Density Functional Theory of Highly Excited States of Coulomb Systems
Abstract
:1. Introduction
2. DFT for Coulombic Excited States
3. Orbital-Dependent Exchange-Correlation Functional
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. J. Arch. 1964, 136, B864. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. J. Arch. 1965, 140, A1133. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Levy, M. Extrema of the density functional for the energy: Excited states from the ground-state theory. Phys. Rev. B 1985, 31, 6264–6272. [Google Scholar] [CrossRef] [PubMed]
- Theophilou, A.K. The energy density functional formalism for excited states. J. Phys. C Solid State Phys. 1979, 12, 5419–5430. [Google Scholar] [CrossRef]
- Gross, E.K.U.; Oliveira, L.N.; Kohn, W. Rayleigh-Ritz variational principle for ensembles of fractionally occupied states. Phys. Rev. A 1988, 37, 2805–2808. [Google Scholar] [CrossRef]
- Gross, E.K.U.; Oliveira, L.N.; Kohn, W. Density-functional theory for ensembles of fractionally occupied states. I. Basic formalism. Phys. Rev. A 1988, 37, 2809–2820. [Google Scholar] [CrossRef]
- Oliveira, L.N.; Gross, E.K.U.; Kohn, W. Density-functional theory for ensembles of fractionally occupied states. II. Application to the He atom. Phys. Rev. A 1988, 37, 2821–2833. [Google Scholar] [CrossRef] [PubMed]
- Nagy, Á. Parameter-free exchange potential for excitation in the density-functional theory: Application to excitation energies within the fractional-occupation approach. Phys. Rev. A 1990, 42, 4388–4390. [Google Scholar] [CrossRef]
- Nagy, Á. Excitation energies calculated with parameter-free exchange potential in the density functional theory. J. Phys. B 1991, 24, 4691–4694. [Google Scholar] [CrossRef]
- Nagy, Á. Relativistic density-functional theory for ensembles of excited states. Phys. Rev. A 1994, 49, 3074–3076. [Google Scholar] [CrossRef] [PubMed]
- Nagy, Á. Density functional theory for excited states. Adv. Quant. Chem. 1998, 29, 159–178. [Google Scholar] [CrossRef]
- Nagy, Á.; Andrejkovics, I. Excitation energies in the local density functional theory. J. Phys. B 1994, 27, 233–240. [Google Scholar] [CrossRef]
- Andrejkovics, I.; Nagy, Á. Excitation energies in density functional theory: Comparison of several methods for the H2O, N2, CO and C2H4 molecules. Chem. Phys. Lett. 1998, 296, 489–493. [Google Scholar] [CrossRef]
- Nagy, Á. Coordinate scaling and adiabatic connection formula for ensembles of fractionally occupied excited states. Int. J. Quantum Chem. 1995, 56, 225–228. [Google Scholar] [CrossRef]
- Nagy, Á. Local ensemble exchange potential. J. Phys. B 1996, 29, 389–394. [Google Scholar] [CrossRef]
- Nagy, Á.; Howard, I.A.; March, N.H.; Jánosfalvi, Z.S. Subspace density of the first excited state for two harmonically interacting electrons with isotropic harmonic. confinement. Phys. Lett. A 2005, 335, 347–350. [Google Scholar] [CrossRef]
- Nagy, Á. Hardness and excitation energy. J. Chem. Sci. 2005, 117, 437–440. [Google Scholar] [CrossRef]
- Nagy, Á. Optimized potential method for ensembles of excited states. Int. J. Quantum Chem. 1998, 69, 247–254. [Google Scholar] [CrossRef]
- Gidopoulos, N.I.; Papaconstantinou, P.G.; Gross, E.K. Spurious Interactions, and Their Correction, in the Ensemble-Kohn-Sham Scheme for Excited States. Phys. Rev. Lett. 2001, 88, 033003. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Á. An alternative optimized potential method for ensembles of excited states. J. Phys. B 2001, 34, 2363–2370. [Google Scholar] [CrossRef]
