What Is Mathematical Giftedness? Associations with Intelligence, Openness, and Need for Cognition
Abstract
:1. Introduction
1.1. Mathematical Giftedness and Intelligence
1.2. Mathematical Giftedness and Personality
1.3. Current Study
2. Materials and Methods
2.1. Sample and Procedure
2.2. Measurement
2.2.1. Mathematical Abilities
2.2.2. Fluid Intelligence
2.2.3. Need for Cognition
2.2.4. Openness
2.3. Data Analysis
3. Results
3.1. Fluid Intelligence
3.2. Openness
3.3. Need for Cognition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Therefore, we had to deviate from our preregistration and could not include the HTMB as an additional outcome. |
2 | We did not conduct post hoc power analyses calculating the empirical power for our analyses as they are a direct function of p-values (Hoenig and Heisey 2001). |
References
- Ackerman, Phillip L. 1996. A theory of adult intellectual development: Process, personality, interests, and knowledge. Intelligence 22: 227–57. [Google Scholar] [CrossRef]
- Benbow, Camilla P. 2012. Identifying and Nurturing Future Innovators in Science, Technology, Engineering, and Mathematics: A Review of Findings From the Study of Mathematically Precocious Youth. Peabody Journal of Education 87: 16–25. [Google Scholar] [CrossRef]
- Bicknell, Brenda. 2009. Who are the mathematically gifted? Student, parent and teacher perspectives. Research in Mathematical Education 13: 63–73. [Google Scholar]
- Brandt, Naemi D., Clemens M. Lechner, Julia Tetzner, and Beatrice Rammstedt. 2019. Personality, cognitive ability, and academic performance: Differential associations across school subjects and school tracks. Journal of Personality 88: 249–65. [Google Scholar] [CrossRef] [PubMed]
- Bruine de Bruin, Wändi, Simon J. McNair, Andrea L. Taylor, Barbara Summers, and JoNell Strough. 2015. “Thinking about Numbers Is Not My Idea of Fun”: Need for Cognition Mediates Age Differences in Numeracy Performance. Medical Decision Making 35: 22–26. [Google Scholar] [CrossRef]
- Bühner, Markus. 2011. 3., aktualisierte und erweiterte Auflage. In Einführung in die Test- und Fragebogenkonstruktion. Munich: Pearson. [Google Scholar]
- Cacioppo, John T., and Richard E. Petty. 1982. The need for cognition. Journal of Personality and Social Psychology 42: 116–31. [Google Scholar] [CrossRef]
- Cattell, Raymond. B. 1986. Higher Stratum Ability Structure and the “Investment Theory” of Intelligence. Advances in Psychology 35: 121–52. [Google Scholar] [CrossRef]
- Colling, Joanne, Rachel Wollschläger, Ulrich Keller, Franzis Preckel, and Antoine Fischbach. 2022. Need for Cognition and its relation to academic achievement in different learning environments. Learning and Individual Differences 93: 102110. [Google Scholar] [CrossRef]
- Costa, Paul T., and Robert R. McCrae. 1992. Four ways five factors are basic. Personality and Individual Differences 13: 653–65. [Google Scholar] [CrossRef]
- Danner, Daniel, Beatrice Rammstedt, Matthias Bluemke, Lisa Treiber, Sabrina Berres, Christopher J. Soto, and Oliver P. John. 2016. Die deutsche Version des Big Five Inventory 2 (BFI-2). Mannheim: GESIS—Leibniz-Institut für Sozialwissenschaften. [Google Scholar] [CrossRef]
- Faul, Franz, Edgar Erdfelder, Axel Buchner, and Albert-Georg Lang. 2009. Statistical power analyses using G*Power (Version 3.1.9.6): Tests for correlation and regression analyses. Behavior Research Methods 41: 1149–60. [Google Scholar] [CrossRef]
- Fritzlar, Torsten. 2013. Mathematische Begabungen im Grundschulalter. Ein Überblick zu aktuellen mathematikdidaktischen Forschungsarbeiten. Mathematica Didactica 36: 5–27. [Google Scholar]
- Hoenig, John M., and Dennis M. Heisey. 2001. The Abuse of Power: The Pervasive Fallacy of Power Calculations for Data Analysis. The American Statistician 55: 19–24. [Google Scholar] [CrossRef]
- Hogrefe Testsystem. 2013. (Version 5.3.24). [Computer Software]. Göttingen: Testzentrale eTests.
