory retrieval. Cogn. Psychol. 2014, 71, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Shipstead, Z.; Lindsey, D.R.B.; Marshall, R.L.; Engle, R.W. The mechanisms of working memory capacity: Primary memory, secondary memory, and attention control. J. Mem. Lang. 2014, 72, 116–141. [Google Scholar] [CrossRef]
- Jarrold, C. Working out how working memory works: Evidence from typical and atypical development. Q. J. Exp. Psychol. 2017, 70, 1747–1767. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, J.; Leseman, P. How do verbal short-term memory and working memory relate to the acquisition of vocabulary and grammar? A comparison between first and second language learners. J. Exp. Child. Psychol. 2016, 141, 65–82. [Google Scholar] [CrossRef] [PubMed]
- Conway, A.R.A.; Kane, M.J.; Bunting, M.F.; Hambrick, D.Z.; Wilhelm, O.; Engle, R.W. Working memory span tasks: A methodological review and user’s guide. Psychon. Bull. Rev. 2005, 12, 769–786. [Google Scholar] [CrossRef] [PubMed]
- Alloway, T.P.; Gathercole, S.E.; Pickering, S.J. Verbal and visuospatial short-term and working memory in children: Are they separable? Child. Dev. 2006, 77, 1698–1716. [Google Scholar] [CrossRef] [PubMed]
- Cowan, N.; Elliott, E.M.; Scott Saults, J.; Morey, C.C.; Mattox, S.; Hismjatullina, A.; Conway, A.R.A. On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cogn. Psychol. 2005, 51, 42–100. [Google Scholar] [CrossRef] [PubMed]
- Kane, M.J.; Hambrick, D.Z.; Tuholski, S.W.; Wilhelm, O.; Payne, T.W.; Engle, R.W. The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. J. Exp. Psychol. 2004, 133, 189–217. [Google Scholar] [CrossRef] [PubMed]
- Ang, S.Y.; Lee, K. Central executive involvement in children’s spatial memory. Memory 2008, 16, 918–933. [Google Scholar] [CrossRef] [PubMed]
- Ang, S.Y.; Lee, K. Exploring developmental differences in visual short-term memory and working memory. Dev. Psychol. 2010, 46, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Oberauer, K.; Süß, H.M.; Schulze, R.; Wilhelm, O.; Wittmann, W.W. Working memory capacity—Facets of a cognitive ability construct. Pers. Individ. Differ. 2000, 29, 1017–1045. [Google Scholar] [CrossRef]
- Conway, A.R.; Kane, M.J.; Engle, R.W. Working memory capacity and its relation to general intelligence. Trends Cogn. Sci. 2003, 7, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.R. The G Factor: The Science of Mental Ability; Praeger: Westport, CT, USA, 1998. [Google Scholar]
- Kyllonen, P.C. G: Knowledge, speed, strategies, or workingmemory capacity? A systems perspective. In The General Factor of Intelligence: How general Is It? Sternberg, R.J., Gigorenko, E.L., Eds.; Erlbaum: Mahwah, NJ, USA, 2002; pp. 415–445. [Google Scholar]
- Ackerman, P.L.; Beier, M.E.; Boyle, M.O. Working memory and intelligence: The same or different constructs? Psychol. Bull. 2005, 131, 30–60. [Google Scholar] [CrossRef] [PubMed]
- Giofrè, D.; Mammarella, I.C.; Cornoldi, C. The structure of working memory and how it relates to intelligence in children. Intelligence 2013, 41, 396–406. [Google Scholar] [CrossRef]
- Gignac, G.E.; Watkins, M.W. There may be nothing special about the association between working memory capacity and fluid intelligence. Intelligence 2015, 52, 18–23. [Google Scholar] [CrossRef]
- Conway, A.R.A.; Cowan, N.; Bunting, M.F.; Therriault, D.J.; Minkoff, S.R.B. A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence 2002, 30, 163–183. [Google Scholar] [CrossRef]
- Colom, R.; Abad, F.J.; Quiroga, M.Á.; Shih, P.C.; Flores-Mendoza, C. Working memory and intelligence are highly related constructs, but why? Intelligence 2008, 36, 584–606. [Google Scholar] [CrossRef]
- Wongupparaj, P.; Kumari, V.; Morris, R.G. The relation between a multicomponent working memory and intelligence: The roles of central executive and short-term storage functions. Intelligence 2015, 53, 166–180. [Google Scholar] [CrossRef]
