The Influence of Pressure on the Formation of FM/AF Configurations in LSMO Films: A Monte Carlo Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generic Model
2.2. LSMO Model
3. Results and Discussion
3.1. Effect of the Dipolar Interaction on the Magnetization for the Generic Model
3.2. Magnetic Configurations
3.3. Effect of the Dipolar Interaction on the Magnetization for the LSMO Model
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiang, S.P. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: A review. J. Mater. Sci. 2008, 43, 6799–6833. [Google Scholar] [CrossRef]
- Rasic, D.; Sachan, R.; Prater, J.; Narayan, J. Structure-property correlations in thermally processed epitaxial LSMO films. Acta Mater. 2019, 163, 189–198. [Google Scholar] [CrossRef]
- Ichikawa, H.; Nozawa, S.; Sato, T.; Tomita, A.; Ichiyanagi, K.; Chollet, M.; Guerin, L.; Dean, N.; Cavalleri, A.; Adachi, S.-I.; et al. Transient photoinduced ‘hidden’ phase in a manganite. Nat. Mater. 2011, 10, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Zi, Z.; Fu, Y.; Liu, Q.; Dai, J.; Sun, Y. Enhanced low-field magnetoresistance in LSMO/SFO composite system. J. Magn. Magn. Mater. 2011, 324, 1117–1121. [Google Scholar] [CrossRef]
- Zi, Z.; Fu, Y.; Liu, Q.; Dai, J.; Sun, Y. Critical behavior of ensembles of superparamagnetic nanoparticles with dispersions of magnetic parameters. J. Phys. Condens. Matter 2019, 31, 375801. [Google Scholar] [CrossRef]
- Ghosh, A.; Sahu, A.K.; Gulnar, A.K.; Suri, A.K. Synthesis and characterization of lanthanum strontium manganite. Scr. Mater. 2005, 52, 1305–1309. [Google Scholar] [CrossRef]
- Yang, C.-K.; Yamazaki, Y.; Aydin, A.; Haile, S.M. Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting. J. Mater. Chem. A 2014, 2, 3065–3071. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Zhong, Y.; Mahapatra, M.; Singh, P. Processing and electrochemical performance of manganese-doped lanthanum-strontium chromite in oxidizing and reducing atmospheres. Int. J. Hydrog. Energy 2015, 40, 13479–13489. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Álvarez, H.H.; Bedoya-Hincapié, C.M.; Restrepo-Parra, E. Monte Carlo simulation of charge mediated magnetoelectricity in multiferroic bilayers. Phys. B Condens. Matter 2014, 454, 235–239. [Google Scholar] [CrossRef]
- Loudaini, A.; Aggour, M.; Mounkachi, O.; Bahmad, L. Electronic, magnetic properties and magnetocaloric effect in La 0.67 Sr 0.33 MnO 3 compound: Ab initio calculations and Monte Carlo simulation. Solid State Commun. 2019, 295, 5–11. [Google Scholar] [CrossRef]
- Ahmed, M.R. Monte Carlo study of the effect of charge ordering on the electrical and magnetic properties of half-doped manganites. J. Magn. Magn. Mater. 2020, 504, 166628. [Google Scholar] [CrossRef]
- Restrepo-Parra, E.; Bedoya-Hincapié, C.M.; Jurado, F.L.; Riano-Rojas, J.C.; Riano-Rojas, J.C.; Restrepo, J. Monte Carlo study of the critical behavior and magnetic properties of La2/3Ca1/3MnO3 thin films. J. Magn. Magn. Mater. 2010, 322, 3514–3518. [Google Scholar] [CrossRef]
- Khodadadian, A.; Stadlbauer, B.; Heitzinger, C. Bayesian inversion for nanowire field-effect sensors. J. Comput. Electron. 2020, 19, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Restrepo-Parra, E.; Salazar-Enrquez, C.D.; Londoo-Navarro, J.; Jurado, J.F.; Restrepo, J. Magnetic phase diagram simulation of La1-xCaxMnO 3 system by using Monte Carlo, Metropolis algorithm and Heisenberg model. J. Magn. Magn. Mater. 2011, 323, 1477–1483. [Google Scholar] [CrossRef]