- Tasnádi, F.; Nagy, Á. Study of Subspace Density-Functional Theory. Application of LSDA to Excited States of Atoms. Int. J. Quantum Chem. 2003, 92, 234–238. [Google Scholar] [CrossRef]
- Tasnádi, F.; Nagy, Á. Ghost and self-interaction free ensemble calculations for atoms with local exchange-correlation potential. J. Phys. B 2003, 36, 4073–4075. [Google Scholar] [CrossRef]
- Tasnádi, F.; Nagy, Á. An approximation to the ensemble Kohn-Sham exchange potential for excited states of atoms. J. Chem. Phys. 2003, 119, 4141–4147. [Google Scholar] [CrossRef]
- Yang, Z.H.; Trail, J.R.; Pribram-Jones, A.; Burke, K.; Needs, R.J.; Ullrich, C.A. Exact and approximate Kohn-Sham potentials in ensemble density-functional theory. Phys. Rev. A 2014, 90, 042501. [Google Scholar] [CrossRef] [Green Version]
- Pribram-Jones, A.; Yang, Z.H.; Trail, J.R.; Burke, K.; Needs, R.J.; Ullrich, C.A. Excitations and benchmark ensemble density functional theory for two electrons. J. Chem. Phys. 2014, 140, 18A541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastorczak, E.; Pernal, K. Ensemble density variational methods with self- and ghost-interaction-corrected functionals. J. Chem. Phys. 2014, 140, 18A514. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Á. Excited states in density functional theory. Int. J. Quantum Chem. 1998, 70, 681–691. [Google Scholar] [CrossRef]
- Nagy, Á. Electron Correlations and Materials Properties; Gonis, A., Kioussis, N., Ciftan, M., Eds.; Kluwer: New York, NY, USA, 1999; pp. 451–462. [Google Scholar]
- Nagy, Á. Theories for excited states. Adv. Quant. Chem. 2003, 42, 363–381. [Google Scholar] [CrossRef]
- Levy, M.; Nagy, Á. Variational Density-Functional Theory for an Individual Excited State. Phys. Rev. Lett. 1999, 83, 4361–4364. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Á.; Levy, M. Variational density-functional theory for degenerate excited states. Phys. Rev. A 2001, 63, 052502. [Google Scholar] [CrossRef]
- Samal, P.; Harbola, M.K.; Holas, A. Density-to-potential map in time-independent excited-state density-functional theory. Chem. Phys. Lett. 2006, 419, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Harbola, M.K.; Samal, P. Time-independent excited-state density functional theory: Study of 1s22p3(4S) and 1s22p3(2D) states of the boron isoelectronic series up to Ne5+. J. Phys. B 2009, 42, 015003. [Google Scholar] [CrossRef]
- Görling, A. Density-functional theory beyond the Hohenberg-Kohn theorem. Phys. Rev. A 1999, 59, 3359–3374. [Google Scholar] [CrossRef]
- Görling, A. Proper Treatment of Symmetries and Excited States in a Computationally Tractable Kohn-Sham Method. Phys. Rev. Lett. 2000, 85, 4229–4232. [Google Scholar] [CrossRef] [PubMed]
- Sahni, V.; Massa, L.; Singh, R.; Slamet, M. Quantal Density Functional Theory of Excited States. Phys. Rev. Lett. 2001, 87, 113002. [Google Scholar] [CrossRef] [Green Version]
- Petersilka, M.; Gossmann, U.J.; Gross, E.K.U. Excitation Energies from Time-Dependent Density-Functional Theory. Phys. Rev. Lett. 1996, 76, 1212–1215. [Google Scholar] [CrossRef] [Green Version]
- Casida, M.E. Time-dependent density-functional theory for molecules and molecular solids. J. Mol. Struct. Theochem 2009, 914, 3–18. [Google Scholar] [CrossRef]
