Does Students’ Level of Intelligence Moderate the Relationship Between Socio-Economic Status and Academic Achievement?
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Socioeconomic Status and Scholastic Achievement
2.2. Intelligence and Scholastic Achievement
2.3. Intelligence Level as a Moderator for the Link Between SES and Academic Achievement
2.4. Research Questions
- RQ 1: Is the relationship between elementary students’ school performance (grade and competency tests in both math and native language arts) and SES higher in the average intelligence (AI) group than in the above-average intelligence (AAI) group?
- RQ2: Is the relationship between secondary school students’ school performance (grade and competency tests in both math and native language arts) and SES higher in the average intelligence (AI) group than in the above-average intelligence (AAI) group?
3. Method
3.1. Participants and Procedure
3.2. Measures
3.3. Statistical Analysis
4. Results
4.1. Results of the Elementary School Sample
4.1.1. Descriptive Statistics of the Elementary School Sample
4.1.2. Moderator Analysis of the Elementary School Sample
4.2. Results of the Secondary School Sample
4.2.1. Descriptive Statistics of the Secondary School Sample
4.2.2. Moderator Analysis of the Secondary School Sample
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | We performed an alternative recoding of the IQ scores controlling for the possible Flynn effect: below average (IQ < 89.5), average (89.5 ≥ IQ > 119.5), and above average (IQ ≥ 119.5). The result pattern for the moderator analysis when the Flynn-effect-adjusted coding was used did not differ;Categorizing the intelligence variable led to some restriction in variance in this variable, which resulted in less explained variance in the achievement criteria in the elementary school sample. As most interaction terms were not significant, we additionally present multiple regression analysis with SES and intelligence as a continous variable regressed on the different achievement criteria in the Online supplement material (Tables S1 and S2). |
2 | Moderator analyses were also run with intelligence as a continuous variable (see Online Supplementary Material Table S4). The results did not change. |
3 | Table S3 in the Online Supplementary Material shows the same analysis with a further indicator of socioeconomic status: parents’ highest school leaving certificate. The results were replicated, which demonstrates their robustness. |
References
- Akukwe, Bettina, and Ulrich Schroeders. 2016. Socio-economic, cultural, social, and cognitive aspects of family background and the biology competency of ninth-graders in Germany. Learning and Individual Differences 45: 185–92. [Google Scholar] [CrossRef]
- Ang, Siew Ching, Joseph Lee Rodgers, and Linda Wänström. 2010. The Flynn Effect within subgroups in the U.S.: Gender, race, income, education, and urbanization differences in the NLSY-children data. Intelligence 38: 367–84. [Google Scholar] [CrossRef] [PubMed]
- Baumert, Jürgen, and Petra Stanat. 2006. Internationale Schulleistungsvergleiche. In Handwörterbuch Pädagogische Psychologie. Edited by Detlef H. Rost. Weinheim: Beltz Verlag, pp. 291–99. [Google Scholar]
- Becker, Michael, Oliver Lüdtke, Ulrich Trautwein, and Jürgen Baumert. 2006. Leistungszuwachs in Mathematik: Evidenz für einen Schereneffekt im mehrgliedrigen Schulsystem? [Achievement gains in mathematics: Evidence for differential achievement trajectories in a tracked school system?]. Zeitschrift für Pädagogische Psychologie 20: 233–42. [Google Scholar] [CrossRef]
- Becker, Michael, Oliver Lüdtke, Ulrich Trautwein, Olaf Köller, and Jürgen Baumert. 2012. The differential effects of school tracking on psychometric intelligence: Do academic-track schools make students smarter? Journal of Educational Psychology 104: 682–99. [Google Scholar] [CrossRef]
- Benner, Aprile D., Alina E. Boyle, and Sydney Sadler. 2016. Parental involvement and adolescents’ educational success: The roles of prior achievement and socioeconomic status. Journal of Youth and Adolescence 45: 1053–64. [Google Scholar] [CrossRef]
