Psychometric Properties of the Wong and Law Emotional Intelligence Scale in a Colombian Manager Sample
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Measures
2.3.1. Wong and Law Emotional Intelligence Scale (WLEIS)
2.3.2. Subjective Happiness Scale (SHS)
2.4. Procedure
2.5. Data Analysis
3. Results
3.1. Item Analysis
3.2. Validity Evidence Based on the Internal Structure
3.3. Reliability
3.4. Validity Evidence Based on Relations to Other Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Acosta-Prado, Julio César, and Rodrigo Arturo Zárate. 2017. Emotional Intelligence in Latin American Managers: An Exploratory Study. Universitas Psychologica 14: 1–11. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Prado, Julio César, and Rodrigo Arturo Zárate. 2019. Validation of the Wong and Law Emotional Intelligence Scale for Chilean Managers. Suma Psicológica 26: 110–18. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Prado, Julio César, Rodrigo Arturo Zarate, and Geli Mercedes Pautt. 2015. Characterization of Emotional Intelligence in Colombian Managers. Universitas Psychologica 14: 815–32. [Google Scholar] [CrossRef]
- American Educational Research Association, American Psychological Association, and National Council on Measurement in Education. 2014. Standards for Educational and Psychological Testing. Washington, DC: American Educational Research Association. [Google Scholar]
- Ato, Manuel, Juan J. Lopez, and Ana Benavente. 2013. A Classification System for Research Designs in Psychology. Anales de Psicología 29: 1038–59. [Google Scholar] [CrossRef] [Green Version]
- Bar-On, Reuven. 1997. Bar-On Emotional Quotient Inventory: User’s Manual. Toronto: Multihealth Systems. [Google Scholar]
- Blasco-Belled, Ana, Radosław Rogoza, Cristina Torrelles-Nadal, and Carles Alsinet. 2020. Emotional Intelligence Structure and Its Relationship with Life Satisfaction and Happiness: New Findings from the Bifactor Model. Journal of Happiness Studies 21: 2031–49. [Google Scholar] [CrossRef]
- Boyatzis, Richard E. 2018. The Behavioral Level of Emotional Intelligence and Its Measurement. Frontiers in Psychology 9: 1438. [Google Scholar] [CrossRef]
- Brannick, Michael T., Monika M. Wahi, Melissa Arce, Hazel-Anne Johnson, Stanley Nazian, and Steven B. Goldin. 2009. Comparison of Trait and Ability Measures of Emotional Intelligence in Medical Students. Medical Education 43: 1062–68. [Google Scholar] [CrossRef]
- Bru-Luna, Lluna M., Manuel Martí-Vilar, César Merino-Soto, and José L. Cervera-Santiago. 2021. Emotional Intelligence Measures: A Systematic Review. Healthcare 9: 1696. [Google Scholar] [CrossRef]
- Carvalho, Vânia Sofia, Eloísa Guerrero, Maria José Chambel, and Pablo González-Ricob. 2016. Psychometric Properties of WLEIS as a Measure of Emotional Intelligence in the Portuguese and Spanish Medical Students. Evaluation and Program Planning 58: 152–59. [Google Scholar] [CrossRef]
- Cohen, Jacob. 1988. Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Hillsdale: Lawrence Erlbaum Associates. [Google Scholar]
- Dai, Shenghai, Xiaolin Wang, and Dubravka Svetina. 2021. TestDataImputation: Missing Item Responses Imputation for Test and Assessment Data. Available online: https://cran.r-project.org/package=TestDataImputation (accessed on 3 April 2022).
- Di, Meilin, Ning Jia, Qiuling Wang, Wenjing Yan, Kairong Yang, and Feng Kong. 2021. A Bifactor Model of the Wong and Law Emotional Intelligence Scale and Its Association with Subjective Well-Being. Journal of Positive Psychology 16: 561–72. [Google Scholar] [CrossRef]
- DiStefano, Christine, Jin Liu, Ning Jiang, and Dexin Shi. 2018. Examination of the Weighted Root Mean Square Residual: Evidence for Trustworthiness? Structural Equation Modeling: A Multidisciplinary Journal 25: 453–66. [Google Scholar] [CrossRef]
- Dominguez-Lara, Sergio, and Anthony Rodriguez. 2017. Statistical Indices from Bifactor Models. Interacciones 3: 59–65. [Google Scholar] [CrossRef] [Green Version]
- Dueber, David. 2021. BifactorIndicesCalculator: Bifactor Indices Calculator. Available online: https://cran.r-project.org/package=BifactorIndicesCalculator (accessed on 3 April 2022).
