Darcy Brinkman Equations for Hybrid Dusty Nanofluid Flow with Heat Transfer and Mass Transpiration
Abstract
:1. Introduction
2. Physical Model and Solution
2.1. Fluid Phase
2.2. Dust Phase
2.3. Fluid Phase
2.4. Dust Phase
3. Fluid and Dust Phase Flow Fields
4. Results and Discussion
5. Conclusions
- Darcy–Brinkman ratio and radiation were taken into account and were solved by analytical method.
- The velocity profile for two phases reduces when Darcy’s number increases.
- As the Brinkman number increases, the thickness of the momentum boundary layer increases.
- The set of physical parameters under consideration determines if branch 1 or branch 2 arrangements are cooler, which would be important through the cooling method.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbols | Descriptions | S. I. Units |
B0 | Magnetic field | (Tesla) |
d | stretching/shrinking constant | (wm−2) |
k | thermal conductivity | (m2s−1) |
k* | absorption constant | (m−2) |
M | magnetic parameter | (w S Kg−1) |
N | density number | (-) |
P | pressure | (-) |
P | dimensionless pressure | (-) |
T | temperature | (K) |
Vw | mass flux | (ms−1) |
Vc | suction/injection velocity | (-) |
Vc > 0 | suction velocity | (-) |
Vc < 0 | injection velocity | (-) |
u, v | velocities | (m s-1) |
Greek letters | ||
constant | (-) | |
interaction parameter | (-) | |
Fluid particle for temperature | (-) | |
Brinkmann ratio | (-) | |
Darcy model | (-) | |
limiting viscosity of fluid | (-) | |
effective dynamic viscosity | (N s m−2) | |
similarity variable | (-) | |
electrical conductivity | (S m−1) | |
Stefan-Boltzmann | (Wm−2K−4) | |
inclined angle | (-) | |
relaxation time | (-) | |
Subscript | ||
S1 | density of solid fraction of hybrid nanofluid | |
S2 | density of solid fraction of hybrid nanofluid | |
P | solid particles | |
w | wall temperature | |
ambient fluid | ||
f | parameter of base fluid | |
hnf | parameter of hybrid nanofluid |
References
- Sakiadis, B.C. Boundary-Layer behavior on continuous solid surface, Boundary Layer equation for Two-Dimensional and Axisymmetric Flow. AIChE J. 1961, 7, 26. [Google Scholar] [CrossRef]
- Crane, L.J. Flow past a stretching plate. Z. Angew Math. Mech. 1970, 21, 645–647. [Google Scholar] [CrossRef]
- McLeod, B.; Rajagopal, K.R. On the Uniqueness of Flow of a Navier-Stokes Fluid due to a stretching boundary. Arch. Rat. Mech. An. 1987, 98, 385–393. [Google Scholar] [CrossRef]
- Gupta, P.S.; Gupta, A.S. Heat and Mass Transfer on a stretching sheet with suction and Blowing. Can. J. Chem. Eng. 1977, 55, 744–746. [Google Scholar] [CrossRef]
- Banks, W.H.H. Similarity solutions of the Boundary-Layer Equation for a stretching wall. J. Mech Theor. Appl. 1988, 13, 568–580. [Google Scholar]
- Dutta, B.K.; Roy, P.; Gupta, A.S. Temperature field in flow over a stretching sheet with uniform heat flux. Int. Commun. Heat Mass Transf. 1985, 12, 88–94. [Google Scholar] [CrossRef]
- Chen, C.K.; Char, M.I. Heat Transfer of a Continuous Stretching Surface with Suction and Blowing. J. Math. An. Appl. 1988, 13, 568–580. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.E. On Thermal Boundary Layer on a Power Law Stretched Surface with Suction or Injection. Int. J. Heat Fluid Flow 1995, 16, 280–290. [Google Scholar] [CrossRef]
- Liao, S.J. A New Branch of Solutions of Boundary-Layer Flows over a Stretching Flat Plate. Int. J. Heat Mass Transf. 2005, 49, 2529–2539. [Google Scholar] [CrossRef]