- Bergold, Sebastian, Linda Wirthwein, and Ricarda Steinmayr. 2020. Similarities and Differences Between Intellectually Gifted and Average-Ability Students in School Performance, Motivation, and Subjective Well-Being. Gifted Child Quarterly 64: 285–303. [Google Scholar] [CrossRef]
- Bernardi, Fabrizio, and Hector Cebolla-Boado. 2014. Social class and school performance as predictors of educational paths in Spain. Revista Española de Investigaciones Sociológicas 146: 3–22. [Google Scholar] [CrossRef]
- Bernardi, Fabrizio, and Moris Triventi. 2018. Compensatory advantage in educational transitions: Trivial or substantial? A simulated scenario analysis. Acta Sociologica 63: 40–62. [Google Scholar] [CrossRef]
- Borghans, Lex, Bart H. H. Golsteyn, James J. Heckman, and John E. Humphries. 2016. What grades and achievement tests measure. Proceedings of the National Academy of Sciences 113: 13354–59. [Google Scholar] [CrossRef]
- Borman, Geoffrey D., and Laura T. Overman. 2004. Academic resilience in mathematics among poor and minority students. The Elementary School Journal 104: 177–95. [Google Scholar] [CrossRef]
- Boudon, Raymond. 1974. Education, Opportunity, and Social Inequality. Changing Prospects in Western Society. Hoboken: Wiley. [Google Scholar]
- Buchmann, Claudia, and Hyunjoon Park. 2009. Stratification and the formation of expectations in highly differentiated educational systems. Research in Social Stratification and Mobility 27: 245–67. [Google Scholar] [CrossRef]
- Bukodi, Erzsébet, Robert Erikson, and John Harry Goldthorpe. 2014. The effects of social origins and cognitive ability on educational attainment: Evidence from Britain and Sweden. Acta Sociologica 57: 293–310. [Google Scholar] [CrossRef]
- Burton, Nancy, and Leonard Ramist. 2001. Predicting Success in College: SAT Studies of Classes Graduating Since 1980 (Research Report 2001–2). New York: The College Board. [Google Scholar]
- Byrnes, James P., and David C. Miller. 2007. The relative importance of predictors of math and science achievement: An opportunity–propensity analysis. Contemporary Educational Psychology 32: 599–629. [Google Scholar] [CrossRef]
- Calsamiglia, Caterina, and Annalisa Loviglio. 2019. Grading on a curve: When having good peers is not good. Economics of Education Review 73: 101916. [Google Scholar] [CrossRef]
- Cappella, Elise, and Rhona S. Weinstein. 2001. Turning around reading achievement: Predictors of high school students’ academic resilience. Journal of Educational Psychology 93: 758–71. [Google Scholar] [CrossRef]
- Caro, Daniel H. 2009. Socio-economic status and academic achievement trajectories from childhood to adolescence. Canadian Journal of Education 32: 558–90. [Google Scholar]
- Cattell, Raymond Bernard, and Alberta Karen Schuettler Cattell. 1963. Culture Fair Intelligence Test. Savoy: Institute for Personality and Ability Testing. [Google Scholar]
- Colom, Roberto, and Carmen E. Flores-Mendoza. 2007. Intelligence predicts scholastic achievement irrespective of SES factors: Evidence from Brazil. Intelligence 35: 243–51. [Google Scholar] [CrossRef]
- Coyle, Thomas R. 2015. Relations among general intelligence (g), aptitude tests, and GPA: Linear effects dominate. Intelligence 53: 16–22. [Google Scholar] [CrossRef]
- Deary, Ian, Steve Strand, Pauline Smith, and Cres Fernandes. 2007. Intelligence and educational achievement. Intelligence 35: 13–21. [Google Scholar] [CrossRef]
- Engzell, Per. 2019. What Do Books in the Home Proxy For? A Cautionary Tale. Sociological Methods & Research 50: 1487–514. [Google Scholar] [CrossRef]
- Erikson, Robert, and Jan O. Jonsson. 1996. Explaining class inequality in education: The Swedish case. In Can Education Be Equalized? The Swedish Case in Comparative Perspective. Edited by Robert Erikson and Jan O. Jonsson. Boulder: Westview Press, pp. 1–63. [Google Scholar]
- Eriksson, Kimmo, Jannika Lindvall, Ola Helenius, and Andreas Ryve. 2021. Socioeconomic Status as a Multidimensional Predictor of Student Achievement in 77 Societies. Frontiers in Education 6: 731634. [Google Scholar] [CrossRef]