- Extremera Pacheco, Natalio, Lourdes Rey Peña, and Nicolás Sánchez Álvarez. 2019. Validation of the Spanish Version of the Wong Law Emotional Intelligence Scale (WLEIS-S). Psicothema 31: 94–100. [Google Scholar] [CrossRef]
- Flora, David B. 2020. Your Coefficient Alpha Is Probably Wrong, but Which Coefficient Omega Is Right? A Tutorial on Using R to Obtain Better Reliability Estimates. Advances in Methods and Practices in Psychological Science 3: 484–501. [Google Scholar] [CrossRef]
- Fornell, Claes, and David F. Larcker. 1981. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research 18: 39–50. [Google Scholar] [CrossRef]
- Ghahramani, Sulmaz, AliReza Torabi Jahromi, Danial Khoshsoroor, Reza Seifooripour, and Minoo Sepehrpoor. 2019. The Relationship between Emotional Intelligence and Happiness in Medical Students. Korean Journal of Medical Education 31: 29–38. [Google Scholar] [CrossRef] [Green Version]
- Ghoudani, Karima El, Manuel Pulido-Martos, and Esther Lopez-Zafra. 2018. Measuring Emotional Intelligence in Moroccan Arabic: The Wong and Law Emotional Intelligence Scale. Revista de Psicologia Social 33: 174–94. [Google Scholar] [CrossRef]
- González-Rivera, Juan Aníbal. 2021. Escala de Felicidad Subjetiva: Validación En Puerto Rico. Revista Caribeña de Psicología 5: e5753. [Google Scholar] [CrossRef]
- Henseler, Jörg, Christian M. Ringle, and Marko Sarstedt. 2015. A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. Journal of the Academy of Marketing Science 43: 115–35. [Google Scholar] [CrossRef] [Green Version]
- Henseler, Jörg. 2022. HTMT Online Calculator: Assessing the Discriminant Validity of Latent Variables by Means of the Heterotrait-Monotrait Ratio of Correlations (HTMT). Available online: http://www.henseler.com/htmt.html (accessed on 3 April 2022).
- Iliceto, Paolo, and Emanuele Fino. 2017. The Italian Version of the Wong-Law Emotional Intelligence Scale (WLEIS-I): A Second-Order Factor Analysis. Personality and Individual Differences 116: 274–80. [Google Scholar] [CrossRef]
- Issah, Mohammed. 2018. Change Leadership: The Role of Emotional Intelligence. SAGE Open 8: 1–6. [Google Scholar] [CrossRef] [Green Version]
- Jain, Priyanka, and Taranjeet Duggal. 2018. Transformational Leadership, Organizational Commitment, Emotional Intelligence and Job Autonomy. Management Research Review 41: 1033–46. [Google Scholar] [CrossRef]
- Jorgensen, Terrence D., Sunthud Pornprasertmanit, Alexander M. Schoemann, and Yves Rosseel. 2021. SemTools: Useful Tools for Structural Equation Modeling. Available online: https://cran.r-project.org/package=semTools (accessed on 3 April 2022).
- Kang, Hyun. 2013. The Prevention and Handling of the Missing Data. Korean J Anesthesiol 64: 402–6. [Google Scholar] [CrossRef] [PubMed]
- Keefer, Kateryna V., James D.A. Parker, and Donald H. Saklofske, eds. 2018. Three Decades of Emotional Intelligence Research: Perennial Issues, Emerging Trends, and Lessons Learned in Education: Introduction to Emotional Intelligence in Education. In Emotional Intelligence in Education: Integrating Research with Practice. Cham: Springer, pp. 1–19. [Google Scholar] [CrossRef]
- Keith, Timothy Z. 2019. Multiple Regression and Beyond: An Introduction to Multiple Regression and Structural Equation Modeling, 3rd ed. New York: Routledge. [Google Scholar] [CrossRef]
- Kelley, Ken. 2022. MBESS: The MBESS R Package. Available online: https://cran.r-project.org/package=MBESS (accessed on 3 April 2022).