- Engel de Abreu, P.M.J.; Conway, A.R.A.; Gathercole, S.E. Working memory and fluid intelligence in young children. Intelligence 2010, 38, 552–561. [Google Scholar] [CrossRef]
- Tillman, C.M.; Nyberg, L.; Bohlin, G. Working memory components and intelligence in children. Intelligence 2008, 36, 394–402. [Google Scholar] [CrossRef]
- Hornung, C.; Brunner, M.; Reuter, R.A.P.; Martin, R. Children’s working memory: Its structure and relationship to fluid intelligence. Intelligence 2011, 39, 210–221. [Google Scholar] [CrossRef]
- Brock, J.; Jarrold, C. Serial order reconstruction in down syndrome: Evidence for a selective deficit in verbal short-term memory. J. Child. Psychol. Psychiatry 2005, 46, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.; Green, S.; Alt, M.; Hogan, T.; Kuo, T.; Brinkley, S.; Cowan, N. The structure of working memory in young children and its relation to intelligence. J. Mem. Lang. 2017, 92, 183–201. [Google Scholar] [CrossRef]
- Weiss, R.H. Cft 20-r. Grundintelligenztest Skala 2; Hogrefe: Göttingen, Germany, 2006. [Google Scholar]
- Gathercole, S.E.; Alloway, T.P. Practitioner review: Short-term and working memory impairments in neurodevelopmental disorders: Diagnosis and remedial support. J. Child. Psychol. Psychiatry 2006, 47, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Pickering, S.J.; Gathercole, S.E. Working Memory Test Battery for Children (WMTB-C); The Psychological Corporation: London, UK, 2001. [Google Scholar]
- Hasselhorn, R.; Schumann-Hengsteler, J.; Gronauer, D.; Grube, C.; Mähler, I.; Schmid, K.; Seitz-Stein; Zoelch, C. Arbeitsgedächtnistestbatterie Für Kinder Von 5 Bis 12 Jahren (agtb 5-12); Hogrefe: Göttingen, Germany, 2012. [Google Scholar]
- Bailey, H. Computer-paced versus experimenter-paced working memory span tasks: Are they equally reliable and valid? Learn. Individ. Differ. 2012, 22, 875–881. [Google Scholar] [CrossRef]
- Psychology Software Tools, Inc. [E-Prime 2.0]. (2012). Available online: http://www.pstnet.com (accessed on 6 February 2014).
- IBM Corporation. IBM SPSS Statistics for Windows (Version 23); Computer Program; IBM Corp.: Armonk, NY, USA, 2015. [Google Scholar]
- Arbuckle, J.L. Amos (Version 23.0); Computer Program; IBM SPSS: Chicago, IL, USA, 2014. [Google Scholar]
- Garson, G.D. Structural Equation Modeling; Statistical Associates Publishing: Asheboro, NC, USA, 2015. [Google Scholar]
- Kline, R.B. Principles and Practices of Structural Equation Modeling; Guilford: New York, NY, USA, 2016. [Google Scholar]
- Demetriou, A.; Spanoudis, G.; Shayer, M.; van der Ven, S.; Brydges, C.R.; Kroesbergen, E.; Podjarny, G.; Swanson, H.L. Relations between speed, working memory, and intelligence from preschool to adulthood: Structural equation modeling of 14 studies. Intelligence 2014, 46, 107–121. [Google Scholar] [CrossRef]
- Žebec, M.S.; Demetriou, A.; Kotrla-Topić, M. Changing expressions of general intelligence in development: A 2-wave longitudinal study from 7 to 18 years of age. Intelligence 2015, 49, 94–109. [Google Scholar] [CrossRef]
- Cowan, N. Working memory maturation: Can we get at the essence of cognitive growth? Perspect. Psychol. Sci. 2016, 11, 239–264. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Demetriou, A.; Spanoudis, G.; Shayer, M.; Mouyi, A.; Kazi, S.; Platsidou, M. Cycles in speed-working memory-g relations: Towards a developmental–differential theory of the mind. Intelligence 2013, 41, 34–50. [Google Scholar] [CrossRef]
- Elliott, E.M.; Cherry, K.E.; Brown, J.S.; Smitherman, E.A.; Jazwinski, S.M.; Yu, Q.; Volaufova, J. Working memory in the oldest-old: Evidence from output serial position curves. Mem. Cognit. 2011, 39, 1423–1434. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, N.; Engle, R.W. Simple and complex memory spans and their relation to fluid abilities: Evidence from list-length effects. J. Mem. Lang. 2006, 54, 68–80. [Google Scholar] [CrossRef]
