Creative and Critical Thinking and Modelling: Confluences and Implications for Science Teaching
Abstract
1. Introduction
2. Critical Thinking
2.1. Conceptualization and Characterization of Critical Thinking in Science Education
2.2. Critical Thinking from the Science-Technology-Society Perspective
3. Modelling
3.1. Modelling as an Epistemic and Reflective Practice
- Begins with the elicitation of the purpose of a new model and the formulation of a contextualised problem.
- Continues with the collecting of information, the establishment of an analogy or mathematical tool, and the selection of appropriate codes and representational languages, which enables the formulation of an initial model.
- The model is then tested through empirical or thought experiments to gather evidence. Depending on the results, the initial model may be revised or rejected. When multiple models emerge, they are compared.
- Finally, the scope and limitations of the model are evaluated, it is communicated, and, once consensus is reached, it is applied to problem-solving in various contexts.
3.2. Modelling Competence
4. Creative and Critical Thinking, and Modelling-Based Learning
4.1. Analogies and Resources for Modelling
- a contextualisation phase, in which the target phenomenon or object is introduced;
- a generation phase, where a suitable analogy is proposed or constructed by selecting an analogue domain that facilitates the establishment of relevant relations;
- a correspondence phase, aimed at making explicit the similarities and differences between the analogue and the object, thus enhancing the understanding of their structural relationships;
- an application phase, in which the analogy serves as a tool for formulating explanations, hypotheses, or representational models;
- an evaluation and revision phase, involving critical reflection on the limitations, scope, and potential reformulations of the analogy or the model derived from it.
4.2. Argumentation from the Perspective of Modelling
5. Implications and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Acevedo-Díaz, José Antonio. 2004. El papel de las analogías en la creatividad de los científicos: La teoría del campo electromagnético de Maxwell como caso paradigmático de la historia de las ciencias [The role of analogies in the creativity of scientists: Maxwell’s electromagnetic field theory as a paradigmatic case in the history of science]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 1: 188–205. Available online: https://revistas.uca.es/index.php/eureka/article/view/3947 (accessed on 18 July 2025).
- Acevedo-Díaz, José Antonio, and Antonio García-Carmona. 2016. «Algo antiguo, algo nuevo, algo prestado»: Tendencias sobre la naturaleza de la ciencia en la educación científica [“Something old, something new, something borrowed”: Trends on the nature of science in science education]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 13: 3–19. Available online: http://hdl.handle.net/10498/18010 (accessed on 18 July 2025). [CrossRef]
- Acevedo-Díaz, José Antonio, and Antonio García-Carmona. 2017. Controversies in the History of Science and Scientific Culture [in Spanish]. Madrid: Los Libros de la Catarata/Organization of Ibero-American States for Education, Science and Culture. Available online: https://oei.int/wp-content/uploads/2017/10/controversias.pdf (accessed on 18 July 2025).
- Acevedo Díaz, José Antonio, Ángel Vázquez, Manual Martín-Gordillo, José María Oliva, Pilar Acevedo, Fátima Paixão, and María Antonia Manassero. 2005. Naturaleza de la ciencia y educación científica para la participación ciudadana: Una revisión crítica [Nature of science and science education for citizen participation: A critical review]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 2: 121–40. Available online: https://revistas.uca.es/index.php/eureka/article/view/3912 (accessed on 18 July 2025). [CrossRef]
- Ageitos Prego, Noa, and Puig Blanca. 2016. Modelizar la expresión de los genes para el aprendizaje de enfermedades genéticas en secundaria [Modelling gene expression for learning about genetic diseases in secondary education]. Revista Ensaio Pesquisa em Educação em Ciências 18: 65–84. [Google Scholar] [CrossRef]