- Kerlinger, Fred N., and Howard B. Lee. 2000. Foundations of Behavioral Research, 4th ed. Fort Worth: Harcourt College Publishers. [Google Scholar]
- Kircaburun, Kagan, Mark D. Griffiths, and Joël Billieux. 2019. Trait Emotional Intelligence and Problematic Online Behaviors among Adolescents: The Mediating Role of Mindfulness, Rumination, and Depression. Personality and Individual Differences 139: 208–13. [Google Scholar] [CrossRef]
- Klein, Olivier, and Marie Delacre. 2021. Routliers: Robust Outliers Detection. Available online: https://cran.r-project.org/package=Routliers (accessed on 3 April 2022).
- Kong, Feng. 2017. The Validity of the Wong and Law Emotional Intelligence Scale in a Chinese Sample: Tests of Measurement Invariance and Latent Mean Differences across Gender and Age. Personality and Individual Differences 116: 29–31. [Google Scholar] [CrossRef]
- Kotsou, Ilios, M. Mikolajczak, A. Heeren, J. Grégoire, and C. Leys. 2018. Improving Emotional Intelligence: A Systematic Review of Existing Work and Future Challenges. Emotion Review 11: 151–65. [Google Scholar] [CrossRef]
- LaPalme, Matthew L., Wei Wang, Dana L. Joseph, Donald H. Saklofske, and Gonggu Yan. 2016. Measurement Equivalence of the Wong and Law Emotional Intelligence Scale across Cultures: An Item Response Theory Approach. Personality and Individual Differences 90: 190–98. [Google Scholar] [CrossRef]
- Law, Kenneth S., Chi-Sum Wong, and Lynda J. Song. 2004. The Construct and Criterion Validity of Emotional Intelligence and Its Potential Utility for Management Studies. Journal of Applied Psychology 89: 483–96. [Google Scholar] [CrossRef]
- Leys, Christophe, Marie Delacre, Youri L. Mora, Daniel Lakens, and Christophe Ley. 2019. How to Classify, Detect, and Manage Univariate and Multivariate Outliers, with Emphasis on Pre-Registration. International Review of Social Psychology 32: 5. [Google Scholar] [CrossRef]
- Leys, Christophe, Olivier Klein, Yves Dominicy, and Christophe Leyc. 2018. Detecting Multivariate Outliers: Use a Robust Variant of the Mahalanobis Distance. Journal of Experimental Social Psychology 74: 150–56. [Google Scholar] [CrossRef]
- Lyubomirsky, Sonja, and Heidi S. Lepper. 1999. A Measure of Subjective Happiness: Preliminary Reliability and Construct Validation. Social Indicators Research 46: 137–55. [Google Scholar] [CrossRef]
- Malinauskas, Romualdas, and Vilija Malinauskiene. 2020. The Relationship between Emotional Intelligence and Psychological Well-Being among Male University Students: The Mediating Role of Perceived Social Support and Perceived Stress. International Journal of Environmental Research and Public Health 17: 1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, John D., David R. Caruso, and Peter Salovey. 2016. The Ability Model of Emotional Intelligence: Principles and Updates. Emotion Review 8: 290–300. [Google Scholar] [CrossRef]
- Mayer, John D., and Peter Salovey. 1993. The Intelligence of Emotional Intelligence. Intelligence 17: 433–42. [Google Scholar] [CrossRef]
- Mayer, John D., and Peter Salovey. 1997. What Is Emotional Intelligence? In Emotional Development and Emotional Intelligence: Educational Implications. Edited by Peter Salovey and David J. Sluyter. New York: Basic Books, pp. 3–34. [Google Scholar]
- McHorney, Colleen A., and Alvin R. Tarlov. 1995. Individual-Patient Monitoring in Clinical Practice: Are Available Health Status Surveys Adequate? Quality of Life Research 4: 293–307. [Google Scholar] [CrossRef]
- Merino-Soto, César, Marisol Angulo-Ramos, and Verónica López-Fernández. 2019. Escala de Inteligencia Emocional Wong-Law (WLEIS) En Estudiantes de Enfermería Peruanos. Educación Médica Superior 33: e1473. [Google Scholar]