- Esping-Andersen, Gøsta, and Jorge Cimentada. 2018. Ability and mobility: The relative influence of skills and social origin on social mobility. Social Science Research 75: 13–31. [Google Scholar] [CrossRef] [PubMed]
- Evans, Mariah D. R., J. Kelley, Joanna Sikora, and Donald J. Treiman. 2010. Family scholarly culture and educational success: Books and schooling in 27 nations. Research in Social Stratification and Mobility 28: 171–97. [Google Scholar] [CrossRef]
- Fernald, Anne, Virginia A. Marchman, and Adriana Weisleder. 2013. SES differences in language processing skill and vocabulary are evident at 18 months. Developmental Science 16: 234–48. [Google Scholar] [CrossRef]
- Fischer, Christian, and Kerstin Müller. 2014. Gifted education and talent support in Germany. CEPS Journal 4: 31–54. [Google Scholar] [CrossRef]
- Flynn, James Robert. 1987. Massive IQ gains in 14 nations: What IQ tests really measure. Psychological Bulletin, 101, 171–91. [Google Scholar]
- Forrest, Lynne F., Susan Hodgson, Louise Parker, and Mark S. Pearce. 2011. The influence of childhood IQ and education on social mobility in the Newcastle Thousand Families birth cohort. BMC Public Health 11: 895. [Google Scholar] [CrossRef]
- Forster, Andrea G. 2021. Caught by surprise: The adaptation of parental expectations after unexpected ability track placement. Research in Social Stratification and Mobility 76: 100630. [Google Scholar] [CrossRef]
- Frey, Meredith Christine, and Douglas K. Detterman. 2004. Scholastic assessment or g? The relationship between the scholastic assessment test and general cognitive ability. Psychological Science 15: 373–78. [Google Scholar] [CrossRef]
- Gil-Hernández, Carlos Juan. 2019. Do well-off families compensate for low cognitive ability? Evidence on social inequality in early schooling from a twin study. Sociology of Education 92: 150–75. [Google Scholar] [CrossRef]
- Gröhlich, Carola, and Karin Guill. 2009. Wie stabil sind Bezugsgruppeneffekte der Grundschulempfehlung für die Schulformzugehörigkeit in der Sekundarstufe? [How stable are reference group effects of secondary school track recommendations?]. Journal for Educational Research Online 1: 154–71. [Google Scholar]
- Guill, Karin, Oliver Lüdtke, and Olaf Köller. 2017. Academic tracking is related to gains in students’ intelligence over four years: Evidence from a propensity score matching study. Learning and Instruction 47: 43–52. [Google Scholar] [CrossRef]
- Hattie, John. 2008. Visible Learning: A Synthesis of over 800 Meta-Analyses Relating to Achievement. Oxfordshire: Routledge. [Google Scholar]
- Hayes, Andrew F. 2017. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. New York: Guilford Press. [Google Scholar]
- Heppt, Birgit, Melanie Olczyk, and Anna Volodina. 2022. Number of books at home as an indicator of socioeconomic status: Examining its extensions and their incremental validity for academic achievement. Social Psychology of Education 25: 903–28. [Google Scholar] [CrossRef]
- Holland, Samantha Jane, Daniel B. Shore, and Jose Manuel Cortina. 2017. Review and recommendations for integrating mediation and moderation. Organizational Research Methods 20: 686–720. [Google Scholar] [CrossRef]
- Holzberger, Doris, Janina Täschner, and Delia Hillmayr. 2023. Unterschiede im Zusammenhang zwischen Elternbeteiligung und schulischem Erfolg: Ein systematischer Überblick über bestehende Metaanalysen. Zeitschrift für Erziehungswissenschaft 26: 105–40. [Google Scholar] [CrossRef]
- Hußmann, Anke, Daniel Kasper, and Tobias Stubbe. 2017. Soziale Herkunft und Lesekompetenzen von Schülerinnen und Schülern [Social background and students’ reading competencies]. In IGLU 2016. Lesekompetenzen von Grundschulkindern in Deutschland im Internationalen Vergleich [PIRLS 2016. An International Comparison of German Elementary School Students’ Reading Competencies]. Edited by Anke Hußmann, Heike Wendt, Wilfried Bos, Albert Bremerich-Vos, Daniel Kasper, Eva-Maria Lankes, Ncelvany McElvany, Tobias Christopher Stubbe and Renate Valtin. Münster: Waxmann, pp. 195–217. [Google Scholar]