- Prabhakaran, V.; Narayanan, K.; Zhao, Z.; Gabrieli, J.D. Integration of diverse information in working memory within the frontal lobe. Nat. Neurosci. 2000, 3, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, N.; Engle, R.W. On the division of short-term and working memory: An examination of simple and complex span and their relation to higher order abilities. Psychol. Bull. 2007, 133, 1038–1066. [Google Scholar] [CrossRef] [PubMed]
- Van der Ven, S.H.G.; van der Maas, H.L.J.; Straatemeier, M.; Jansen, B.R.J. Visuospatial working memory and mathematical ability at different ages throughout primary school. Learn. Individ. Differ. 2013, 27, 182–192. [Google Scholar] [CrossRef]
- Makris, N.; Tahmatzidis, D.; Demetriou, A.; Spanoudis, G. Mapping the evolving core of intelligence: Changing relations between executive control, reasoning, language, and awareness. Intelligence 2017, in press. [Google Scholar] [CrossRef]
Simple Span Tasks | Complex Span Tasks | ||
---|---|---|---|
Verbal | Visual-Spatial | Verbal | Visual-Spatial |
Digit Forward Task (Digit-FW) | Matrix Forward Task (Matrix-FW) | Digit Backward Task (Digit-BW) | Matrix Backward Task (Matrix-BW) |
Digit Recall task from the Working Memory Test Battery for Children (WMTB-C; [55]). | Adapted version of the Matrix subtest from the Arbeitsgedächtnistest-batterie für Kinder von 5 bis 12 Jahren (AGTB 5–12; [56]). | Backward Digit Recall task from the WMTB-C [55]. | Adapted version of the Matrix subtest from the AGTB 5–12 [56]. |
Variables | Mean | SD | Range | Skewness | Kurtosis |
---|---|---|---|---|---|
Digit Forward (verbal) | 20.23 | 3.30 | 13–27 | 0.07 | −0.67 |
Matrix Forward (visual-spatial) | 15.65 | 4.11 | 3–24 | −0.32 | −0.43 |
Digit Backward (verbal) | 13.98 | 3.69 | 6–24 | 0.21 | −0.26 |
Matrix Backward (visual-spatial) | 14.48 | 3.91 | 7–24 | 0.23 | −0.24 |
Series Completion | 10.09 | 2.31 | 3–14 | −0.61 | −0.20 |
Classification | 7.26 | 2.23 | 2–13 | 0.09 | −0.50 |
Matrix Completion | 9.10 | 2.37 | 1–14 | −0.66 | 0.28 |
Topological Reasoning | 4.46 | 1.82 | 0–9 | −0.05 | −0.34 |
Age (in years) | 10.63 | 1.02 | 9–12 | −0.21 | −1.66 |
Variables | Simple Span Tasks | Complex Span Tasks | Intelligence | ||
---|---|---|---|---|---|
Digit-FW | Matrix-FW | Digit-BW | Matrix-BW | CFT Score | |
Digit Forward (Digit-FW) | - | .16 | .47 *** | .12 | .38 *** |
Matrix Forward (Matrix-FW) | .24 ** | - | .28 ** | .58 *** | .43 *** |
Digit Backward (Digit-BW) | .50 *** | .38 *** | - | .21 * | .44 *** |
Matrix Backward (Matrix-BW) | .19 * | .64 *** | .31 *** | - | .30 ** |
Intelligence Composite Score (CFT Score) | .43 *** | .54 *** | .52 *** | .42 *** | - |
Age (in years) | .22 * | .43 *** | .34 *** | .36 *** | .45 *** |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aeschlimann, E.A.; Voelke, A.E.; Roebers, C.M. Short-Term Storage and Executive Working Memory Processing Predict Fluid Intelligence in Primary School Children. J. Intell. 2017, 5, 17. https://doi.org/10.3390/jintelligence5020017
Aeschlimann EA, Voelke AE, Roebers CM. Short-Term Storage and Executive Working Memory Processing Predict Fluid Intelligence in Primary School Children. Journal of Intelligence. 2017; 5(2):17. https://doi.org/10.3390/jintelligence5020017
Chicago/Turabian StyleAeschlimann, Eva A., Annik E. Voelke, and Claudia M. Roebers. 2017. "Short-Term Storage and Executive Working Memory Processing Predict Fluid Intelligence in Primary School Children" Journal of Intelligence 5, no. 2: 17. https://doi.org/10.3390/jintelligence5020017
APA StyleAeschlimann, E. A., Voelke, A. E., & Roebers, C. M. (2017). Short-Term Storage and Executive Working Memory Processing Predict Fluid Intelligence in Primary School Children. Journal of Intelligence, 5(2), 17. https://doi.org/10.3390/jintelligence5020017