- Merino-Soto, César, Manuel Martí-Vilar, and Lucas Serrano-Pastor. 2021. Careless Responses and Construct Validity of Wong-Law Emotional Intelligence Scale. PsyCh Journal 10: 944–46. [Google Scholar] [CrossRef]
- Merino, César, Manuel Lunahuaná-Rosales, and Rabindra Kumar Pradhan. 2016. Validación Estructural Del Wong-Law Emotional Intelligence Scale (WLEIS): Estudio Preliminar En Adultos. Liberabit 22: 103–10. [Google Scholar] [CrossRef] [Green Version]
- Miao, Chao, Ronald H. Humphrey, and Shanshan Qian. 2018. A Cross-Cultural Meta-Analysis of How Leader Emotional Intelligence Influences Subordinate Task Performance and Organizational Citizenship Behavior. Journal of World Business 53: 463–74. [Google Scholar] [CrossRef] [Green Version]
- Moral, José. 2019. Revisión de Los Criterios Para Validez Convergente Estimada a Través de La Varianza Media Extraída. Psychologia 13: 25–41. [Google Scholar] [CrossRef]
- Nunnally, Jum C., and Ira H. Bernstein. 1994. Psychometric Theory, 3rd ed. New York: McGraw-Hill. [Google Scholar]
- O’Connor, Peter J., Andrew Hill, Maria Kaya, and Brett Martin. 2019. The Measurement of Emotional Intelligence: A Critical Review of the Literature and Recommendations for Researchers and Practitioners. Frontiers in Psychology 10: 1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, María Victoria, Karen Mariel Gancedo, and Cecilia Reyna. 2013. Propiedades Psicométricas de La Escala de Felicidad Subjetiva En Jóvenes y Adultos de La Ciudad de Córdoba—Argentina. Suma Psicológica 20: 45–56. [Google Scholar]
- Park, Hye-Ja, and Soyoung Yu. 2021. Validity and Reliability of the Korean Version of the Wong and Law Emotional Intelligence Scale for Nurses. SAGE Open 11: 21582440211023202. [Google Scholar] [CrossRef]
- Pérez-Fuentes, María del Carmen, María del Mar Molero Jurado, Ana Belén Barragán Martín, and José Jesús Gázquez Linares. 2019. Family Functioning, Emotional Intelligence, and Values: Analysis of the Relationship with Aggressive Behavior in Adolescents. International Journal of Environmental Research and Public Health 16: 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, Juan Carlos, Konstantinos V. Petrides, and Adrian Furnham. 2005. Measuring Trait Emotional Intelligence. In Emotional Intelligence: An International Handbook. Edited by Ralf Schulze and Richard D. Roberts. Ashland: Hogrefe & Huber Publishers, pp. 181–201. [Google Scholar]
- Quezada, Lucía, René Landero, and Mónica T. González. 2016. A Validity and Reliability Study of the Subjective Happiness Scale in Mexico. The Journal of Happiness and Well-Being 4: 90–100. [Google Scholar]
- R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing, Available online: https://www.r-project.org (accessed on 3 April 2022).
- Revelle, William. 2022. Psych: Procedures for Psychological, Psychometric, and Personality Research. Evanston: Northwestern University, Available online: https://cran.r-project.org/package=psych (accessed on 3 April 2022).
- Rodriguez, Anthony, Steven P. Reise, and Mark G. Haviland. 2016. Evaluating Bifactor Models: Calculating and Interpreting Statistical Indices. Psychological Methods 21: 137–50. [Google Scholar] [CrossRef] [PubMed]
- Roemer, Ellen, Florian Schuberth, and Jörg Henseler. 2021. HTMT2–an Improved Criterion for Assessing Discriminant Validity in Structural Equation Modeling. Industrial Management & Data Systems 121: 2637–50. [Google Scholar] [CrossRef]
- Rosseel, Yves. 2012. Lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software 48: 1–36. [Google Scholar] [CrossRef] [Green Version]
- RStudio Team. 2022. RStudio: Integrated Development Environment for R; Boston: RStudio, PBC. Available online: http://www.rstudio.com/ (accessed on 3 April 2022).