- Omari, L.H.; Zaim, M.; Hlil, E.K.; Kerouad, M.; Lekdadri, A.; Zaim, A. Critical Behavior and Magnetic Properties of Manganite-Derived Oxide La0.67Sr0.33MnO3: A Monte Carlo Study. J. Supercond. Nov. Magn. 2020, 33, 1103–1110. [Google Scholar] [CrossRef]
- Sharafullin, I.F.; Kharrasov, M.K.; Diep, H.T. Magneto-ferroelectric interaction in superlattices: Monte Carlo study of phase transitions. J. Magn. Magn. Mater. 2019, 476, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.E.; Barber, M.N. Scaling theory for finite-size effects in the critical region. Phys. Rev. Lett. 1972, 28, 1516–1519. [Google Scholar] [CrossRef]
- Landau, D.P.; Binder, K. A Guide to Monte Carlo Simulations in Statistical Physics, 3rd ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 164–196. [Google Scholar]
- Böttcher, D.; Henk, J. Magnetic properties of strained La 2/3 Sr 1/3 MnO 3 perovskites from first principles. J. Phys. Condens. Matter 2013, 25, 136005. [Google Scholar] [CrossRef]
- Ter Minassian-Sarag, L.; Vincent, B.; Adler, M.; Barraud, A.; Churaev, N.; Eaton, D.; Kuhn, H.; Misono, M.; Platikanov, D.; Ralston, J.; et al. Thin films including layers: Terminology in relation to their preparation and characterization. IUPAC recommendations 1994. Thin Solid Films 1996, 277, 7–78. [Google Scholar] [CrossRef]
- Inoue, J.I. Effective exchange interaction and Curie temperature in magnetic semiconductors. Phys. Rev. B-Condens. Matter Mater. 2003, 67, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Santamaria, C.; Diep, H.T. Dipolar interactions in magnetic thin films: Perpendicular to in-plane ordering transition. J. Magn. Magn. Mater. 2000, 212, 23–28. [Google Scholar] [CrossRef]
- Weizenmann, A.; Santos, M.; Figueiredo, W. Coupling of ferromagnetic nanoparticles through dipolar interactions. Phys. Lett. A 2012, 376, 1535–1539. [Google Scholar] [CrossRef] [Green Version]
- Suwan, I.; Hussein, H.; Hussein, A.; Daragmeh, M. The optimum cut-off radius in Monte Carlo simulation of Yukawa potential point particles. J. Phys. Conf. Ser. 2017, 869, 12054. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Alvarez, H.H.; Restrepo-Parra, E.; Jiménez-García, F.N. Monte Carlo Simulation of Magnetoresistance in Double Exchange Mixed Valence Manganites. Contemp. Eng. Sci. 2018, 11, 3827–3839. [Google Scholar] [CrossRef]
- Agudelo-giraldo, J.D.; Arbel, O.D.; Restrepo-parra, E. Atomistic modelling of magnetic nano-granular thin films. Phys. E Low-Dimens. Syst. Nanostruct. 2018, 97, 250–258. [Google Scholar] [CrossRef]
- Chen, F.; Liu, Q.Z.; Wang, H.F.; Zhang, F.H.; Wu, W. Polarization switching and fatigue in Pb (Zr0.52 Ti0.48) O3 films sandwiched by oxide electrodes with different carrier types. Appl. Phys. Lett. 2007, 90, 85–88. [Google Scholar] [CrossRef]
- Schlottmann, P. Softening of magnons in ferromagnetic manganites. J. Appl. Phys. 2011, 109, 1–29. [Google Scholar] [CrossRef]
