GenAI Creativity in Narrative Tasks: Exploring New Forms of Creativity
Abstract
:1. Introduction
1.1. Creativity
1.2. AI Creativity
1.3. Evaluation of Potential Creativity (EPoC)
1.4. Research Questions
- 1.
- How does ChatGPT perform on standard creativity tasks, as assessed by the EPoC framework?
- 2.
- What are the strengths and limitations of ChatGPT’s creative outputs in narrative tasks?
- 3.
- To what extent can ChatGPT’s outputs be considered original and meaningful in comparison to human creativity?
2. Materials and Methods
2.1. Participants
2.2. Measures and Procedures
2.3. Data Analyses
3. Results
3.1. Descriptive Analysis
3.2. Qualitative Analysis
“Once upon a time, there was a curious little girl named Alice. (…) she meets a white rabbit who tells her she must find a key to return to the real world. Alice begins her quest to find the magic key. She encounters a smiling cat, a smoking caterpillar and a wicked Queen of Hearts. (…)”
3.3. ChatGPT Judges
3.4. Correlation Matrix
3.5. Clustering Analysis
3.6. Creative Potential
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | https://chat.openai.com/ (accessed on 20 March 2023). |
References
- Abraham, Anna. 2016. Gender and creativity: An overview of psychological and neuroscientific literature. Brain Imaging and Behavior 10: 609–18. [Google Scholar] [CrossRef] [PubMed]
- Barbot, Baptiste, Maud Besancon, and Todd Lubart. 2011. Assessing Creativity in the Classroom. The Open Education Journal 41: 58–66. Available online: https://benthamopen.com/ABSTRACT/TOEDUJ-4-58 (accessed on 2 December 2023). [CrossRef]
- Barbot, Baptiste, Maud Besançon, and Todd Lubart. 2016. The generality-specificity of creativity: Exploring the structure of creative potential with EPoC. Learning and Individual Differences 52: 178–87. [Google Scholar] [CrossRef]
- Bard. 2023. Available online: https://blog.google/technology/ai/try-bard/ (accessed on 24 July 2023).
- Beckett, Lois, and Kari Paul. 2023. The Guardian—Bargaining for our very existence’: Why the battle over AI is being fought in Hollywood. Available online: https://www.theguardian.com/technology/2023/jul/22/sag-aftra-wga-strike-artificial-intelligence (accessed on 24 July 2023).
- Bellemare-Pepin, Antoine, François Lespinasse, Philipp Thölke, Yann Harel, Kory Mathewson, Jay A. Olson, Yoshua Bengio, and Karim Jerbi. 2024. Divergent Creativity in Humans and LLMs. arXiv arXiv:2405.13012. [Google Scholar]
- Bhosale, Ashwini. 2019. Interactive Toys (Artificial Intelligence). EPH International Journal of Science and Engineering 5: 23–26. [Google Scholar] [CrossRef]
- Boillat, Thomas, Faisal A. Nawaz, and Homero Rivas. 2022. Readiness to Embrace Artificial Intelligence Among Medical Doctors and Students: Questionnaire-Based Study. JMIR Medical Education 8: e34973. [Google Scholar] [CrossRef]
- Bonetto, Eric, and Thomas Arciszewski. 2023. One “C” to Rule Them All: The Psychology of Creativity Needs to Refocus on Behaviors. The Journal of Creative Behavior 57: 339–41. [Google Scholar] [CrossRef]
- Brandt, Anthony K. 2023. Beethoven’s Ninth and AI’s Tenth: A comparison of human and computational creativity. Journal of Creativity 33: 100068. [Google Scholar] [CrossRef]
- Cardoso, Amílcar, Tony Veale, and Geraint A. Wiggins. 2009. Converging on the Divergent: The History (and Future) of the International Joint Workshops in Computational Creativity. AI Magazine 30: 15–22. [Google Scholar] [CrossRef]