- Appel, H.; Gross, E.K.U.; Burke, K. Excitation Energies from Time-Dependent Density-Functional Theory. Phys. Rev. Lett. 2010, 90, 043005. [Google Scholar] [CrossRef]
- Ayers, P.W.; Levy, M.; Nagy, Á. Time-independent density-functional theory for excited states of Coulomb systems. Phys. Rev. A 2012, 85, 042518. [Google Scholar] [CrossRef] [Green Version]
- Ayers, P.W.; Levy, M.; Nagy, Á. Kohn-Sham theory for excited states of Coulomb systems. J. Chem. Phys. 2015, 143, 191101. [Google Scholar] [CrossRef]
- Ayers, P.W.; Levy, M.; Nagy, Á. Time-independent density functional theory for degenerate excited states of Coulomb systems. Theor. Chim. Account. 2018, 137, 152. [Google Scholar] [CrossRef]
- Nagy, Á. Coordinate Scaling in Time-independent Excited-state Density Functional Theory for Coulomb Systems. Computation 2019, 7, 59. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Á. Theories, Principles and Approaches. In Chemical Reactivity; von Szentpaly, L., Kaya, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; in press. [Google Scholar]
- Sharp, R.T.; Horton, G.K. A Variational Approach to the Unipotential Many-Electron Problem. Phys. Rev. 1953, 90, 317. [Google Scholar] [CrossRef]
- Talman, J.D.; Shadwick, W.F. Optimized effective atomic central potential. Phys. Rev. A 1976, 14, 36–40. [Google Scholar] [CrossRef]
- Della-Sala, F.; Görling, A. Efficient localized Hartree—Fock methods as effective exact-exchange Kohn—Sham methods for molecules. J. Chem. Phys. 2001, 115, 5718–5732. [Google Scholar] [CrossRef]
- Gritsenko, O.; Baerends, E.J. Exchange kernel of density functional response theory from the common energy denominator approximation (CEDA) for the Kohn—Sham Green’s function. Res. Chem. Intermed. 2004, 30, 87–98. [Google Scholar] [CrossRef]
- Staroverov, V.N.; Scuseria, G.E.; Davidson, E.R. Effective local potentials for orbital-dependent density functionals. J. Chem. Phys. 2006, 125, 081104. [Google Scholar] [CrossRef]
- Krieger, J.B.; Li, Y.; Iafrate, G.J. Derivation and application of an accurate Kohn-Sham potential with integer discontinuity. Phys. Lett. A 1990, 146, 256–260. [Google Scholar] [CrossRef]
- Krieger, J.B.; Li, Y.; Iafrate, G.J. Construction and application of an accurate local spin-polarized Kohn-Sham potential with integer discontinuity: Exchange-only theory. Phys. Rev. A 1992, 45, 101–126. [Google Scholar] [CrossRef] [PubMed]
- Krieger, J.B.; Li, Y.; Iafrate, G.J. Systematic approximations to the optimized effective potential: Application to orbital-density-functional theory. Phys. Rev. A 1992, 46, 5453–5458. [Google Scholar] [CrossRef] [PubMed]
- Nagy, Á. Alternative derivation of the Krieger-Li-Iafrate approximation to the optimized-effective-potential method. Phys. Rev. A 1997, 55, 3465–3468. [Google Scholar] [CrossRef]
- Wigner, E. Effects of the electron interaction on the energy levels of electrons in metals. Trans. Faraday Soc. 1938, 34, 678–685. [Google Scholar] [CrossRef]
- Kato, T. On the eigenfunctions of many particle systems in quantum mechanics. Commun. Pure Appl. Math. 1957, 10, 151–177. [Google Scholar] [CrossRef]
- Steiner, E. Charge Densities in Atoms. J. Chem. Phys. 1963, 39, 2365–2366. [Google Scholar] [CrossRef]
- March, N.H. Self-Consistent Fields in Atoms; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Nagy, Á.; Sen, K.D. Exact results on the curvature of the electron density at the cusp in certain highly excited states of atoms. Chem. Phys. Lett. 2000, 332, 154–158. [Google Scholar] [CrossRef]