- IBM Corp. 2019. IBM SPSS Statistiscs for Windows. (26.0). [Computer software]. Armonk: IBM Corp. [Google Scholar]
- Johannsen, Mieke. 2021. How do Fluid Intelligence, Openness and Need for Cognition Co-Shape the Acquisition of Mathematical Abilities? An Application of the OFCI Model to Mathematical Knowledge. Unpublished Master’s thesis, University of Hamburg, Hamburg, Germany. [Google Scholar]
- Käpnick, Friedhelm, Marianne Nolte, and Gerd Walther. 2005. Talente entdecken und unterstützen. In Publikation des Programmes SINUS-Transfer-Grundschule. Kiel: IPN Leibniz-Institut f. d. Pädagogik d. Naturwissenschaften an d. Universität Kiel. [Google Scholar]
- Kießwetter, Karl. 1985. Die Förderung von mathematisch besonders begabten und interessierten Schülern–ein bislang vernachlässigtes sonderpädagogisches Problem. Mathematisch-naturwissenschaftlicher Unterricht 38: 300–6. [Google Scholar]
- Kontoyianni, Katerina, Maria Kattou, Demetra Pitta-Pantazi, and Constantinos Christou. 2013. Integrating Mathematical Abilities and Creativity in the Assessment of Mathematical Giftedness. Psychological Test and Assessment Modeling 55: 289. [Google Scholar]
- Krüger, Nina, Sören Fiedler, Mieke Johannsen, Luca Smoydzin, Marguerite Peritz, Henrik Genzel, Jakob Meyer, and Monika Daseking. 2019. Research within the framework of the Hamburger Model for the promotion of particularly mathematically gifted children and adolescents. In Including the Highly Gifted and Creative Students—Current Ideas and Future Directions. Edited by Marianne Nolte. Münster: WTM-Verlag für wissenschaftliche Texte und Medien, vol. 5, pp. 358–65. [Google Scholar]
- Kupper, Katharina, Dorothea Krampen, Beatrice Rammstedt, and Sonja Rohrmann. 2019. Kurzversion des Big Five Inventory für Kinder und Jugendliche (BFI-K KJ): Adaptation und Validierung eines deutschsprachigen Selbstbeurteilungsinventars zur Erfassung grundlegender Persönlichkeitsfaktoren im Kindes- und Jugendalter. Diagnostica 65: 86–96. [Google Scholar] [CrossRef]
- Lauermann, Fani, Anja Meißner, and Ricarda Steinmayr. 2020. Relative importance of intelligence and ability self-concept in predicting test performance and school grades in the math and language arts domains. Journal of Educational Psychology 112: 364–83. [Google Scholar] [CrossRef]
- Lechner, Clemens, Ai Miyamoto, and Thomas Knopf. 2019. Should students be smart, curious, or both? Fluid intelligence, openness, and interest co-shape the acquisition of reading and math competence. Intelligence 76: 101378. [Google Scholar] [CrossRef]
- Lohman, David F. 2005. The Role of Nonverbal Ability Tests in Identifying Academically Gifted Students: An Aptitude Perspective. Gifted Child Quarterly 49: 111–38. [Google Scholar] [CrossRef]
- Lohman, David F., James Gambrell, and Joni Lakin. 2008. The commonality of extreme discrepancies in the ability profiles of academically gifted students. Psychology Science 50: 269–82. [Google Scholar]
- Lubinski, David, and Camilla P. Benbow. 1994. The study of mathematically precocious youth: The first three decades of a planned 50-year study of intellectual talent. In Beyond Terman: Contemporary Longitudinal Studies of Giftedness and Talent. Norwood: Ablex Publishing, pp. 255–81. [Google Scholar]
- Luong, Cäcilia, Anja Strobel, Rachel Wollschläger, Samuel Greiff, Mari.-Pauliina Vainikainen, and Franzis Preckel. 2017. Need for cognition in children and adolescents: Behavioral correlates and relations to academic achievement and potential. Learning and Individual Differences 53: 103–13. [Google Scholar] [CrossRef]
- Meier, Elisabeth, Katharina Vogl, and Franzis Preckel. 2014. Motivational characteristics of students in gifted classes: The pivotal role of need for cognition. Learning and Individual Differences 33: 39–46. [Google Scholar] [CrossRef]
- Negru-Subtirica, Oana, Eleonora Ioana Pop, Elisabetta Crocetti, and Wim Meeus. 2020. Social comparison at school: Can GPA and personality mutually influence each other across time? Journal of Personality 88: 555–67. [Google Scholar] [CrossRef] [PubMed]
- Nolte, Marianne. 2011. “Ein hoher IQ garantiert eine hohe mathematische Begabung! Stimmt das?”—Ergebnisse aus neun Jahren Talentsuche im PriMa-Projekt Hamburg. In Beiträge zum Mathematikunterricht 2011: Vorträge auf der 45. Tagung für Didaktik der Mathematik vom 21.02.2011 bis 25.05.2011 in Freiburg. Edited by Reinhold Haug and Lars Holzäpfel. Münster: WTM, vol. 2, pp. 611–14. Available online: http://www.mathematik.tu-dortmund.de/ieem/bzmu2011/_BzMU11_2_Einzelbeitraege/BzMU11_NOLTE_M_Talentsuche.pdf (accessed on 8 May 2021).