- Jauk, Emanuel, Mathias Benedek, and Aljoscha C. Neubauer. 2014. The road to creative achievement: A latent variable model of ability and personality predictors. European Journal of Personality 28: 95–105. [Google Scholar] [CrossRef]
- Jensen, Arthur R. 2002. Vocabulary and general intelligence. Behavioral and Brain Sciences 24: 1109–10. [Google Scholar] [CrossRef]
- Jeynes, William H. 2005. A meta-analysis of the relation of parental involvement to urban elementary school student academic achievement. Urban Education 40: 237–69. [Google Scholar] [CrossRef]
- Jeynes, William H. 2007. The relationship between parental involvement and urban secondary school student academic achievement: A meta-analysis. Urban Education 42: 82–110. [Google Scholar] [CrossRef]
- Johnson, Wendy, Matt McGue, and William George Iacono. 2007. Socioeconomic status and school grades: Placing their association in broader context in a sample of biological and adoptive families. Intelligence 35: 526–41. [Google Scholar] [CrossRef]
- Klieme, Eckhard, Cordula Artelt, Johannes Hartig, Nina Jude, Olaf Köller, Manfred Prenzel, Wolfgang Schneider, and Petra Stanat. 2010. PISA 2009: Bilanz nach einem Jahrzehnt [PISA 2009: Lessons Learned over a Decade]. Münster: Waxmann. [Google Scholar]
- Koenig, Katherine, Meredith Frey, and Douglas Detterman. 2008. ACT and general cognitive ability. Intelligence 36: 153–60. [Google Scholar] [CrossRef]
- Kuncel, Nathan R., Sarah A. Hezlett, and Deniz S. Ones. 2004. Academic performance, career potential, creativity, and job performance: Can one construct predict them all? Journal of Personality and Social Psychology 86: 148–61. [Google Scholar] [CrossRef] [PubMed]
- Langensee, Lara, Theodor Rumetshofer, and Johan Mårtensson. 2024. Interplay of socioeconomic status, cognition, and school performance in the ABCD sample. npj Science of Learning 9: 17. [Google Scholar] [CrossRef] [PubMed]
- Lauermann, Fani, Anja Meißner, and Ricarda Steinmayr. 2020. Relative importance of intelligence and ability self-concept in predicting test performance and school grades in the math and language arts domains. Journal of Educational Psychology 112: 364–84. [Google Scholar] [CrossRef]
- Lehmann, Rainer, Rainer Peek, and Rüdiger Gänsfuß. 1997. LAU 5. Aspekte der Lernausgangslage und der Lernentwicklung von Schülerinnen und Schülern, die im Schuljahr 1996/97 eine fünfte Klasse an Hamburger Schulen besuchten. Available online: https://bildungsserver.hamburg.de/contentblob/2815702/3b66049d4257501a0d44dce9b7ca449c/data/pdf-schulleistungstest-lau-5.pdf (accessed on 17 April 2020).
- Lenhard, Wolfgang, and Wolfgang Schneider. 2006. Ein Leseverständnistest für Erst- bis Sechtsklässler [A Reading Comprehension Test for First to Sixth Graders]. Göttingen: Hogrefe. [Google Scholar]
- Lüdemann, Elke, and Guido Schwerdt. 2013. Migration background and educational tracking. Journal of Population Economics 26: 455–81. [Google Scholar] [CrossRef]
- Maaz, Kai, Ulrich Trautwein, Oliver Lüdtke, and Jürgen Baumert. 2008. Educational transitions and differential learning environments: How explicit between-school tracking contributes to social inequality in educational outcomes. Child Development Perspectives 2: 99–106. [Google Scholar] [CrossRef]
- Martin, Andrew James, and Herbert Warren Marsh. 2006. Academic resilience and its psychological and educational correlates: A construct validity approach. Psychology in the Schools 43: 267–81. [Google Scholar] [CrossRef]
- Mattern, Krista D., Brian F. Patterson, and Jeffrey N. Wyatt. 2013. How Useful Are Traditional Admission Measures in Predicting Graduation Within Four Years? (Research Report 2013–1). New York: The College Board. [Google Scholar]
- Ministry of Schools and Further Education NRW. 2015. Das Schulwesen in NRW aus Quantitativer Sicht 2014/15. Statistische Übersicht Nr. 388. Available online: https://www.schulministerium.nrw/sites/default/files/documents/Quantita_2014.pdf (accessed on 22 November 2024).
- Ministry of Schools and Further Education NRW. 2016. Das Schulwesen in NRW aus Quantitativer Sicht 2015/16. Statistische Übersicht Nr. 391. Available online: https://www.schulministerium.nrw/sites/default/files/documents/Quantita_2015.pdf (accessed on 1 September 2024).