- Yang, F.; Kemik, N.; Biegalski, M.D.; Christen, H.M.; Arenholz, E.; Takamura, Y. Strain engineering to control the magnetic and magnetotransport properties of La0.67 Sr0.33 MnO3 thin films. Appl. Phys. Lett. 2010, 97, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Soldusova, A.P.; Prudnikov, P.V.; Prudnikov, V.V. Monte-Carlo investigation of competition between uniaxial anisotropy, exchange and dipolar interactions in critical behavior of ultrathin magnetic films. J. Phys. Conf. Ser. 2016, 681, 12017. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, Ò. Time Dependet Processes in Magnetic Systems. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2002. [Google Scholar]
- Lepri, S.; Livi, R.; Politi, A. Thermal conduction in classical low-dimensional lattices. Phys. Rep. 2003, 377, 1–80. [Google Scholar] [CrossRef] [Green Version]
- Czech, R.; Villain, J. Instability of two-dimensional Ising ferromagnets with dipole interactions. J. Phys. Condens. Matter 1989, 1, 619–627. [Google Scholar] [CrossRef]
- Gouva, M.E.; Wysin, G.M.; Bishop, A.R.; Mertens, F.G. Vortices in the classical two-dimensional anisotropic Heisenberg model. Phys. Rev. B 1989, 39, 11840–11849. [Google Scholar] [CrossRef]
- Jung, J.H.; Kim, K.H.; Eom, D.J.; Noh, T.W.; Choi, E.J.; Yu, J.; Kwon, Y.S.; Chung, Y. Determination of electronic band structures of CaMnO3 and LaMnO3 using optical-conductivity analyses. Phys. Rev. B 1997, 55, 15489–15493. [Google Scholar] [CrossRef]
- Reader, E.E. Formation of Magnetic Textures in the Ferromagnetic Phase of La0.825Sr0.175MnO3. Microsc. Microanal 2016, 22, 1682–1683. [Google Scholar]
- Henkel, M.; Pleimling, M.; Sanctuary, R. Ageing and the Glass Transition, 1st ed.; Springer Science & Business Media: Berlin, Germany, 2007; pp. 167–206. [Google Scholar]
- Cossio, P.; Zuluaga, J.M.; Restrepo, J. Simulación Monte Carlo de películas delgadas ferromagnéticas. Rev. Soc. Col. Física 2006, 38, 1475–1479. [Google Scholar]
- Parra, E.R. Simulación Monte Carlo de Propiedades Magnéticas y de Transporte en Sistemas de Superredes del Tipo (FM/AFM)n. Ph.D. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2010. [Google Scholar]
- Urushibara, A.; Moritomo, Y.; Arima, T.; Asamitsu, A.; Kido, G.; Tokura, Y. Insulator-metal transition and giant magnetoresistance in La 1−x Sr x MnO 3. Phys. Rev. B 1995, 51, 14103–14109. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz-Álvarez, H.H.; Jiménez-García, F.N.; Márquez-Narváez, C.; Agudelo-Giraldo, J.D.; Restrepo-Parra, E. The Influence of Pressure on the Formation of FM/AF Configurations in LSMO Films: A Monte Carlo Approach. Computation 2020, 8, 93. https://doi.org/10.3390/computation8040093
Ortiz-Álvarez HH, Jiménez-García FN, Márquez-Narváez C, Agudelo-Giraldo JD, Restrepo-Parra E. The Influence of Pressure on the Formation of FM/AF Configurations in LSMO Films: A Monte Carlo Approach. Computation. 2020; 8(4):93. https://doi.org/10.3390/computation8040093
Chicago/Turabian StyleOrtiz-Álvarez, Hugo Hernán, Francy Nelly Jiménez-García, Carolina Márquez-Narváez, José Dario Agudelo-Giraldo, and Elisabeth Restrepo-Parra. 2020. "The Influence of Pressure on the Formation of FM/AF Configurations in LSMO Films: A Monte Carlo Approach" Computation 8, no. 4: 93. https://doi.org/10.3390/computation8040093
APA StyleOrtiz-Álvarez, H. H., Jiménez-García, F. N., Márquez-Narváez, C., Agudelo-Giraldo, J. D., & Restrepo-Parra, E. (2020). The Influence of Pressure on the Formation of FM/AF Configurations in LSMO Films: A Monte Carlo Approach. Computation, 8(4), 93. https://doi.org/10.3390/computation8040093