- Abbas, Z.; Hayat, T. Stagnation Slip Flow and Heat Transfer over a Nonlinear Stretching Sheet. Numer. Meth. Part. Diff. Eqs. 2011, 27, 302–314. [Google Scholar] [CrossRef]
- Gu, L.D.; Min, J.C.; Tang, Y.C. Effects of mass transfer on heat and mass transfer characteristics between water surface and airstream. Int. J. Heat Mass Transf. 2018, 222, 2093–2202. [Google Scholar] [CrossRef]
- Esfe, M.H.; Arani, A.A.A.; Rezaie, M.; Yan, W.; Karimipour, A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass Transf. 2015, 66, 189–195. [Google Scholar] [CrossRef]
- Mahabaleshwar, U.S.; Sarris, I.E.; Hill, A.A.; Lorenzini, G.; Pop, I. An MHD couple stress fluid due to a perforated sheet undergoing linear stretching with heat transfer. IJHMT 2017, 105, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Astanina, M.; Sheremet, M.; Mahabaleshwar, U.S.; Singh, J. Effect of porous medium and copper heat sink on cooling of heat-generating element. Energies 2020, 13, 2538. [Google Scholar] [CrossRef]
- Xenos, M.A.; Petropoulou, E.N.; Siokis, A.; Mahabaleshwar, U.S. Solving the nonlinear boundary layer flow equation with pressure gradient and radiation. Symmetry 2020, 12, 710. [Google Scholar] [CrossRef]
- Mahabaleshwar, U.S.; Nagaraju, K.R.; Sheremet, M.A.; Baleanu, D.; Lorenzini, E. Mass transpiration on Newtonian flow over a porous stretching/shrinking sheet with slip. Chin. J. Phys. 2020, 63, 130–137. [Google Scholar] [CrossRef]
- Reddy, S.; Chamkha, A.J. Soret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorption. Adv. Powder Technol. 2016, 27, 93. [Google Scholar] [CrossRef]
- Gorla, R.S.; Chamkha, A. Natural Convective Boundary Layer Flow Over a Non Isothermal Vertical Plate Embedded in a Porous Medium Saturated with a Nanofluid. Nanoscale Microscale Thermophys. Eng. 2011, 15, 81–94. [Google Scholar] [CrossRef]
- Toghraie, D.; Chaharsoghi, V.A.; Afrand, M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J. Therm. Anal. Calorim. 2016, 12, 527–535. [Google Scholar] [CrossRef]
- Afrand, M.; Toghraie, D.; Ruhani, B. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: An experimental study. Exp. Therm Fluid Sci. 2016, 77, 38–44. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Mehryan, S.A.M.; Shafee, A.; Sheremet, M.A. Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity. J. Mol. Liq. 2019, 277, 388–396. [Google Scholar] [CrossRef]
- Souayeh, B.; Kumar, K.G.; Reddy, M.G.; Rani, S.; Hdhiri, N.; Alfannakh, H. Slip flow and radiative heat transfer behavior of titanium alloy and ferromagnetic nanoparticles along with suspension of dusty fluid. J. Mol. Liq. 2019, 290, 111223. [Google Scholar] [CrossRef]
- Mastroberardino, A.; Mahabaleshwar, U.S. Mixed convection in viscoelastic flow due to a stretching sheet in a porous medium. J. Porous Media 2013, 16, 483–500. [Google Scholar] [CrossRef]
- Mahabaleshwar, U.S.; Sarris, I.E.; Lorenzini, G. Effect of radiation and Navier slip boundary of Walters’ liquid B flow over a stretching sheet in a porous media. Int. J. Heat Mass Transf. 2018, 127, 1327–1337. [Google Scholar] [CrossRef]
- Nield, D.A. The boundary correction for the Rayleigh-Darcy problem: Limitations of the Brinkman equation. J. Fluid Mech. 1983, 128, 37–46. [Google Scholar] [CrossRef]
- Anusha, T.; Mahabaleshwar, U.S.; Sheikhnejad, Y. An MHD of nanofluid flow over a porous stretching/shrinking plate with mass transpiration and Brinkman ratio. Trans. Porous Medium in press. 2021, 1–20. [Google Scholar] [CrossRef]