- Bailin, Sharon. 2002. Critical thinking and science education. Science and Education 11: 361–75. [Google Scholar] [CrossRef]
- Boettcher, Florian, and Anke Meisert. 2011. Argumentation in science education: A model-based framework. Science and Education 20: 103–40. [Google Scholar] [CrossRef]
- Brown, Simon, and Susan Salter. 2010. Analogies in science and science teaching. Advances in Physiology Education 34: 167–69. [Google Scholar] [CrossRef]
- Bulegon, Ana Marli, and Liane Margarida Rockebach Tarouco. 2015. Contribuições dos objetos de aprendizagem para ensejar o desenvolvimento do pensamento crítico nos estudantes nas aulas de Física [Contributions of learning objects give to rise the development of critical thinking in students in Physics classes]. Ciência and Educação (Bauru) 21: 743–63. [Google Scholar] [CrossRef]
- Durak, Benzegül, and Mustafa Sami Topçu. 2021. Socio-scientific issues and model-based learning. In Socioscientific Issues-Based Instruction for Scientific Literacy Development. Edited by Powell Warden. Hershey: IGI Global, pp. 31–56. [Google Scholar]
- Ennis, Robert Hugh. 1987. A taxonomy of critical thinking dispositions and abilities. In Teaching Thinking Skills: Theory and Practice. Edited by Jonathan B. Baron and Robert J. Sternberg. New York: W H Freeman/Times Books/Henry Holt & Co. [Google Scholar]
- Ennis, Robert Hugh. 1996. Critical Thinking. Hoboken: Prentice Hall. [Google Scholar]
- Evagorou, Maria, Nicolaou Christina, and Lymbouridou Chrystalla. 2020. Modelling and argumentation with elementary school students. Canadian Journal of Science, Mathematics and Technology Education 20: 58–73. [Google Scholar] [CrossRef]
- Fischer, Hannah, and Michael Huff. 2025. Metacognition as a target of science communication. Nature Reviews Psychology 4: 554–55. [Google Scholar] [CrossRef]
- Fischer, Hannah, and Stephen Fleming. 2024. Why metacognition matters in politically contested domains. Trends in Cognitive Sciences 28: 783–85. [Google Scholar] [CrossRef]
- Fleissner-Martin, Juliane, Jürgen Paul, and Bogner Franz Xaver. 2024. Creativity as Key Trigger to Cognitive Achievement: Effects of Digital and Analog Learning Interventions. Research in Science Education 55: 669–86. [Google Scholar] [CrossRef]
- Franco-Mariscal, Antonio Joaquín, María José Cano-Iglesias, Enrique España-Ramos, and Blanco-López Ángel. 2024. The ENCIC-CT model for the development of critical thinking. In Critical thinking in Science Education and Teacher Training. Edited by Antonio J. Franco-Mariscal. Cham: Springer Nature, pp. 3–42. [Google Scholar]
- García-Carmona, Antonio. 2023. Scientific thinking and critical thinking in science education: Two distinct but symbiotically related intellectual processes. Science and Education 34: 227–45. [Google Scholar] [CrossRef]
- Gilbert, John Kenward. 2004. Models and modelling: Routes to more authentic science education. International Journal of Science and Mathematics Education 2: 115–30. [Google Scholar] [CrossRef]
- Gilbert, John Kenward, and Carolyn Boulter. 2012. Developing Models in Science Education. Berlin: Springer Science and Business Media. [Google Scholar] [CrossRef]
- Gilbert, John Kenward, and Rosaria Justi. 2016. Modelling-Based Teaching in Science Education. Dordrecht: Springer. [Google Scholar]
- Glynn, Shawn M. 1991. Explaining science concepts: A teaching-with-analogies model. In The Psychology of Learning Science. Edited by Shawn M. Glynn, Robert H. Yearny and Bruce K. Britton. Hillsdale: Lawrence Erlbaum, pp. 219–40. [Google Scholar]
- Guamanga, Miguel Hernando, Carlos Saiz, Silvia Fernández Rivas, and Patricia Morales Bueno. 2025. Critical Thinking and Metacognition: Pathways to Empathy and Psychological Well-Being. Journal of Intelligence 13: 34. [Google Scholar] [CrossRef] [PubMed]
- Haidt, Jonathan. 2012. The Righteous Mind: Why Good People Are Divided by Politics and Religion. New York: Knopf Doubleday Publishing Group. [Google Scholar]
- Helm, Bennett W. 2001. Emotional Reason: Deliberation, Motivation, and the Nature of Value. Cambridge: Cambridge University Press. [Google Scholar]
- Herranz-Hernández, Pablo, María José González-Labra, and Antonio Francisco Maldonado Rico. 2024. Enseñando a pensar críticamente mediante la analogía. [Teaching critical thinking through analogy]. Límite 19: 1–14. [Google Scholar] [CrossRef]