- Mullis, Ina V. S., Michael O. Martin, Pierre Foy, and Alka Arora. 2012. TIMSS 2011 International Results in Mathematics. Chestnut Hill: TIMSS & PIRLS International Study Center, Boston College. [Google Scholar]
- Muthén, Linda K., and Bengt O. Muthén. 2017. Mplus User’s Guide, 8th ed. Los Angeles: Muthén & Muthén. [Google Scholar]
- Neisser, Ulric, Gwyneth Boodoo, Thomas J. Bouchard, Jr., Alfred Wade Boykin, Nathan Brody, Stephen J. Ceci, Diane F. Halpern, John C. Loehlin, Robert Perloff, Robert J. Sternberg, and et al. 1996. Intelligence: Knowns and unknowns. American Psychologist 51: 77–101. [Google Scholar] [CrossRef]
- Neubauer, Aljoscha, and Elsbeth Stern. 2013. Lernen Macht Intelligent: Warum Begabung Gefördert Werden Muss. Munich: DVA. [Google Scholar]
- O’Connell, Michael. 2018. The power of cognitive ability in explaining educational test performance, relative to other ostensible contenders. Intelligence 66: 122–27. [Google Scholar] [CrossRef]
- OECD. 2005. PISA 2003 Technical Report. PISA. Paris: OECD Publishing. [Google Scholar] [CrossRef]
- OECD. 2016. PISA 2015 Results (Volume I): Excellence and Equity in Education. Paris: OECD Publishing. [Google Scholar] [CrossRef]
- OECD. 2019a. PISA 2018 Results (Volume II): Where All Students Can Succeed. PISA. Paris: OECD Publishing. [Google Scholar] [CrossRef]
- OECD. 2019b. The Survey of Adult Skills: Reader’s Companion, 3rd ed. OECD Skills Studies. Paris: OECD Publishing. [Google Scholar] [CrossRef]
- Patall, Erika A., Harris Cooper, and Jorgianne Civey Robinson. 2008. Parent involvement in homework: A research synthesis. Review of Educational Research 78: 1039–101. [Google Scholar] [CrossRef]
- Perkins, Suzanne C., Eric D. Finegood, and James E. Swain. 2013. Poverty and language development: Roles of parenting and stress. Innovations in Clinical Neuroscience 10: 10–19. [Google Scholar]
- Reardon, Sean. 2011. The widening academic achievement gap between the rich and the poor: New evidence and possible explanations. In Whither Opportunity? Rising Inequality, Schools, and Children’s Life Chances. Edited by Greg J. Duncan and Richard J. Murnane. New York: Russell Sage Foundation, pp. 91–116. [Google Scholar]
- Rindermann, Heiner. 2006. Was messen internationale Schulleistungsstudien? Schulleistungen, Schülerfähigkeiten, kognitive Fähigkeiten, Wissen oder allgemeine Intelligenz? Psychologische Rundschau 57: 69–86. [Google Scholar] [CrossRef]
- Ritchie, Stuart J., and Timothy C. Bates. 2013. Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological Science 24: 1301–8. [Google Scholar] [CrossRef] [PubMed]
- Robinson, Cecil D., Sara Tomek, and Randall E. Schumacker. 2013. Tests of Moderation Effects: Difference in Simple Slopes versus the Interaction Term. Multiple Linear Regression Viewpoints 39: 16–24. Available online: https://www.glmj.org/archives/articles/Robinson_v39n1.pdf (accessed on 1 September 2024).
- Roick, Thorsten, Dietmar Gölitz, and Marcus Hasselhorn. 2004. Deutscher Mathematiktest für Dritte Klassen (DEMAT 3+). Göttingen: Hogrefe. [Google Scholar]
- Roksa, Josipa, and Daneil Potter. 2011. Parenting and academic achievement: Intergenerational transmission of educational advantage. Sociology of Education 84: 299–321. [Google Scholar] [CrossRef]
- Roth, Bettina, Nicolas Becker, Sara Romeyke, Sarah Schäfer, Florian Domnick, and Frank Michael Spinath. 2015. Intelligence and school grades: A meta-analysis. Intelligence 53: 118–37. [Google Scholar] [CrossRef]
- Schmidt, Sabrina, Marco Ennemoser, and Kristin Krajewski. 2012. Deutscher Mathematiktest für Neunte Klassen (DEMAT 9) [German Mathematic Test for 9th Grades]. Göttingen: Hogrefe. [Google Scholar]