- Ayers, P.W. Density per particle as a descriptor of Coulombic systems. Proc. Natl. Acad. Sci. USA 2000, 97, 1959–1964. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Á.; Sen, K.D. Higher-order cusp of the density in certain highly excited states of atoms and molecules. J. Phys. B 2000, 33, 1745–1752. [Google Scholar] [CrossRef]
- Nagy, Á.; Sen, K.D. Ground- and excited-state cusp conditions for the electron density. J. Chem. Phys. 2001, 115, 6300–6308. [Google Scholar] [CrossRef]
- Süle, P.; Nagy, Á. Comparative test of local and nonlocal Wigner-like correlation energy functionals. Acta Phys. Chem. Debr. 1994, 29, 31. [Google Scholar]
- Zhou, Z.; Chu, S. Spin-dependent localized Hartree-Fock density-functional calculation of singly, doubly, and triply excited and Rydberg states of He- and Li-like ions. Phys. Rev. A 2005, 71, 022513. [Google Scholar] [CrossRef] [Green Version]
- Glushkov, V.N.; Levy, M. Highly Excited States from a Time Independent Density Functional Method. Computation 2016, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Glushkov, V.N. Orthogonality of determinant functions in the Hartree-Fock method for highly excited electronic states. Opt. Spectrosc. 2015, 119, 1–5. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, A.K.; Chu, S.I. Density-functional calculations on singly and doubly excited Rydberg states of many-electron atoms. Phys. Rev. A 2002, 65, 052508. [Google Scholar] [CrossRef] [Green Version]
- Harbola, M.K.; Sahni, V. Quantum-Mechanical Interpretation of the Exchange-Correlation Potential of Kohn-Sham Density-Functional Theory. Phys. Rev. Lett. 1989, 62, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Sahni, V.; Li, Y.; Harbola, M.K. Atomic structure in the Pauli-correlated approximation. Phys. Rev. A 1992, 45, 1434–1448. [Google Scholar] [CrossRef]
- Puchalski, M.; Kedziera, D.; Pachucki, K. Ionization potential for excited S states of the lithium atom. Phys. Rev. A 2010, 82, 062509. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (ver. 5.8); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020. Available online: https://physics.nist.gov/asd (accessed on 8 May 2021). [CrossRef]
- Orestes, E.; da Silva, A.B.F.; Capelle, K. Excitation energies from ground-state density-functionals by means of generator coordinates. Phys. Chem. Chem. Phys. 2009, 11, 4564–4569. [Google Scholar] [CrossRef]
- Staroverov, V.N.; Glushkov, V.N. Effective local potentials for excited states. J. Chem. Phys. 2010, 133, 244104. [Google Scholar] [CrossRef]
- Tatewaki, H.; Koga, T.; Sakai, Y.; Thakkar, A.J. Numerical Hartree-Fock energies of low-lying excited states of neutral atoms with Z≤18. J. Chem. Phys. 1994, 101, 4945–4948. [Google Scholar] [CrossRef]
- Casida, M.E. Generalization of the Optimized Effective Potential Model to Include Electron Correlation: A Variational Derivation of the Sham–Schluter Equation for the Exact Exchange-Correlation Potential. Phys. Rev. A 1995, 51, 2005–2013. [Google Scholar] [CrossRef]
- Grabowski, I.; Hirata, S.; Ivanov, S.; Bartlett, R.J. Ab initio density functional theory: OEP-MBPT(2). A new orbital-dependent correlation functional. J. Chem. Phys. 2002, 116, 4415–4425. [Google Scholar] [CrossRef]