- Dhananjay, Y.; Mahabaleshwar, U.S.; Abderrahim, W.; Ramesh, C. Significance of the inconstant viscosity and internal heat generation on the occurrence of Darcy-Brinkman convective motion in a couple-stress fluid saturated porous medium: An analytical solution. Int. Commun. Heat Mass Transf. 2021, 122, 105165. [Google Scholar] [CrossRef]
- Moli, Z.; Shaowei, W.; Haibo, W.; Mahabaleshwar, U.S. Darcy–Brinkman bio-thermal convection in a suspension of gyrotactic microorganisms in a porous medium. Neural Comput. Appl. 2019, 31, 1061–1067. [Google Scholar] [CrossRef]
- Moli, Z.; Shaowei, W.; Li, S.C.; Zhang, Q.Y.; Mahabaleshwar, U.S. Chaotic Darcy-Brinkman convection in a fluid saturated porous layer subjected to gravity modulation. Results Phys. 2018, 9, 1468–1480. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Magnetohydrodynamic two-phase dusty fluid flow and heat model over deforming isothermal surfaces. Phys. Fluids 2017, 29, 013302. [Google Scholar] [CrossRef]
- Mahabaleshwar, U.S.; Nagaraju, K.R.; Nadagouda, M.N.; Bennacer, R.; Baleanu, D. An MHD viscous liquid stagnation point flow and heat transfer with thermal radiation & transpiration. J. Therm. Sci. Eng. Prog. 2020, 16, 100379. [Google Scholar] [CrossRef]
- Mahabaleshwar, U.S.; Nagaraju, K.R.; Vinay Kumar, P.N.; Azese, M.N. Effect of radiation on thermosolutal Marangoni convection in a porous medium with chemical reaction and heat source/sink. Phys. Fluids 2020, 32, 113602. [Google Scholar] [CrossRef]
- Siddheshwar, P.G.; Mahabaleshwar, U.S. Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet. Int. J. Non-Linear Mech. 2005, 40, 807–820. [Google Scholar] [CrossRef] [Green Version]
- Benos, L.T.; Mahabaleshwar, U.S.; Sakanaka, P.H.; Sarris, I.E. Thermal analysis of the unsteady sheet stretching subject to slip and magnetohydrodynamic effects. Therm. Sci. Eng. Prog. 2019, 13, 100367. [Google Scholar] [CrossRef]
- Rosseland, S. Astrophysik and Atomtheoretische Grundlagen; Springer: Berlin, Germany, 1931. [Google Scholar] [CrossRef]
- Mahabaleshwar, U.S.; Nagaraju, K.R.; Vinay Kumar, P.N.; Nadagouda, M.N.; Bennacer, R.; Sheremet, M.A. Effects of Dufour and Sort mechanisms on MHD mixed convective-radiative non-Newtonian liquid flow and heat transfer over a porous sheet. J. Therm. Sci. Eng. Prog. 2020, 16, 100459. [Google Scholar] [CrossRef]
- Xenos, M.A.; Petropoulou, E.N.; Siokis, A.; Mahabaleshwar, U.S. Solving the Nonlinear Boundary Layer Flow Equations with Pressure Gradient and Radiation. J. Therm. Anal. Calorim. 2021, 143, 751–765. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sneha, K.N.; Mahabaleshwar, U.S.; Bennacer, R.; Ganaoui, M.E. Darcy Brinkman Equations for Hybrid Dusty Nanofluid Flow with Heat Transfer and Mass Transpiration. Computation 2021, 9, 118. https://doi.org/10.3390/computation9110118
Sneha KN, Mahabaleshwar US, Bennacer R, Ganaoui ME. Darcy Brinkman Equations for Hybrid Dusty Nanofluid Flow with Heat Transfer and Mass Transpiration. Computation. 2021; 9(11):118. https://doi.org/10.3390/computation9110118
Chicago/Turabian StyleSneha, K. N., U. S. Mahabaleshwar, Rachid Bennacer, and Mohammed EL. Ganaoui. 2021. "Darcy Brinkman Equations for Hybrid Dusty Nanofluid Flow with Heat Transfer and Mass Transpiration" Computation 9, no. 11: 118. https://doi.org/10.3390/computation9110118
APA StyleSneha, K. N., Mahabaleshwar, U. S., Bennacer, R., & Ganaoui, M. E. (2021). Darcy Brinkman Equations for Hybrid Dusty Nanofluid Flow with Heat Transfer and Mass Transpiration. Computation, 9(11), 118. https://doi.org/10.3390/computation9110118