- Charlwood, Andy, and Nigel Guenole. 2022. Can HR adapt to the paradoxes of artificial intelligence? Human Resource Management Journal 32: 729–42. [Google Scholar] [CrossRef]
- Chartrand, Gabriel, Philip M. Cheng, Eugene Vorontsov, Michal Drozdzal, Simon Turcotte, Christopher J. Pal, Samuel Kadoury, and An Tang. 2017. Deep Learning: A Primer for Radiologists. RadioGraphics 37: 2113–31. [Google Scholar] [CrossRef]
- Civit, Miguel, Javier Civit-Masot, Francisco Cuadrado, and Maria J. Escalona. 2022. A systematic review of artificial intelligence-based music generation: Scope, applications, and future trends. Expert Systems with Applications 209: 118190. [Google Scholar] [CrossRef]
- Colton, Simon. 2008. Creativity Versus the Perception of Creativity in Computational System. Paper presented at AAAI Spring Symposium: Creative Intelligent Systems, Stanford, CA, USA, 26–28 March 2008; Washington, DC: AAAI Press SS-08-03. [Google Scholar]
- Conradsson, Pauline. 2024. «L’IA ne pourra jamais retranscrire une émotion comme un humain»: Les comédiens de doublage se mobilisent. leparisien.fr. June 13. Available online: https://www.leparisien.fr/culture-loisirs/cinema/lia-ne-pourra-jamais-retranscrire-une-emotion-comme-un-humain-les-comediens-de-doublage-se-mobilisent-13-06-2024-527UCR4P55AR5MR2V77EP72DB4.php (accessed on 24 July 2023).
- Doshi, Anil R., and Oliver P. Hauser. 2024. Generative AI enhances individual creativity but reduces the collective diversity of novel content. Science Advances 10: eadn5290. [Google Scholar] [CrossRef] [PubMed]
- Elgammal, Ahmed. 2021. How Artificial Intelligence Completed Beethoven’s Unfinished Tenth Symphony. Available online: https://www.smithsonianmag.com/innovation/how-artificial-intelligence-completed-beethovens-unfinished-10th-symphony-180978753/ (accessed on 19 March 2023).
- Gabora, Liane. 2018. The Creative Process of Cultural Evolution. In Handbook of Culture and Creativity: Basic Processes and Applied Innovations. Edited by Angela K.-y. Leung, Letty Kwan and Shyhnan Liou. Oxford: Oxford University Press. [Google Scholar] [CrossRef]
- Gemini. 2024. Gemini—Discutez pour donner vie à vos idées. Available online: https://gemini.google.com (accessed on 31 May 2024).
- Glaveanu, Vlad Pete, and Constance de Saint-Laurent. 2023. Analysis: Generative AI Won’t Replace Human Creativity, But It Will Change It. Available online: https://www.thejournal.ie/readme/artificial-intelligence-and-creativity-6122136-Jul2023/ (accessed on 30 July 2023).
- Guzik, Erik, Christian Byrge, and Christian Gilde. 2023. The originality of machines: AI takes the Torrance Test. Journal of Creativity 33: 100065. [Google Scholar] [CrossRef]
- Habib, Sabrina, Thomas Vogel, Xiao Anli, and Evelyn Thorne. 2024. How does generative artificial intelligence impact student creativity? Journal of Creativity 34: 100072. [Google Scholar] [CrossRef]
- Hou, Jianjun, Yi Yao, Javaria Hameed, Hafiz Wakas Kamran, Muhammad Nawaz, Ramaisa Aqdas, and Ataul Karim Patwary. 2021. The Role of Artificial and Nonartificial Intelligence in the New Product Success with Moderating Role of New Product Innovation: A Case of Manufacturing Companies in China. Complexity 2021: 8891298. [Google Scholar] [CrossRef]
- Hsu, Tiffany. 2023. As Deepfakes Flourish, Countries Struggle With Response. Available online: https://www.nytimes.com/2023/01/22/business/media/deepfake-regulation-difficulty.html (accessed on 24 July 2023).