- Schneider, Rebecca, Christin Lotz, and Jörn R. Sparfeldt. 2018. Smart, confident, interested: Contributions of intelligence, self-concept, and interest to elementary school achievement. Learning and Individual Differences 62: 23–35. [Google Scholar] [CrossRef]
- Schneider, Wolfgang, Matthias Schlagmüller, and Marco Ennemoser. 2007. Lesegeschwindigkeits- und -verständnistest für Die Klassen 6–12 (LGVT 6–12) [Reading Speed and Comprehension Test for Grades 6–12]. Göttingen: Hogrefe. [Google Scholar]
- Schroeders, Ulrich, Stefan Schipolowski, Ingo Zettler, Jessika Golle, and Oliver Wilhelm. 2016. Do the smart get smarter? Development of fluid and crystallized intelligence in 3rd grade. Intelligence 59: 84–95. [Google Scholar] [CrossRef]
- Schwippert, Knut. 2019. Was wird aus den Büchern? Sozialer Hintergrund von Lernenden und Bildungsungleichheit aus Sicht der international vergleichenden Erziehungswissenschaft [What’s about the books? Social background of students and educational opportunities from the perspective of international large-scale surveys]. Journal for Educational Research Online 11: 92–117. [Google Scholar] [CrossRef]
- Sieben, Swen, and Clemens M. Lechner. 2019. Measuring cultural capital through the number of books in the household. Measurement Instruments for the Social Sciences 1: 1. [Google Scholar] [CrossRef]
- Sirin, Selcuk R. 2005. Socioeconomic status and academic achievement: A meta-analytic review of research. Review of Educational Research 75: 417–53. [Google Scholar] [CrossRef]
- Steinmayr, Ricarda, and Birgit Spinath. 2007. Predicting school achievement from motivation and personality. Zeitschrift für Pädagogische Psychologie/German Journal of Educational Psychology 21: 207–16. [Google Scholar] [CrossRef]
- Steinmayr, Ricarda, and Birgit Spinath. 2008. Sex differences in school achievement: What are the roles of personality and achievement motivation? European Journal of Personality 22: 185–209. [Google Scholar] [CrossRef]
- Steinmayr, Ricarda, Anja Meißner, Anne F. Weidinger, and Linda Wirthwein. 2014. Academic Achievement. In Oxford Bibliographies Online: Education. Edited by L. H. Meyer. New York: Oxford University Press. [Google Scholar]
- Steinmayr, Ricarda, Anne Franziska Weidinger, Malte Schwinger, and Birgit Spinath. 2019. The Importance of Students’ Motivation for Their Academic Achievement—Replicating and Extending Previous Findings. Frontiers in Psychology 10: 1730. [Google Scholar] [CrossRef] [PubMed]
- Steinmayr, Ricarda, Felix C. Dinger, and Birgit Spinath. 2010. Parents’ education and children’s achievement: The role of personality. European Journal of Personality 24: 535–50. [Google Scholar] [CrossRef]
- Steinmayr, Ricarda, Felix C. Dinger, and Birgit Spinath. 2012. Motivation as a mediator of social disparities in academic achievement. European Journal of Personality 26: 335–49. [Google Scholar] [CrossRef]
- Steinmayr, Ricarda, Josi Michels, and Anne F. Weidinger. 2017. FA(IR)BULOUS: Faire Beurteilung des Leistungspotenzials von Schülerinnen und Schülern [FA(IR)BULOUS—Fair Evaluation of Students’ Academic Potential]. Dortmund: Technische Universität Dortmund. [Google Scholar]
- Strenze, Tarmo. 2007. Intelligence and socioeconomic success: A meta-analytic review of longitudinal research. Intelligence 35: 401–26. [Google Scholar] [CrossRef]
- Stride, Chris Bernard, Sarah Gardner, Nick Catley, and Ffion Thomas. 2015. Mplus Code for Mediation, Moderation, and Moderated Mediation Models. Available online: http://www.offbeat.group.shef.ac.uk/FIO/mplusmedmod.htm (accessed on 2 November 2024).