- Nolte, Marianne, ed. 2019. Including the Highly Gifted and Creative Students—Current Ideas and Future Directions. Proceedings of the 11th International Conference on Mathematical Creativity and Giftedness (MCG 11). 22.08.2019– 24.08.2019, (1st Aufl.). Münster: WTM. [Google Scholar] [CrossRef]
- Pitta-Pantazi, Demetra, Constantinos Christou, Katerina Kontoyianni, and Maria Kattou. 2011. A Model of Mathematical Giftedness: Integrating Natural, Creative, and Mathematical Abilities. Canadian Journal of Science, Mathematics and Technology Education 11: 39–54. [Google Scholar] [CrossRef]
- Poropat, Arthur E. 2009. A meta-analysis of the five-factor model of personality and academic performance. Psychological Bulletin 135: 322–38. [Google Scholar] [CrossRef] [Green Version]
- Preckel, Franzis. 2014. Assessing need for cognition in early adolescence: Validation of a German adaption of the Cacioppo/Petty Scale. Journal of Psychological Assessment 30: 65–72. [Google Scholar] [CrossRef]
- Preckel, Franzis. 2016. NFC-Teens: Eine deutsche Need for Cognition Skala für ältere Kinder und Jugendliche. Mannheim: GESIS—Leibniz-Institut für Sozialwissenschaften. [Google Scholar] [CrossRef]
- Preckel, Franzis, Thomas Goetz, Reinhard Pekrun, and Michael Kleine. 2008. Gender Differences in Gifted and Average-Ability Students: Comparing Girls’ and Boys’ Achievement, Self-Concept, Interest, and Motivation in Mathematics. Gifted Child Quarterly 52: 146–59. [Google Scholar] [CrossRef]
- Questback GmbH. 2019. EFS Survey (Fall 2019). [Computer software]. Köln: Questback GmbH. [Google Scholar]
- Rammstedt, Beatrice, and Oliver P. John. 2007. Measuring personality in one minute or less: A 10-item short version of the Big Five Inventory in English and German. Journal of Research in Personality 41: 203–12. [Google Scholar] [CrossRef]
- Roth, Bettina, Nicolas Becker, Sara Romeyke, Sarah Schäfer, Florian Domnick, and Frank M. Spinath. 2015. Intelligence and school grades: A meta-analysis. Intelligence 53: 118–37. [Google Scholar] [CrossRef]
- RStudio Team. 2020. RStudio: Integrated Development Environment for R. (Version 1.3.1073) [R]. Boston: RStudio, PBC. [Google Scholar]
- Schneider, Wolfgang, Franzis Preckel, and Eva Stumpf, eds. 2014. Hochbegabtenförderung in der Sekundarstufe. Ergebnisse der PULSS-Studie zur Untersuchung der gymnasialen Begabtenklassen in Bayern und Baden-Württemberg. Frankfurt am Main: Karg-Stiftung, vol. 7. [Google Scholar]
- Slack, Warner V., and Douglas Porter. 1980. The Scholastic Aptitude Test: A Critical Appraisal. Harvard Educational Review 50: 154–75. [Google Scholar] [CrossRef]
- Stanley, Julian C. 1985. Finding Intellectually Talented Youths and Helping Them Educationally. The Journal of Special Education 19: 363–72. [Google Scholar] [CrossRef]
- Thompson, Lee A., and Jeremy Oehlert. 2010. The etiology of giftedness. Learning and Individual Differences 20: 298–307. [Google Scholar] [CrossRef]
- Trapp, Stefanie, Siegrid Blömeke, and Matthias Ziegler. 2019. The openness-fluid-crystallized-intelligence (OFCI) model and the environmental enrichment hypothesis. Intelligence 73: 30–40. [Google Scholar] [CrossRef]
- Von Stumm, Sophie. 2013. Investment traits and intelligence in adulthood. Assessment and Associations. Journal of Individual Differences 34: 82–89. [Google Scholar] [CrossRef]