- Hubert, Kent F., Kim N. Awa, and Darya L. Zabelina. 2024. The current state of artificial intelligence generative language models is more creative than humans on divergent thinking tasks. Scientific Reports 14: 3440. [Google Scholar] [CrossRef]
- ICIE. 2011. EPOC—The International Centre for Innovation in Education (ICIE). The International Center for Innovation in Education. Available online: https://icieworld.net/newicie/index.php/services/epoc (accessed on 10 September 2024).
- Introducing Claude. 2023. Anthropic. Available online: https://www.anthropic.com/index/introducing-claude (accessed on 20 July 2023).
- Katanich, Doloresz. 2023. The World’s First AI Art Gallery Opens in Amsterdam. Available online: https://www.euronews.com/culture/2023/03/21/the-worlds-first-ai-art-gallery-opens-in-amsterdam (accessed on 24 July 2024).
- Kaufman, Alisson B., Allen E. Butt, James C. Kaufman, and Erin N. Colbert-White. 2011. Towards a neurobiology of creativity in nonhuman animals. Journal of Comparative Psychology 125: 255–72. [Google Scholar] [CrossRef]
- Lancrin, Stephan Vincent. 2020. Teaching, Assessing and Learning Creative and Critical Thinking Skills in Education—OCDE. Paris: OCDE. Available online: https://www.oecd.org/fr/education/ceri/assessingprogressionincreativeandcriticalthinkingskillsineducation.htm (accessed on 2 May 2020).
- Lee, Angie. 2023. What Are Large Language Models Used For and Why Are They Important? Available online: https://blogs.nvidia.com/blog/2023/01/26/what-are-large-language-models-used-for/ (accessed on 15 March 2023).
- LLAMA. 2023. Available online: https://ai.facebook.com/blog/large-language-model-llama-meta-ai/ (accessed on 22 July 2023).
- Lubart, Todd, Maud Besançon, and Baptiste Barbot. 2011. EPOC: Évaluation du Potentiel créatif. p. 118. Available online: https://univ-rennes2.hal.science/hal-02073326 (accessed on 27 July 2023).
- Lubart, Todd. 1994. Creativity. In Thinking and Problem Solving. Cambridge: Academic Press, pp. 289–32. [Google Scholar] [CrossRef]
- Lubart, Todd. 2017. The 7 C’s of Creativity. The Journal of Creative Behavior 51: 293–96. [Google Scholar] [CrossRef]
- Messingschlager, Tanja, and Markus Appel. 2022. Creative Artificial Intelligence and Narrative Transportation. Psychology of Aesthetics Creativity and the Arts 18: 848–57. [Google Scholar] [CrossRef]
- Miotto, Riccardo, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T. Dudley. 2018. Deep learning for healthcare: Review, opportunities and challenges. Briefings in Bioinformatics 19: 1236–46. [Google Scholar] [CrossRef]
- Monett, Dagmar, Colin W. P. Lewis, and Kristinn R. Thórisson. 2020. Special Issue “On Defining Artificial Intelligence”—Commentaries and Author’s Response. Journal of Artificial General Intelligence 11: 1–100. [Google Scholar] [CrossRef]
- Muller, Michael, Lydia B. Chilton, Anna Kantosalo, Charles Patrick Martin, and Greg Walsh. 2022. GenAICHI: Generative AI and HCI. Paper presented at CHI Conference on Human Factors in Computing Systems Extended Abstracts, New Orleans, LA, USA, 29 April–5 May 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Murphy, Gillian, Didier Ching, John Twomey, and Conor Linehan. 2023. Face/Off: Changing the face of movies with deepfakes. PLoS ONE 18: e0287503. [Google Scholar] [CrossRef]
- Niu, Weihua, and Robert J. Sternberg. 2006. The philosophical roots of Western and Eastern conceptions of creativity. Journal of Theoretical and Philosophical Psychology 26: 18–38. [Google Scholar] [CrossRef]
- OpenAI. 2023. GPT-4. Available online: https://openai.com/product/gpt-4 (accessed on 15 March 2023).