- Heywood, Dave. 2002. The Place of Analogies in Science Education. Cambridge Journal of Education 32: 233–47. [Google Scholar] [CrossRef]
- Hodson, Derek. 2008. Towards Scientific Literacy: A Teachers’ Guide to the History, Philosophy and Sociology of Science. Leiden: Brill. [Google Scholar]
- Jia, Shuang, and Shanzhang Ren. 2025. The significance of science content knowledge for socioscientific reasoning competency: Evidence from SSI instruction on environmental topics based on the SIMBL model. Science and Education, 1–23. [Google Scholar] [CrossRef]
- Jiménez-Aleixandre, María Pilar, and Blanca Puig. 2011. Argumentation, evidence evaluation and critical thinking. In Second International Handbook of Science Education. Edited by Barry J. Fraser, Kenneth Tobin and Campbell J. McRobbie. Dordrecht: Springer, pp. 1001–15. [Google Scholar]
- Jiménez-Aleixandre, María Pilar, and Blanca Puig. 2022. Educating critical citizens to face post-truth: The time is now. In Critical Thinking in Biology and Environmental Education, Contributions from Biology Education Research. Edited by B. Puig and M. P. Jiménez-Aleixandre. Berlin/Heidelberg: Springer, pp. 3–19. [Google Scholar]
- Johnson, Ralph H., and Benjamin Hamby. 2015. A meta-level approach to the problem of defining ‘critical thinking’. Argumentation 29: 417–30. [Google Scholar] [CrossRef]
- Justi, Rosaria. 2006. La enseñanza de ciencias basada en la elaboración de modelos [Modelling-based Science Teaching]. Enseñanza de las Ciencias 24: 173–84. Available online: https://raco.cat/index.php/Ensenanza/article/view/75824 (accessed on 18 July 2025).
- Justi, Rosaria. 2015. Relações entre argumentação e modelagem no contexto da ciência e do ensino de ciencias [Relationships between argumentation and modelling in the context of science and science education]. Ensaio Pesquisa em Educação em Ciências (Belo Horizonte) 17: 31–48. [Google Scholar] [CrossRef]
- Justi, Rosaria, and John Kenward Gilbert. 2002. Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education 24: 369–87. [Google Scholar] [CrossRef]
- Kapetanakis, Constantine, Samantha Conflitti, Sarah Abdo, Leslie Kate Wright, and Dina L. Newman. 2024. Constructing analogies: Developing critical thinking through a collaborative task. Biochemistry and Molecular Biology Education 52: 569–79. [Google Scholar] [CrossRef]
- Ke, Li, Troy D. Sadler, Laura Zangori, and Patricia J. Friedrichsen. 2020. Students’ perceptions of socio-scientific issue-based learning and their appropriation of epistemic tools for systems thinking. International Journal of Science Education 42: 1339–61. [Google Scholar] [CrossRef]
- Kolstø, Stein Dankert. 2001. ‘To trust or not to trust, …’-pupils’ ways of judging information encountered in a socio-scientific issue. International Journal of Science Education 23: 877–901. [Google Scholar] [CrossRef]
- Krell, Moritz, and Dirk Krüger. 2015. Testing Models: A Key Aspect to Promote Teaching Activities Related to Models and Modelling in Biology Lessons? Journal of Biological Education 50: 160–73. [Google Scholar] [CrossRef]
- Kuhn, Deanna. 2021. Metacognition matters in many ways. Educational Psychologist 57: 73–86. [Google Scholar] [CrossRef]
- Lipman, Matthew. 2003. Thinking in Education. Cambridge: Cambridge University Press. [Google Scholar]
- Marchán-Carvajal, Iván, and Neus Sanmartí. 2014. Una revisión sobre el uso de contextos en la enseñanza de las ciencias y su potencial para el desarrollo de la competencia científica [A review of the use of contexts in science education and their potential for developing scientific competence]. In Investigación y Transferencia para una Educación en Ciencias: Un reto Emocionante. Edited by María. A. de las Heras Pérez. Huelva: Universidad de Huelva, pp. 702–10. [Google Scholar]
- Martins, Marina. 2020. Análise das Relações Entre Argumentação e Modelagem em Contextos de Ensino de Ciências [Analysis of the Relationships between Argumentation and Modelling in Science Teaching Contexts]. Belo Horizonte: II Encontro de Ensino de Ciências por Investigação. Universidade Federal de Minas Gerais. Available online: https://www.even3.com.br/eneci2020-39922/ (accessed on 18 July 2025).