- Stubbe, Tobias Christopher, Knut Schwippert, and Heike Wendt. 2016. Soziale Disparitäten der Schülerleistungen in Mathematik und Naturwissenschaften [Social disparties in students‘ mathematics and science competencies]. In TIMSS 2015. Mathematische und Naturwissenschaftliche Kompetenzen von Grundschulkindern in Deutschland im Internationalen Vergleich [TIMSS 2015. An International Comparison of German Elementary School Students’ Mathematics and Science Competencies]. Edited by Heike Wendt, Wilfried Bos, Christoph Selter, Olaf Köller, Knut Schwippert and Daniel Kasper. Münster: Waxmann, pp. 299–316. [Google Scholar]
- Tan, C. Y. 2015. The contribution of cultural capital to students’ mathematics achievement in medium and high socioeconomic gradient economies. British Educational Research Journal 41: 1050–67. [Google Scholar] [CrossRef]
- Trautwein, Ulrich, Oliver Lüdtke, Herbert Warren Marsh, Olaf Köller, and Jürgen Baumert. 2006. Tracking, grading, and student motivation: Using group composition and status to predict self-concept and interest in ninth-grade mathematics. Journal of Educational Psychology 98: 788–806. [Google Scholar] [CrossRef]
- van Bergen, Else, Titia van Zuijen, Dorothy Bishop, and Peter F. de Jong. 2017. Why Are Home Literacy Environment and Children’s Reading Skills Associated? What Parental Skills Reveal. Reading Research Quarterly 52: 147–60. [Google Scholar] [CrossRef]
- von Stumm, Sophie, and Robert Plomin. 2015. Socioeconomic status and the growth of intelligence from infancy through adolescence. Intelligence 48: 30–36. [Google Scholar] [CrossRef]
- Wang, Zhe, Brooke Soden, Kirby Deater-Deckard, Sarah L. Lukowski, Victoria J. Schenker, Erik G. Willcutt, Lee A. Thompson, and Stephen A. Petrill. 2017. Development in reading and math in children from different SES backgrounds: The moderating role of child temperament. Developmental Science 20: 12380. [Google Scholar] [CrossRef]
- Weber, Heike S., Liping Lu, Jiannong Shi, and Frank Michael Spinath. 2013. The roles of cognitive and motivational predictors in explaining school achievement in elementary school. Learning and Individual Differences 25: 85–92. [Google Scholar] [CrossRef]
- Weiß, Rudolph Hans. 2006. Grundintelligenztest Skala 2—Revision [Culture Fair Intelligence Test Scale 2—Revised]. Göttingen: Hogrefe. [Google Scholar]
- Wendt, Heike, Wilfried Bos, Irmela Tarelli, Anna Vaskova, and Anke Walzebug. 2016. IGLU & TIMSS 2011. Skalenhandbuch zur Dokumentation der Erhebungsinstrumente und Arbeit mit den Datensätzen [Scale Manual for a Survey of Instruments and Use of Data Sets]. Salisbury: Waxmann. [Google Scholar]
- White, Karl R. 1982. The relation between socioeconomic status and academic achievement. Psychological Bulletin 91: 461–81. [Google Scholar] [CrossRef]
Variable | M | SD | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
| 3.29 | 1.19 | 0.305 ** | 0.284 ** | 0.243 ** | 0.193 ** | 0.274 ** |
| 4.35 | 0.88 | 0.667 ** | 0.426 ** | 0.452 ** | 0.625 ** | |
| 4.28 | 0.99 | 0.483 ** | 0.592 ** | 0.443 ** | ||
| 108.90 | 14.81 | 0.461 ** | 0.437 ** | |||
| 8.36 | 3.49 | 0.392 ** | ||||
| 12.15 | 4.57 |
Grades | Standardized Achievement Tests | |||||||
---|---|---|---|---|---|---|---|---|
Variable | B | SE | B | SE | ||||
Domain | NLA | Math | NLA | Math | NLA | Math | NLA | Math |
Number of books a | 0.267 *** | 0.217 *** | 0.044 | 0.045 | 0.180 *** | 0.141 *** | 0.047 | 0.046 |
Intelligence 1 a | −0.152 *** | −0.125 *** | 0.026 | 0.029 | −0.157 *** | −0.241 *** | 0.026 | 0.037 |
Intelligence 2 a | 0.369 *** | 0.395 *** | 0.033 | 0.041 | 0.321 *** | 0.335 *** | 0.037 | 0.038 |
Number of books × Intelligence I | −0.022 | −0.046 | 0.043 | 0.038 | −0.016 | 0.014 | 0.036 | 0.037 |
Number of books × Intelligence II | −0.128 ** | −0.053 | 0.047 | 0.053 | −0.020 | −0.095 # | 0.053 | 0.053 |