- Organisciak, Peter, Selcuk Acar, Denis Dumas, and Kelly Berthiaume. 2023. Beyond semantic distance: Automated scoring of divergent thinking greatly improves with large language models. Thinking Skills and Creativity 49: 101356. [Google Scholar] [CrossRef]
- Orwig, William, Emma R. Edenbaum, Joshua D. Greene, and Daniel L. Schacter. 2024. The Language of Creativity: Evidence from Humans and Large Language Models. The Journal of Creative Behavior 58: 128–36. [Google Scholar] [CrossRef] [PubMed]
- Popli, Nick. 2022. He Made A Children’s Book Using AI. Artists Are Not Happy. Available online: https://time.com/6240569/ai-childrens-book-alice-and-sparkle-artists-unhappy/ (accessed on 10 March 2023).
- Roose, Kevin. 2022. An A.I.-Generated Picture Won an Art Prize. Artists Aren’t Happy. Available online: https://www.nytimes.com/2022/09/02/technology/ai-artificial-intelligence-artists.html (accessed on 5 May 2023).
- Runco, Mark A. 2007. To understand is to create: An epistemological perspective on human nature and personal creativity. In Everyday Creativity and New Views of Human Nature: Psychological, Social, and Spiritual Perspectives. Gig Harbor: Psychological Association. [Google Scholar] [CrossRef]
- Runco, Mark A. 2023. AI Can Only Produce Artificial Creativity. Journal of Creativity 33: 100063. [Google Scholar] [CrossRef]
- Runco, Mark A., and Garett J. Jaeger. 2012. The Standard Definition of Creativity. Creativity Research Journal 24: 92–96. [Google Scholar] [CrossRef]
- Sadeghi, Abbas, and Nader Ofoghi. 2011. The psychological factors affecting students’ Creativity Inside the Class (CIC) (case study the University of Guilan, Iran). Procedia Social and Behavioral Sciences 15: 263–70. [Google Scholar] [CrossRef]
- Saha, Shritama. 2023. Llama 2 vs. GPT-4 vs. Claude-2. Available online: https://analyticsindiamag.com/llama-2-vs-gpt-4-vs-claude-2/ (accessed on 25 July 2023).
- Savage, Mark. 2023. Grimes Says Anyone Can Use Her Voice for AI-Generated Songs. Available online: https://www.bbc.com/news/entertainment-arts-65385382 (accessed on 5 May 2023).
- Sbai, Othman, Mohamed Elhoseiny, Antoine Bordes, Yann LeCun, and Camille Couprie. 2019. DesIGN: Design Inspiration from Generative Networks. In Computer Vision—ECCV 2018 Workshops. Edited by Laura Leal-Taixé and Stefan Roth. Berlin/Heidelberg: Springer International Publishing, pp. 37–44. [Google Scholar] [CrossRef]
- Shimek, Cary. 2023. AI Tests into Top 1% for Original Creative Thinking. Available online: https://techxplore.com/news/2023-07-ai-creative.html (accessed on 13 July 2023).
- Simonton, Dean Keith. 2011. Creativity and Discovery as Blind Variation: Campbell’s (1960) BVSR Model after the Half-Century Mark. Review of General Psychology 15: 158–74. [Google Scholar] [CrossRef]
- Simonton, Dean Keith. 2023. The Blind-Variation and Selective-Retention Theory of Creativity: Recent Developments and Current Status of BVSR. Creativity Research Journal 35: 304–23. [Google Scholar] [CrossRef]
- Simonton, Dean Keith. 2024. Combinatorial creativity as blind-variation and selective-retention: A definitional update. Physics of Life Reviews 51: 27–30. [Google Scholar] [CrossRef]
- Sowden, Paul T., Andrew Pringle, and Liane Gabora. 2015. The shifting sands of creative thinking: Connections to dual-process theory. Thinking and Reasoning 21: 40–60. [Google Scholar] [CrossRef]
- Sternberg, Robert J., and Todd I. Lubart. 1995. Defying the Crowd: Cultivating Creativity in a Culture of Conformity. New York: Free Press. [Google Scholar]
- Sternberg, Robert J., and Todd I. Lubart. 1998. The Concept of Creativity: Prospects and Paradigms. In Handbook of Creativity. Edited by R. J. Sternberg. Cambridge: Cambridge University Press, pp. 3–15. [Google Scholar] [CrossRef]
- Stevenson, Claire, Iris Smal, Matthijs Baas, Raoul Grasman, and Han van der Maas. 2022. Putting GPT-3′s Creativity to the (Alternative Uses) Test. arXiv. [Google Scholar] [CrossRef]
- Touvron, Hugo, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, and et al. 2023. Llama 2: Open Foundation and Fine-Tuned Chat Models, Version 2. arXiv, arXiv:2307.09288. Available online: http://arxiv.org/abs/2307.09288 (accessed on 13 July 2023).