- Maurines, Laurence. 2024. Étudier les représentations de la créativité du scientifique dans la pratique de modélisation: Premiers jalons et résultats exploratoires auprès d’étudiants en CPGEI [Studying representations of the scientist’s creativity in modelling practice: First steps and exploratory results with students in the CPGEI]. Recherches en Didactique des Sciences et des Technologies 29: 45–77. [Google Scholar] [CrossRef]
- Mozzer, Nilmara Braga, and Rosaria Justi. 2018. Modelagem analógica no ensino de ciências [Analogical modelling in science education]. Investigações em Ensino de Ciências 23: 155–82. [Google Scholar] [CrossRef]
- Nersessian, Nancy. J. 2002. The cognitive basis of model-based reasoning in science. In The Cognitive Basis of Science. Edited by Peter Carruthers, Stephen Stich and Michael Siegal. Cambridge: Cambridge University Press, pp. 133–53. [Google Scholar] [CrossRef]
- Nersessian, Nancy. J. 2009. Conceptual change: Creativity, cognition, and culture. In Models of Discovery and Creativity. Edited by Jean P. En Meheus and Thomas Nickles. Berlin: Springer, pp. 127–66. [Google Scholar] [CrossRef]
- Nicolaou, Chr Th, and Costas P. Constantinou. 2014. Assessment of the modelling competence: A systematic review and synthesis of empirical research. Educational Research Review 13: 52–73. [Google Scholar] [CrossRef]
- Olguín, María Valeria. 2021. Creatividad y razonamiento mediante analogías: Una revisión sistemática [Creativity and reasoning through analogies: A systematic review]. Perspectivas Metodológicas 21: e3439. [Google Scholar] [CrossRef]
- Oliva, José María. 2004. El pensamiento analógico desde la investigación educativa y desde la perspectiva del profesor de ciencias [Analogical thinking from educational research and the perspective of the science teacher]. Revista Electrónica de Enseñanza de las Ciencias 3: 363–84. [Google Scholar]
- Oliva, José María. 2019. Distintas acepciones para la idea de modelización en la enseñanza de las ciencias [Different meanings of modelling in science education]. Enseñanza de Las Ciencias. Revista de Investigación y Experiencias Didácticas 37: 5–24. [Google Scholar] [CrossRef]
- Oliva, José María, and José Antonio Acevedo-Díaz. 2011. Pensamiento analógico y movimiento de proyectiles. Perspectiva histórica e implicaciones para la enseñanza [Analogical thinking and projectile motion: Historical perspective and implications for teaching]. Revista Española de Física 18: 56–61. [Google Scholar]
- Passmore, Cynthia M., and Julia Svoboda. 2012. Exploring Opportunities for Argumentation in Modelling Classrooms. International Journal of Science Education 34: 1535–54. [Google Scholar] [CrossRef]
- Paul, Richard, and Linda Elder. 2001. The Miniature Guide to Critical Thinking: Concepts and Tools. Tomales: Foundation for Critical Thinking. [Google Scholar]
- Paul, Richard, and Linda Elder. 2006. Critical thinking: The nature of critical and creative thought. Journal of Developmental Education 30: 34–35. [Google Scholar]
- Prado-Arenas, Diana, Mercè Junyent, and Begoña Oliveras. 2022. Concepciones iniciales de pensamiento crítico y creativo del profesorado de ciencias. Profesorado, Revista de Currículum y Formación del Profesorado 26: 547–67. [Google Scholar] [CrossRef]
- Ramos, Tatina Costa, Paula Cristina Cardoso Mendonça, and Nilmara Braga Mozzer. 2021. Análisis de la agencia epistémica de los estudiantes en un contexto argumentativo [Analysis of students’ epistemic agency in an argumentative context]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 18: 2102. [Google Scholar] [CrossRef]
- Sadler, Troy D. 2004. Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching 41: 513–36. [Google Scholar] [CrossRef]
- Sadler, Troy D., Fred W. Chambers, and Dana L. Zeidler. 2002. Investigating the Crossroads of Socioscientific Issues, the Nature of Science, and Critical Thinking. Paper presented at Annual Meeting of the National Association for Research in Science Teaching, New Orleans, LA, USA, April 6–10. [Google Scholar]
- Saiz, Carlos, and Silvia F. Rivas. 2023. Critical Thinking, Formation, and Change. Journal of Intelligence 11: 219. [Google Scholar] [CrossRef]
- Santos, Luis Fernando. 2017. The role of critical thinking in science education. Journal of Education and Practice 8: 160–73. [Google Scholar]
- Schwarz, Cristina V., Brian J. Reiser, Elizabeth A. Davis, Lisa Kenyon, Andrés Achér, David Fortus, Yael Shwartz, Barbara Hug, and Joe Krajcik. 2009. Developing a learning progression for scientific modelling: Making scientific modelling accessible and meaningful for learners. Journal of Research in Science Teaching 46: 632–54. [Google Scholar] [CrossRef]
- Scriven, Michael, and Richard Paul. 2007. Defining Critical Thinking. Available online: https://www.criticalthinking.org/aboutCT/define_critical_thinking.cfm (accessed on 18 July 2025).