- Warne, Russell T. 2016. Five Reasons to Put the g Back Into Giftedness: An Argument for Applying the Cattell–Horn–Carroll Theory of Intelligence to Gifted Education Research and Practice. Gifted Child Quarterly 60: 3–15. [Google Scholar] [CrossRef]
- Weiß, Rudolf H. 2019. 2. überarbeitete Auflage mit aktualisierten und erweiterten Normen. In CFT 20-R: Grundintelligenztest Skala 2-Revision. Göttingen: Hogrefe. [Google Scholar]
- Wieczerkowski, Wilhelm. 1989. Methodologische Probleme in Talentsuchen. In Identifizierung und Förderung mathematisch besonders befähigter Schüler. Projektbericht für das Projekt B 3511.00 B des Bundesministeriums für Bildung und Wissenschaft. Edited by Wilhelm Wieczerkowski, Karl Kießwetter, Helmut Müller, Bernd Zimmermann and Elke Birx. Hamburg: University of Hamburg, Unpublished report. pp. 5–19. [Google Scholar]
- Ziegler, Matthias, Erik Danay, Moritz Heene, Jens Asendorpf, and Markus Bühner. 2012. Openness, fluid intelligence, and crystallized intelligence: Toward an integrative model. Journal of Research in Personality 46: 173–83. [Google Scholar] [CrossRef]
- Ziegler, Matthias, Titus A. Schroeter, Oliver Lüdtke, and Lena Roemer. 2018. The Enriching Interplay between Openness and Interest: A Theoretical Elaboration of the OFCI Model and a First Empirical Test. Journal of Intelligence 6: 35. [Google Scholar] [CrossRef]
Hypotheses | a | b |
---|---|---|
H1 | There is a positive association between mathematical abilities and fluid intelligence. | There is a positive association between mathematical abilities and numerical processing capacity. |
H2 | There is a positive association between mathematical abilities and openness. | There is an interaction between openness and fluid intelligence in predicting mathematical abilities. |
H3 | There is a positive association between mathematical abilities and the need for cognition. | There is an interaction between the need for cognition and fluid intelligence in predicting mathematical abilities. |
Order 1 | Order 2 | |
---|---|---|
1st assessment | GSAT-M 1 | BFI-2 2 |
BFI-2 2 | NFC-Teens 3 | |
NFC-Teens 3 | GSAT-M 1 | |
CFT 20-R and ZF 4 | CFT 20-R and ZF 4 | |
2nd assessment | Open-ended Mathematical task | Open-ended Mathematical task 1 |
Variable | M | SD | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|---|
1. Age | 12.42 | .53 | ||||||
2. Gender | .46 | .50 | −.01 [−.19, .18] | |||||
3. GSAT-M | 28.92 | 9.68 | −.07 [−.25, .12] | −.04 [−.22, .15] | ||||
4. CFT | 121.70 | 16.22 | −.28 ** [−.45, −.09] | .08 [−.12, .27] | .44 ** [.27, .59] | |||
5. ZF | 120.54 | 11.60 | −.39 ** [−.54, −.21] | −.09 [−.28, .11] | .41 ** [.24, .56] | .46 ** [.29, .60] | ||
6. Openness (z-standardized) | 3.78 | .54 | −.05 [−.23, .14] | .19 * [.01, .36] | .02 [−.16, .21] | .21 * [.02, .39] | −.08 [−.27, .12] | |
7. NFC (z-standardized) | 74.98 | 10.19 | −.12 [−.30, .07] | .00 [−.18, .19] | .05 [−.13, .23] | .23 * [.04, .40] | .02 [−.18, .21] | .41 ** [.24, .55] |
Predictor | b | 95% CI | sr2 | 95% CI | Fit | Difference |
---|---|---|---|---|---|---|
Intercept | 29.83 ** | [27.19, 32.48] | R2 = .011 | |||
Age | −1.31 | [−4.95, 2.33] | .01 | [−.02, .03] | [.00, .07] | |
Gender | −1.50 | [−5.46, 2.46] | .01 | [−.02, .03] | R2adj = −.009 | |