- Veale, Tony, and F. Amílcar Cardoso, eds. 2019. Computational Creativity: The Philosophy and Engineering of Autonomously Creative Systems. Berlin/Heidelberg: Springer International Publishing. [Google Scholar] [CrossRef]
- Veselovsky, M. Y., M. A. Izmailova, and V. A. Trifonov. 2021. Intellectual Governance in the Digital Economy of Russia. Paper presented at International Scientific and Practical Conference “Russia 2020—A New Reality: Economy and Society” (ISPCR 2020), Veliky Novgorod, Russia, 9–10 December 2020. [Google Scholar]
- Vinchon, Florent, Todd Lubart, Sabrina Bartolotta, Valentin Gironnay, Marion Botella, Samira Bourgeois-Bougrine, Jean-Marie Burkhardt, Nathalie Bonnardel, Giovanni Emanuele Corazza, Vlad Glăveanu, and et al. 2023. Artificial Intelligence & Creativity: A Manifesto for Collaboration. The Journal of Creative Behavior 57: 472–84. [Google Scholar] [CrossRef]
- Wang, Pei. 2019. On Defining Artificial Intelligence. Journal of Artificial General Intelligence 10: 1–37. [Google Scholar] [CrossRef]
- Zaidel, Dahlia W. 2014. Creativity, brain, and art: Biological and neurological considerations. Frontiers in Human Neuroscience 8: 389. [Google Scholar] [CrossRef]
- Zwir, Igor, Coral del Val, Mirka Hintsanen, Kevin M. Cloninger, Rocío Romero-Zaliz, Alberto Mesa, Javier Arnedo, Ramiro Salas, Guillermo F. Poblete, Emma Raitoharju, and et al. 2021. Evolution of genetic networks for human creativity. Molecular Psychiatry 27: 354–76. [Google Scholar] [CrossRef]
Module | AUT | DV1 | IV1 | DV2 | IV2 | |||
---|---|---|---|---|---|---|---|---|
Fluency | Fluency | Elaboration | Scoring | Fluency | Elaboration | Scoring | ||
Mean | GPT3.5 | 28.34 | 15.30 | 1056.62 | 4.05 | 13.32 | 1039.34 | 3.32 |
GPT4 | 33.08 | 21.02 | 1110.86 | 4.27 | 18.92 | 1101.52 | 3.88 | |
Standard Deviation | GPT3.5 | 2.98 | 3.26 | 224.16 | 0.91 | 3.44 | 236.92 | 0.73 |
GPT4 | 6.48 | 3.67 | 195.59 | 0.72 | 3.31 | 219.67 | 0.84 | |
Minimum | GPT3.5 | 20 | 7 | 446 | 2.00 | 5 | 409 | 2.33 |
GPT4 | 20 | 11 | 748 | 3.00 | 10 | 649 | 1.67 | |
Maximum | GPT3.5 | 30 | 20 | 1403 | 6.00 | 20 | 1453 | 5.00 |
GPT4 | 50 | 31 | 1512 | 5.67 | 30 | 1543 | 5.33 |
F | df1 | df2 | p | ||
---|---|---|---|---|---|
AUT | Fluency | 22.06 | 1 | 68.82 | <.001 |
DV1 | Fluency | 67.96 | 1 | 96.67 | <.001 |
Elaboration | 1.66 | 1 | 96.23 | 0.200 | |
IV1 | Scoring | 1.68 | 1 | 93.01 | 0.199 |
DV2 | Fluency | 68.93 | 1 | 97.85 | <.001 |
Elaboration | 1.85 | 1 | 97.45 | 0.177 | |
IV2 | Scoring | 12.59 | 1 | 96.27 | <.001 |