- Rutkowski, Leslie, and Dubravka Svetina. 2017. Measurement Invariance in International Surveys: Categorical Indicators and Fit Measure Performance. Applied Measurement in Education 30: 39–51. [Google Scholar] [CrossRef]
- Salovey, Peter, and John D. Mayer. 1990. Emotional Intelligence. Imagination, Cognition and Personality 9: 185–211. [Google Scholar] [CrossRef]
- Schmeiser, Cynthia B., and Catherine J. Welch. 2006. Test Development. In Educational Measurement, 4th ed. Edited by Robert L. Brennan. Westport: Praeger Publishers, pp. 307–53. [Google Scholar]
- Schumacker, Randall E., and Richard G. Lomax. 2016. A Beginner’s Guide to Structural Equation Modeling, 4th ed. New York: Routledge. [Google Scholar]
- Sochos, Antigonos, Murari Prasad Regmi, and Dess Mardan Basnet. 2021. Investigating the Validity of the Wong and Law Emotional Intelligence Scale in a Nepali Student Sample. Asian Journal of Social Psychology 24: 573–80. [Google Scholar] [CrossRef]
- Soper, Daniel. 2022. A-Priori Sample Size Calculator for Structural Equation Models. Available online: https://www.danielsoper.com/statcalc/calculator.aspx?id=89 (accessed on 3 April 2022).
- Tabachnick, Barbara G., and Linda S. Fidell. 2019. Using Multivariate Statistics, 7th ed. New York: Pearson. [Google Scholar]
- Tierney, Nicholas, Di Cook, Miles McBain, and Colin Fay. 2021. Naniar: Data Structures, Summaries, and Visualisations for Missing Data. Available online: https://cran.r-project.org/package=naniar (accessed on 3 April 2022).
- Ventura-León, Jose, and Brian Norman Peña-Calero. 2021. The World Should Not Revolve around Cronbach’s Alpha ≥ 0.70. Adicciones 33: 369–72. [Google Scholar] [CrossRef] [PubMed]
- Vera-Villarroel, Pablo, Karem Celis-Atenas, and Natalia Córdova-Rubio. 2011. Evaluación de La Felicidad: Análisis Psicométrico de La Escala de Felicidad Subjetiva En Población Chilena. Terapia Psicológica 29: 127–33. [Google Scholar] [CrossRef] [Green Version]
- Viladrich, Carme, Ariadna Angulo-Brunet, and Eduardo Doval. 2017. A Journey around Alpha and Omega to Estimate Internal Consistency Reliability. Anales de Psicologia 33: 755–82. [Google Scholar] [CrossRef] [Green Version]
- Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan, Romain François, Garret Grolemund, Alex Hayes, Lionel Henry, Jim Hester, and et al. 2019. Welcome to the Tidyverse. Journal of Open Source Software 4: 1686. [Google Scholar] [CrossRef]
- Willse, John T. 2018. CTT: Classical Test Theory Functions. Available online: https://cran.r-project.org/package=CTT (accessed on 3 April 2022).
- Wong, Chi-Sum, and Kenneth S. Law. 2002. The Effects of Leader and Follower Emotional Intelligence on Performance and Attitude: An Exploratory Study. Leadership Quarterly 13: 243–74. [Google Scholar] [CrossRef] [Green Version]
- Zickar, Michael J. 2020. Measurement Development and Evaluation. Annual Review of Organizational Psychology and Organizational Behavior 7: 213–32. [Google Scholar] [CrossRef] [Green Version]
Variable | Category | n | % |