Intercept | −7.12 | [−21.47, 7.22] | ||||
Age | 1.22 | [−2.16, 4.60] | .00 | [−.02, .03] | R2 = .226 ** | |
Gender | −2.29 | [−5.83, 1.25] | .01 | [−.03, .05] | [.08, .34] | ΔR2 = .215 ** |
CFT | .31 ** | [.19, .43] | .21 | [.07, .36] | R2adj = .202 | [.07, .36] |
Intercept | −35.46 ** | [−56.69, −14.24] | ||||
Age | 3.03 | [−.34, 6.40] | .02 | [−.03, .07] | ||
Gender | −1.51 | [−4.89, 1.88] | .01 | [−.02, .03] | R2 = .311 ** | |
CFT | .24 ** | [.12, .36] | .11 | [.01, .22] | [.14, .42] | ΔR2 = .085 ** |
ZF | .30 ** | [.13, .48] | .09 | [−.01, .18] | R2adj = .282 | [−.01, .18] |
Predictor | b | 95% CI | sr2 | 95% CI | Fit | Difference |
---|---|---|---|---|---|---|
Intercept | −9.15 | [−23.99, 5.69] | ||||
Age | 1.19 | [−2.18, 4.57] | .00 | [−.02, .03] | ||
Gender | −1.88 | [−5.50, 1.74] | .01 | [−.02, .04] | R2 = .234 ** | |
CFT | .32 ** | [.20, .45] | .22 | [.08, .37] | [.08, .34] | ΔR2 = .009 |
O | −.96 | [−2.78, .86] | .01 | [−.02, .04] | R2adj = .203 | [−.02, .04] |
Intercept | −7.96 | [−22.74, 6.82] | ||||
Age | .94 | [−2.42, 4.30] | .00 | [−.01, .02] | ||
Gender | −1.66 | [−5.26, 1.93] | .01 | [−.02, .03] | ||
CFT | .32 ** | [.20, .44] | .21 | [.07, .35] | R2 = .256 ** | |
O | 9.39 | [−3.23, 22.01] | .02 | [−.03, .06] | [.09, .36] | ΔR2 = .021 |
CFT:O | −.09 | [−.19, .02] | .02 | [−.03, .07] | R2adj = .217 | [−.03, .07] |
Predictor | b | 95% CI | sr2 | 95% CI | Fit | Difference |
---|---|---|---|---|---|---|
Intercept | −9.80 | [−24.78, 5.19] | ||||
Age | 1.11 | [−2.28, 4.51] | .00 | [−.02, .02] | ||
Gender | −2.02 | [−5.66, 1.63] | .01 | [−.02, .04] | ||
CFT | .33 ** | [.21, .45] | .23 | [.08, .37] | R2 = .239 ** | |
O | −.68 | [−2.66, 1.30] | .00 | [−.02, .02] | [.07, .34] | ΔR2 = .004 |
NFC | −.71 | [−2.65, 1.23] | .00 | [−.02, .03] | R2adj= .199 | [−.02, .03] |
Intercept | −9.72 | [−24.79, 5.36] | ||||
Age | 1.14 | [−2.28, 4.56] | .00 | [−.02, .02] | ||
Gender | −2.03 | [−5.69, 1.64] | .01 | [−.02, .04] | ||
CFT | .33 ** | [.21, .45] | .23 | [.08, .37] | ||
O | −.64 | [−2.66, 1.38] | .00 | [−.02, .02] | R2 = .239 ** | |
NFC | 1.28 | [−14.62, 17.19] | .00 | [−.00, .01] | [.06, .34] | ΔR2 = .001 |
CFT:NFC | −.02 | [−.15, .12] | .00 | [−.01, .01] | R2adj = .191 | [−.01, .01] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, K.; Johannsen, M.; Langemeyer, L.; Krüger, N. What Is Mathematical Giftedness? Associations with Intelligence, Openness, and Need for Cognition. J. Intell. 2022, 10, 94. https://doi.org/10.3390/jintelligence10040094
Hansen K, Johannsen M, Langemeyer L, Krüger N. What Is Mathematical Giftedness? Associations with Intelligence, Openness, and Need for Cognition. Journal of Intelligence. 2022; 10(4):94. https://doi.org/10.3390/jintelligence10040094
Chicago/Turabian StyleHansen, Kaja, Mieke Johannsen, Laura Langemeyer, and Nina Krüger. 2022. "What Is Mathematical Giftedness? Associations with Intelligence, Openness, and Need for Cognition" Journal of Intelligence 10, no. 4: 94. https://doi.org/10.3390/jintelligence10040094
APA StyleHansen, K., Johannsen, M., Langemeyer, L., & Krüger, N. (2022). What Is Mathematical Giftedness? Associations with Intelligence, Openness, and Need for Cognition. Journal of Intelligence, 10(4), 94. https://doi.org/10.3390/jintelligence10040094