IV1 | IV2 | Total After Cleaning Data | |||
---|---|---|---|---|---|
GPT3.5 | GPT4 | GPT3.5 | GPT4 | ||
Number of different names | 28 | 42 | 57 | 63 | 119 |
Mean | 2.21 | 1.66 | 1.91 | 1.86 | 2.99 |
SD | 2.94 | 1.94 | 1.83 | 2.01 | 3.70 |
Most used name(s) (frequency) | Lila (15) | Elara (13) | Max and Lucas (9) | Rosaline (11) | Rosaline and Elara and Lisa (17) |
AUT Fluency | DV1 Fluency | DV1 Elaboration | DV2 Fluency | DV2 Elaboration | IV1 Human Scoring | IV2 Human Scoring | IV1 GPT Scoring | IV2 GPT Scoring | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUT Fluency | — | |||||||||||||||||
DV1 Fluency | 0.33 | *** | — | |||||||||||||||
DV1 Elaboration | 0.01 | 0.58 | *** | — | ||||||||||||||
DV2 Fluency | 0.31 | ** | 0.59 | *** | 0.14 | — | ||||||||||||
DV2 Elaboration | −0.11 | 0.23 | * | 0.32 | ** | 0.43 | *** | — | ||||||||||
IV1 Human Scoring | 0.10 | 0.07 | 0.14 | −0.05 | 0.12 | — | ||||||||||||
IV2 Human Scoring | 0.08 | 0.31 | ** | 0.20 | 0.04 | 0.08 | 0.11 | — | ||||||||||
IV1 GPT Scoring | −0.08 | −0.03 | 0.04 | −0.15 | −0.14 | 0.09 | 0.05 | — | ||||||||||
IV2 GPT Scoring | 0.02 | 0.01 | 0.13 | −0.06 | −0.01 | 0.05 | 0.10 | −0.01 | — |
IV1 | IV2 | |||
---|---|---|---|---|
GPT3.5 | GPT4 | GPT3.5 | GPT4 | |
No. of Clusters | 3 | 3 | 3 | 4 |
Silhouette Index | 0.52 | 0.55 | 0.46 | 0.47 |
DBI | 0.60 | 0.58 | 0.70 | 0.65 |
DVQ | IVQ | |||
---|---|---|---|---|
GPT3.5 | GPT4 | GPT3.5 | GPT4 | |
Min | 113 | 138 | 91 | 97 |
Max | 138 | 138 | 114 | 125 |
Mean | 136.06 | 138 | 104.18 | 109.16 |
SD | 5.01 | 0 | 6.82 | 7.01 |
Creative Verbal High Potential | ||||
GPT3.5 | >114 IVQ | 0 | ||
GPT4 | >114 IVQ | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinchon, F.; Gironnay, V.; Lubart, T. GenAI Creativity in Narrative Tasks: Exploring New Forms of Creativity. J. Intell. 2024, 12, 125. https://doi.org/10.3390/jintelligence12120125
Vinchon F, Gironnay V, Lubart T. GenAI Creativity in Narrative Tasks: Exploring New Forms of Creativity. Journal of Intelligence. 2024; 12(12):125. https://doi.org/10.3390/jintelligence12120125
Chicago/Turabian StyleVinchon, Florent, Valentin Gironnay, and Todd Lubart. 2024. "GenAI Creativity in Narrative Tasks: Exploring New Forms of Creativity" Journal of Intelligence 12, no. 12: 125. https://doi.org/10.3390/jintelligence12120125
APA StyleVinchon, F., Gironnay, V., & Lubart, T. (2024). GenAI Creativity in Narrative Tasks: Exploring New Forms of Creativity. Journal of Intelligence, 12(12), 125. https://doi.org/10.3390/jintelligence12120125