---|---|---|---|
Age | 20 years or less | 1 | 0.21 |
21 to 25 years | 42 | 8.68 | |
26 to 35 years | 255 | 52.69 | |
36 to 45 years | 133 | 27.48 | |
46 to 60 years | 51 | 10.54 | |
61 years or more | 2 | 0.41 | |
Sex | Female | 247 | 51.03 |
Male | 237 | 48.97 | |
Educational level | High school complete | 3 | 0.62 |
University incomplete | 16 | 3.31 | |
University complete | 232 | 48.03 | |
Postgraduate | 232 | 48.03 | |
Time in current position | 2 years or less | 178 | 36.93 |
2 to 5 years | 179 | 37.14 | |
5 to 10 years | 81 | 16.80 | |
10 years or more | 44 | 9.13 | |
Employees under charge | No employees | 174 | 36.10 |
1 to 2 employees | 81 | 16.80 | |
3 to 10 employees | 125 | 25.93 | |
11 to 20 employees | 37 | 7.68 | |
20 employees to more | 65 | 13.49 | |
years of work experience | No work experience | 101 | 20.87 |
1 to 3 years | 164 | 33.88 | |
4 to 7 years | 111 | 22.93 | |
8 years or more | 108 | 22.31 | |
Economic sector | Trade | 31 | 6.43 |
Communications | 33 | 6.85 | |
Construction | 16 | 3.32 | |
Finance | 64 | 13.28 | |
Industrial | 33 | 6.85 | |
ICT | 300 | 62.24 | |
Transportation | 5 | 1.04 |
Item | Mean | Standard Deviation | Skew | Kurtosis | Item–Rest (Global) | Item–Rest (Factor) | Floor (%) | Ceiling (%) |
---|---|---|---|---|---|---|---|---|
SEA_1 | 5.60 | 1.18 | −1.02 | 1.07 | 0.461 | 0.522 | 0.20 | 22.29 |
SEA_2 | 5.62 | 1.08 | −0.88 | 0.81 | 0.581 | 0.632 | 0.00 | 20.25 |
SEA_3 | 5.56 | 1.13 | −0.86 | 0.77 | 0.552 | 0.635 | 0.20 | 19.84 |
SEA_4 | 5.56 | 1.33 | −0.90 | 0.38 | 0.292 | 0.221 | 0.61 | 27.81 |
OEA_1 | 5.23 | 1.13 | −0.57 | 0.25 | 0.366 | 0.548 | 0.20 | 11.45 |
OEA_2 | 5.49 | 1.20 | −0.89 | 0.69 | 0.406 | 0.707 | 0.41 | 19.84 |
OEA_3 | 5.49 | 1.27 | −0.91 | 0.59 | 0.261 | 0.510 | 0.61 | 22.29 |
OEA_4 | 5.36 | 1.06 | −0.62 | 0.65 | 0.464 | 0.681 | 0.20 | 12.47 |
UOE_1 | 5.92 | 1.06 | −1.04 | 1.09 | 0.376 | 0.558 | 0.20 | 34.97 |
UOE_2 | 5.92 | 1.18 | −1.41 | 1.93 | 0.432 | 0.745 | 0.20 | 36.20 |
UOE_3 | 5.92 | 1.08 | −1.26 | 1.94 | 0.533 | 0.825 | 0.20 | 33.33 |
UOE_4 | 6.06 | 1.03 | −1.27 | 1.71 | 0.527 | 0.809 | 0.00 | 40.08 |
ROE_1 | 5.13 | 1.30 | −0.67 | 0.16 | 0.589 | 0.828 | 0.82 | 13.29 |
ROE_2 | 5.18 | 1.24 | −0.65 | 0.13 | 0.586 | 0.844 | 0.20 | 12.47 |
ROE_3 | 5.00 | 1.47 | −0.67 | −0.15 | 0.493 | 0.704 | 1.84 | 14.72 |
ROE_4 | 5.16 | 1.22 | −0.60 | 0.22 | 0.638 | 0.872 | 0.41 | 12.68 |
Model | SSχ2 | df | SSχ2/df | RMSEA [90% CI] | CFI | TLI | SRMR | WRMR |
---|---|---|---|---|---|---|---|---|
Oblique | 300.050 | 98 | 3.062 | 0.065 [0.057; 0.073] | 0.982 | 0.978 | 0.047 | 1.021 |
Higher-order | 260.479 | 100 | 2.605 | 0.057 [0.049; 0.066] | 0.986 | 0.983 | 0.049 | 1.047 |
Unifactorial | 3091.281 | 104 | 29.724 | 0.243 [0.235; 0.250] | 0.731 | 0.689 | 0.182 | 4.306 |
Bifactor | 221.795 | 88 | 2.520 | 0.056 [0.047; 0.065] | 0.988 | 0.984 | 0.043 | 0.925 |
Orthogonal | 1365.138 | 104 | 13.126 | 0.158 [0.150; 0.165] | 0.886 | 0.869 | 0.182 | 3.571 |
Variable | ωcat | Mean ri-i | AVE | SH | Discriminant Validity Evidence | ||||