- Suryanda, Ade, Eka Putri Azrai, Mutla Nuramadhan, and Imi Zajuli Ichsan. 2020. Analogy and critical thinking skills: Implementation learning strategy in biodiversity and environment topic. Universal Journal of Educational Research 8: 45–50. [Google Scholar] [CrossRef]
- Tenreiro-Vieira, Celina, and Rui Marques Vieira. 2022. Pensamento crítico e criativo para uma educação ciência-tecnologia-sociedade [Critical and creative thinking for science-technology-society education]. CTS: Revista Iberoamericana de Ciencia, Tecnología y Sociedad 17: 141–55. [Google Scholar]
- Ulazia Manterola, Alain. 2015. La analogía provocativa como estrategia pedagógica: El caso histórico de la mecánica de fluidos [Provocative analogy as a pedagogical strategy: The historical case of fluid mechanics]. Enseñanza de las Ciencias 33: 159–74. [Google Scholar] [CrossRef]
- Vázquez-Alonso, Ángel, and María Antonia Manassero-Mas. 2018a. Una taxonomía de las destrezas de pensamiento: Una herramienta clave para la alfabetización científica [A taxonomy of thinking skills: A key tool for scientific literacy]. In VIII Congreso Internacional sobre Formación de Profesores de Ciencias. Palma: Universidad de las Islas Baleares. [Google Scholar]
- Vázquez-Alonso, Ángel, and María Antonia Manassero-Mas. 2018b. Más allá de la comprensión científica: Educación científica para desarrollar el pensamiento [Beyond scientific understanding: Science education to develop thinking]. Revista Electrónica de Enseñanza de las Ciencias 17: 309–36. [Google Scholar]
- Vila-Tura, Laura, Conxita Márquez Bargalló, and Begonya Oliveras Prat. 2022. Una propuesta para el diseño de actividades que desarrollen el pensamiento crítico en el aula de ciencias [A proposal for designing activities that develop critical thinking in the science classroom]. Revista Eureka Sobre Enseñanza y Divulgación de las Ciencias 20: 1302. [Google Scholar] [CrossRef]
- Yerrick, Randy K., Elizabeth Doster, Jeffrey S. Nugent, Helen M. Parke, and Frank E. Crawley. 2003. Social interaction and the use of analogy: An analysis of preservice teachers’ talk during physics inquiry lessons. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching 40: 443–63. [Google Scholar] [CrossRef]
Dimension | Description | Elements |
---|---|---|
Abilities | Cognitive skills (analytical, evaluative, and creative) are necessary to think effectively and make rational decisions. |
|
Dispositions, attitudes, and values | Tendency to act critically and creatively (critical spirit). |
|
Norms or criteria | Standards to evaluate the quality of thinking and value judgments. |
|
Knowledge | Scientific and technological knowledge and understanding of critical thinking itself. |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómiz-Aragón, M.; Aragón-Méndez, M.d.M.; Vieira, R.M.; Tenreiro-Vieira, C.; Oliva, J.M. Creative and Critical Thinking and Modelling: Confluences and Implications for Science Teaching. J. Intell. 2025, 13, 111. https://doi.org/10.3390/jintelligence13090111
Gómiz-Aragón M, Aragón-Méndez MdM, Vieira RM, Tenreiro-Vieira C, Oliva JM. Creative and Critical Thinking and Modelling: Confluences and Implications for Science Teaching. Journal of Intelligence. 2025; 13(9):111. https://doi.org/10.3390/jintelligence13090111
Chicago/Turabian StyleGómiz-Aragón, Marta, María del Mar Aragón-Méndez, Rui Marques Vieira, Celina Tenreiro-Vieira, and José María Oliva. 2025. "Creative and Critical Thinking and Modelling: Confluences and Implications for Science Teaching" Journal of Intelligence 13, no. 9: 111. https://doi.org/10.3390/jintelligence13090111
APA StyleGómiz-Aragón, M., Aragón-Méndez, M. d. M., Vieira, R. M., Tenreiro-Vieira, C., & Oliva, J. M. (2025). Creative and Critical Thinking and Modelling: Confluences and Implications for Science Teaching. Journal of Intelligence, 13(9), 111. https://doi.org/10.3390/jintelligence13090111