R2 | 0.198 | 0.232 | 0.022 | 0.025 | 0.190 | 0.186 | 0.028 | 0.028 |
Grades | Standardized Test Performance | |||||||
---|---|---|---|---|---|---|---|---|
B | SE | B | SE | |||||
Intelligence Group | NLA | Math | NLA | Math | NLA | Math | NLA | Math |
Below Average | 0.321 | 0.064 | 0.304 | 0.311 | 1.346 | 1.386 | 1.436 | 0.908 |
Average | 0.479 *** | 0.437 *** | 0.081 | 0.092 | 1.869 *** | 1.004 ** | 0.486 | 0.329 |
Above Average | 0.190 * | 0.304 *** | 0.080 | 0.080 | 1.018 ** | 0.143 | 0.375 | 0.289 |
Variable | M | SD | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
| 2.96 | 1.37 | 0.239 | 0.208 | 0.284 | 0.363 | 0.358 |
| 3.95 | 0.92 | 0.438 | 0.210 | 0.267 | 0.276 | |
| 3.89 | 1.07 | 0.316 | 0.433 | 0.204 | ||
| 100.80 | 15.35 | 0.465 | 0.345 | |||
| 19.85 | 9.90 | 0.465 | ||||
| 10.51 | 5.89 |
Grades | Standardized Achievement Tests | |||||||
Variable | B | SE | B | SE | ||||
Domain | NLA | Math | NLA | Math | NLA | Math | NLA | Math |
Number of books a | 0.221 *** | 0.161 *** | 0.032 | 0.032 | 0.234 | 0.233 | 0.028 | 0.034 |
Intelligence 1 a | −0.121 *** | −0.108 *** | 0.025 | 0.025 | −0.168 | −0.236 | 0.030 | 0.031 |
Intelligence 2 a | 0.121 *** | 0.234 *** | 0.026 | 0.029 | 0.178 | 0.269 | 0.036 | 0.038 |
Number of books × Intelligence I | −0.007 | −0.004 | 0.029 | 0.030 | 0.029 | 0.032 | 0.024 | 0.019 |
Number of books × Intelligence II | −0.083 *** | −0.057 | 0.030 | 0.051 | −0.007 | −0.056 | 0.035 | 0.042 |
R2 | 0.075 | 0.094 | 0.012 | 0.017 | 0.148 | 0.211 | 0.029 | 0.031 |
Controlling for School Type | ||||||||
Grades | Standardized Achievement Tests | |||||||
Variable | B | SE | B | SE | ||||
Domain | NLA | Math | NLA | Math | NLA | Math | NLA | Math |
Number of books a | 0.181 *** | 0.095 ** | 0.026 | 0.028 | 0.122 *** | 0.071 ** | 0.026 | 0.022 |
Intelligence 1 a | −0.109 *** | −0.090 *** | 0.026 | 0.023 | −0.135 *** | −0.188 *** | 0.026 | 0.029 |
Intelligence 2 a | 0.102 *** | 0.199 *** | 0.026 | 0.031 | 0.120 *** | 0.184 *** | 0.025 | 0.031 |
Number of books × Intelligence I | −0.009 | −0.009 | 0.029 | 0.027 | 0.022 | 0.022 | 0.025 | 0.014 |
Number of books × Intelligence II | −0.082 ** | −0.047 | 0.029 | 0.052 | 0.011 | −0.032 | 0.032 | 0.035 |
School Type a | 0.133 *** | 0.224 *** | 0.040 | 0.048 | 0.389 *** | 0.564 *** | 0.037 | 0.046 |
R2 | 0.090 | 0.138 | 0.016 | 0.030 | 0.282 | 0.490 | 0.041 | 0.055 |
Grades | Standardized Test Performance | |||||||
---|---|---|---|---|---|---|---|---|
B | SE | B | SE | |||||
Intelligence Group | NLA | Math | NLA | Math | NLA | Math | NLA | Math |
Below Average | 0.380 * | 0.333 | 0.191 | 0.224 | 4.137 *** | 7.113 *** | 1.114 | 1.726 |
Average | 0.426 *** | 0.367 *** | 0.062 | 0.075 | 2.914 *** | 4.868 *** | 0.390 | 0.855 |
Above Average | 0.159 * | 0.156 | 0.067 | 0.180 | 2.778 *** | 2.947 ** | 0.569 | 1.074 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinmayr, R.; Kessels, U. Does Students’ Level of Intelligence Moderate the Relationship Between Socio-Economic Status and Academic Achievement? J. Intell. 2024, 12, 123. https://doi.org/10.3390/jintelligence12120123
Steinmayr R, Kessels U. Does Students’ Level of Intelligence Moderate the Relationship Between Socio-Economic Status and Academic Achievement? Journal of Intelligence. 2024; 12(12):123. https://doi.org/10.3390/jintelligence12120123
Chicago/Turabian StyleSteinmayr, Ricarda, and Ursula Kessels. 2024. "Does Students’ Level of Intelligence Moderate the Relationship Between Socio-Economic Status and Academic Achievement?" Journal of Intelligence 12, no. 12: 123. https://doi.org/10.3390/jintelligence12120123
APA StyleSteinmayr, R., & Kessels, U. (2024). Does Students’ Level of Intelligence Moderate the Relationship Between Socio-Economic Status and Academic Achievement? Journal of Intelligence, 12(12), 123. https://doi.org/10.3390/jintelligence12120123