---|---|---|---|---|---|---|---|---|---|
SEA | OEA | UOE | ROE | SH | |||||
SEA | 0.755 | 0.401 | 0.473 | 0.357 | 0.688 a | 0.421 | 0.592 | 0.473 | 0.473 |
OEA | 0.801 | 0.509 | 0.537 | 0.007 | 0.368 | 0.733 a | 0.193 | 0.333 | — |
UOE | 0.838 | 0.617 | 0.640 | 0.369 | 0.438 | 0.094 | 0.800 a | 0.250 | 0.414 |
ROE | 0.914 | 0.746 | 0.764 | 0.362 | 0.440 | 0.217 | 0.157 | 0.874 a | 0.416 |
SH | 0.763 | 0.572 | 0.594 | — | 0.357 | 0.007 | 0.369 | 0.362 | 0.771 a |
EI | 0.628 | 0.273 | — | 0.552 | — | — | — | — | — |
Item | SEA_1 | SEA_2 | SEA_3 | SEA_4 | OEA_1 | OEA_2 | OEA_3 | OEA_4 | UOE_1 | UOE_2 | UOE_3 | UOE_4 | ROE_1 | ROE_2 | ROE_3 | ROE_4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SEA_1 | — | |||||||||||||||
SEA_2 | 0.58 | — | ||||||||||||||
SEA_3 | 0.54 | 0.65 | — | |||||||||||||
SEA_4 | 0.15 | 0.21 | 0.28 | — | ||||||||||||
OEA_1 | 0.14 | 0.23 | 0.24 | 0.24 | — | |||||||||||
OEA_2 | 0.20 | 0.25 | 0.25 | 0.21 | 0.68 | — | ||||||||||
OEA_3 | 0.12 | 0.14 | 0.22 | 0.17 | 0.30 | 0.43 | — | |||||||||
OEA_4 | 0.16 | 0.25 | 0.35 | 0.18 | 0.46 | 0.60 | 0.58 | — | ||||||||
UOE_1 | 0.25 | 0.20 | 0.18 | 0.17 | 0.13 | 0.16 | 0.08 | 0.17 | — | |||||||
UOE_2 | 0.23 | 0.24 | 0.28 | 0.24 | 0.11 | 0.08 | -0.01 | 0.12 | 0.51 | — | ||||||
UOE_3 | 0.32 | 0.31 | 0.32 | 0.25 | 0.09 | 0.14 | 0.05 | 0.18 | 0.52 | 0.69 | — | |||||
UOE_4 | 0.32 | 0.34 | 0.28 | 0.28 | 0.10 | 0.15 | 0.02 | 0.15 | 0.50 | 0.68 | 0.81 | — | ||||
ROE_1 | 0.23 | 0.36 | 0.30 | 0.14 | 0.19 | 0.15 | 0.13 | 0.22 | 0.10 | 0.21 | 0.22 | 0.21 | — | |||
ROE_2 | 0.23 | 0.41 | 0.27 | 0.10 | 0.15 | 0.15 | 0.12 | 0.22 | 0.14 | 0.21 | 0.21 | 0.21 | 0.85 | — | ||
ROE_3 | 0.21 | 0.32 | 0.21 | 0.09 | 0.11 | 0.09 | 0.11 | 0.18 | 0.12 | 0.19 | 0.26 | 0.23 | 0.64 | 0.63 | — | |
ROE_4 | 0.28 | 0.40 | 0.33 | 0.16 | 0.16 | 0.19 | 0.09 | 0.25 | 0.20 | 0.23 | 0.29 | 0.25 | 0.78 | 0.82 | 0.75 | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta-Prado, J.C.; Zárate-Torres, R.A.; Tafur-Mendoza, A.A. Psychometric Properties of the Wong and Law Emotional Intelligence Scale in a Colombian Manager Sample. J. Intell. 2022, 10, 29. https://doi.org/10.3390/jintelligence10020029
Acosta-Prado JC, Zárate-Torres RA, Tafur-Mendoza AA. Psychometric Properties of the Wong and Law Emotional Intelligence Scale in a Colombian Manager Sample. Journal of Intelligence. 2022; 10(2):29. https://doi.org/10.3390/jintelligence10020029
Chicago/Turabian StyleAcosta-Prado, Julio César, Rodrigo Arturo Zárate-Torres, and Arnold Alejandro Tafur-Mendoza. 2022. "Psychometric Properties of the Wong and Law Emotional Intelligence Scale in a Colombian Manager Sample" Journal of Intelligence 10, no. 2: 29. https://doi.org/10.3390/jintelligence10020029
APA StyleAcosta-Prado, J. C., Zárate-Torres, R. A., & Tafur-Mendoza, A. A. (2022). Psychometric Properties of the Wong and Law Emotional Intelligence Scale in a Colombian Manager Sample. Journal of Intelligence, 10(2), 29. https://doi.org/10.3390/jintelligence10020029