- Nagy, Á. Relative information in excited state orbital free density functional theory. Int. J. Quantum Chem. 2020, 120, e26405. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Berkowitz, M.; Parr, R.G. Transcription of ground-state density-functional theory into a local thermodynamics. Proc. Natl. Acad. Sci. USA 1984, 81, 8028–8031. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Á. Excited-state Density Functional Theory of Coulomb systems. J. Chem. Phys. 2020, 153, 154103. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.B. Information-Theoretic Approach in Density Functional Reactivity Theory. Acta Phys. Chim. Sin. 2016, 32, 98–118. [Google Scholar] [CrossRef]
- Rong, C.; Wang, B.; Zhao, D.; Liu, S.B. Information theoretic approach in density functional theory and its recent applications to chemical problems. WIREs Comput. Mol. Sci. 2019, 10, e1461. [Google Scholar] [CrossRef]
- Geerlings, P.; Chamorro, E.; Chattaraj, P.K.; De Proft, F.; Gázquez, J.L.; Liu, S.B.; Morell, C.; Toro-Labbé, A.; Vela, A.; Ayers, P.W. Conceptual density functional theory: Status, prospects, issues. Theor. Chem. Acc. 2020, 139, 36. [Google Scholar] [CrossRef]
State | KLI | KLILW | SLHF | SLHFc | WFLYP | xCOEP | HF | Exact |
---|---|---|---|---|---|---|---|---|
−14.8643 | −14.9960 | −14.8650 | −14.9744 | −14.8634 | −14.8655 | −14.9561 | ||
−14.6198 | −14.7450 | −14.6201 | −14.7191 | −14.7155 | −14.6146 | −14.6204 | −14.7082 | |
−14.5494 | −14.6726 | −14.5496 | −14.6463 | −14.6396 | −14.5463 | −14.5498 | −14.6371 | |
−14.5197 | −14.6421 | −14.5198 | −14.6157 | −14.6093 | −14.5145 | −14.5200 | −14.6071 | |
−14.5045 | −14.6264 | −14.5045 | −14.6000 | −14.4984 | −14.5046 | −14.5917 | ||
−14.4956 | −14.6173 | −14.4957 | −14.5909 | −14.4857 | −14.4957 | −14.5828 |
State | KLI | KLILW | SLHF | SLHFc | xCOEP | HF | TDDFT | Exact | Exp |
---|---|---|---|---|---|---|---|---|---|
0.2445 | 0.2510 | 0.2449 | 0.2553 | 0.2488 | 0.2450 | 0.2280 | 0.2479 | 0.2479 | |
0.3149 | 0.3234 | 0.3154 | 0.3281 | 0.3172 | 0.3157 | 0.3191 | 0.3191 | ||
0.3446 | 0.3539 | 0.3452 | 0.3587 | 0.3489 | 0.3455 | 0.3490 | 0.3490 | ||
0.3598 | 0.3696 | 0.3605 | 0.3744 | 0.3651 | 0.3608 | 0.3644 | 0.3644 | ||
0.3686 | 0.3787 | 0.3693 | 0.3835 | 0.3778 | 0.3697 | 0.3733 | 0.3733 |
State | KLI | KLILW | ELP | HF | NHF | Exact |
---|---|---|---|---|---|---|
−323.7106 | −324.5443 | −323.7116 | −323.7174 | −323.7178 | −324.5092 | |
−323.4879 | −324.3153 | −323.4894 | −323.4938 | |||
−323.4224 | −324.2479 | −323.4232 | −323.4376 | |||
−323.3944 | −324.2190 | |||||
−323.3798 | −324.2040 |
State | KLI | KLILW | ELP | HF | Exp |
---|---|---|---|---|---|
0.2228 | 0.2290 | 0.2222 | 0.2236 | 0.2346 | |
0.2883 | 0.2964 | 0.2884 | 0.2898 | 0.3025 | |
0.3163 | 0.3254 | 0.3315 | |||
0.3308 | 0.3403 | 0.3464 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, Á. Density Functional Theory of Highly Excited States of Coulomb Systems. Computation 2021, 9, 73. https://doi.org/10.3390/computation9060073
Nagy Á. Density Functional Theory of Highly Excited States of Coulomb Systems. Computation. 2021; 9(6):73. https://doi.org/10.3390/computation9060073
Chicago/Turabian StyleNagy, Ágnes. 2021. "Density Functional Theory of Highly Excited States of Coulomb Systems" Computation 9, no. 6: 73. https://doi.org/10.3390/computation9060073
APA StyleNagy, Á. (2021). Density Functional Theory of Highly Excited States of Coulomb Systems. Computation, 9(6), 73. https://doi.org/10.3390/computation9060073