Explicit Sensitivity Coefficients for Estimation of Temperature-Dependent Thermophysical Properties in Inverse Transient Heat Conduction Problems
Abstract
:1. Introduction
- -
- The steady-state or transient heat conduction problems are concerned with regular bodies only (inability to consider the irregular bodies) and the heat conduction equation is solved using the traditional finite-difference method.
- -
- Most of the boundary conditions considered are associated with either a constant temperature (Dirichlet boundary condition) or an insulated surface. Hence, the Neumann and Robin boundary condition types are not addressed.
- -
- Most of the earlier works have been limited to the one-dimensional heat conduction problems.
2. Governing Equation
3. The Inverse Analysis
3.1. Objective Function
3.2. Sensitivity Analysis
3.3. The Conjugate Gradient Method (CGM)
Optimization Algorithm
- -
- Estimation of (assuming is known):
- Specify the physical domain, the boundary and initial conditions, the thermophysical properties, and the measured temperatures at the sensor place and the time (), .
- Generate the boundary-fitted grid over the heat-conducting body using the elliptic grid generation method.
- Solve the direct problem to obtain the temperature values at the sensor place and the time (), , through solving Equations (7)–(14).
- Using Equation (19), compute the objective function ().
- If value of the objective function obtained in step 4 is less than the specified stopping criterion, the optimization is finished. Otherwise, go to step 6.
- Compute the sensitivity matrix from Equation (26).
- Compute the gradient directions from Equation (20).
- Compute the conjugation coefficients Equation (30). For , set .
- Compute the directions of descent from Equation (29).
- Compute the search step-length from Equation (31).
- From Equation (28), evaluate the new values for , namely .
- With new value for repeat the steps 6 to 11 for .
- Set the next iteration () and return to the step 2.
- -
- Estimation of (assuming is known):Repeat the steps 1 to 13 given above for the simultaneous estimation of and .
3.4. Stopping Criterion
3.5. Simultaneous Estimation of the Parameters
4. Results
5. Conclusions
Funding
Conflicts of Interest
References
- Sawaf, B.; Ozisik, M.N.; Jarny, Y. An inverse analysis to estimate linearly temperature dependent thermal conductivity components and heat capacity of an orthotropic medium. Int. J. Heat Mass Transf. 1995, 38, 3005–3010. [Google Scholar] [CrossRef]
- Flach, G.P.; Özişik, M.N. Inverse heat conduction problem of simultaneousy estimating spatially varying thermal conductivity and heat capacity per unit volume. Numer. Heat Transf. Part A: Appl. 1989, 16, 249–266. [Google Scholar] [CrossRef]
- Talukdar, P.; Das, A.; Alagirusamy, R. Simultaneous estimation of thermal conductivity and specific heat of thermal protective fabrics using experimental data of high heat flux exposure. Appl. Therm. Eng. 2016, 107, 785–796. [Google Scholar] [CrossRef]
- Mohebbi, F.; Sellier, M.; Rabczuk, T. Estimation of linearly temperature-dependent thermal conductivity using an inverse analysis. Int. J. Therm. Sci. 2017, 117, 68–76. [Google Scholar] [CrossRef]
- Liu, F.B. A hybrid method for the inverse heat transfer of estimating fluid thermal conductivity and heat capacity. Int. J. Therm. Sci. 2011, 50, 718–724. [Google Scholar] [CrossRef]
- Czél, B.; Woodbury, K.A.; Gróf, G. Simultaneous estimation of temperature-dependent volumetric heat capacity and thermal conductivity functions via neural networks, International. J. Heat Mass Transf. 2014, 68, 1–13. [Google Scholar] [CrossRef]
- Özisik, M.; Orlande, H. Inverse Heat Transfer: Fundamentals and Applications; Taylor & Francis: New York, NY, USA, 2000. [Google Scholar]
- Alifanov, O.M. Inverse Heat Transfer Problems; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Mohebbi, F. Optimal Shape Design Based on Body-fitted Grid Generation; University of Canterbury: Catembury, UK, 2014. [Google Scholar]
- Özişik, M.N.; Orlande, H.R.B.; Colaço, M.J.; Cotta, R.M. Finite Difference Methods in Heat Transfer; CRC Press: Boka Raton, FL, USA, 2017. [Google Scholar]
- Mohebbi, F. Function estimation in inverse heat transfer problems based on parameter estimation approach. Energies 2020, 13, 4410. [Google Scholar] [CrossRef]
- Polak, E.; Ribiere, G. Note sur la convergence de méthodes de directions conjuguées, Revue Française d’Informatique et de Recherche. Opérationnelle 1969, 16, 35–43. [Google Scholar] [CrossRef]
5 | 30 |
Sensor Place | Desired Value | Initial (Guess) Value | Final Value | Temperature Measurement Error | & Computation Time | ||
---|---|---|---|---|---|---|---|
100 %, 80 min (2718 iterations) | |||||||
100 %, 72 min, (2455 iterations) | |||||||
100 %, 80 min, (2704 iterations) | |||||||
100 %, 75 min, (2557 iterations) | |||||||
~100 %, 24 min, (824 iterations) |
Sensor Place | Desired Value | Initial (Guess) Value | Final Value | Temperature Measurement Error | & Computation Time | ||
---|---|---|---|---|---|---|---|
100%, 102 min, (3456 iterations) | |||||||
100%, 89 min, (3008 iterations) | |||||||
100%, 74 min, (2503 iterations) | |||||||
100%, 70 min, (2358 iterations) | |||||||
99.8%, 31 min, (1068 iterations) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohebbi, F. Explicit Sensitivity Coefficients for Estimation of Temperature-Dependent Thermophysical Properties in Inverse Transient Heat Conduction Problems. Computation 2020, 8, 95. https://doi.org/10.3390/computation8040095
Mohebbi F. Explicit Sensitivity Coefficients for Estimation of Temperature-Dependent Thermophysical Properties in Inverse Transient Heat Conduction Problems. Computation. 2020; 8(4):95. https://doi.org/10.3390/computation8040095
Chicago/Turabian StyleMohebbi, Farzad. 2020. "Explicit Sensitivity Coefficients for Estimation of Temperature-Dependent Thermophysical Properties in Inverse Transient Heat Conduction Problems" Computation 8, no. 4: 95. https://doi.org/10.3390/computation8040095
APA StyleMohebbi, F. (2020). Explicit Sensitivity Coefficients for Estimation of Temperature-Dependent Thermophysical Properties in Inverse Transient Heat Conduction Problems. Computation, 8(4), 95. https://doi.org/10.3390/computation8040095