A Modified Heart Dipole Model for the Generation of Pathological ECG Signals
Abstract
:1. Introduction
2. Normal 12-Lead
3. Structure of an : Normal Conditions and Pathological Events
4. HDV and 12-Leads System: A Brief Overview
5. The McSharry Dynamical Model
of Patients with Heart Disease: The McSharry Single Channel Modeling Approach
6. On the Stability of the System
6.1. On the Unique Equilibrium Position
6.2. On the Stability of the Unique Equilibrium Position
7. The McSharry Dynamical Model: Existence and Uniqueness of the Solution
8. The McSharry Dynamical Model and the Study of the Trajectory: Peculiarities and Weaknesses
8.1. Case (a): ,
8.2. Case (b): ∧ ,
8.3. Case (c): ∧ ,
8.4. Case (d): ∧ ,
8.5. Case (e): , ,
8.6. Case (f): , Not Defined
9. The Modified Heart Dipole Model (MHDM)
MHDM Modelization
- Case (a):,;
- Case (b):,;
- Case (c):,;
- Case (d):,;
- Case (e):,;
- Case (f):,not defined
10. Fuzzy Similarities for Comparing s
10.1. Fuzzy Similarity Concept: Aspects for Comparing s
10.2. The Exploited Database
- NSR sub-directory, which contains s characterized by normal sinus rhythm;
- AFL sub-directory containing s affected by atrial flutter;
- AFIB sub-directory in which s with atrial fibrillation are contained;
- PVC sub-directory containing s with premature ventricle contraction.
10.3. Some Statistical Considerations
10.4. Results of Interest
11. Conclusions
11.1. Some Considerations on the Stability of the Equilibrium Position
11.2. On the Uniqueness of the Solution for the McSharry Model and Numerical Approach
11.3. On the Proposed Approach for Modifying the McSharry Model
12. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Electrocardiogram | |
AV, AV node | Atrial-ventricular, atrial-ventricular node |
VCG | Vector Cardiogram |
HDV, HDM, MHDM | Heart Dipole Vector, Heart Dipole Model, Modified Heart Dipole Model |
T, t | Absolute temperature and time variable |
Time-varying rotating vector | |
, , | Cartesian component of |
I, II, III | Standard leads |
aVR, aVL, aVF | Goldberger leads |
, , , , , | Wilson leads |
P, Q, R, S, T, U | Typical waves in |
direction of the axe of the recording electrode | |
, , | Matrices useful to reconstruct |
Module operator | |
, , | Set of empirical parameters |
Angular dynamical parameter influencing the deflections in an | |
, | Dynamical variables |
, | Respiratory frequency, angular velocity of the trajectory |
FS | Fuzzy Similarity |
Appendix A
Appendix B
Appendix C. Proof of Proposition 3
Appendix D. Proof of Proposition 4
Appendix E. System (17) and Its Solution
Appendix F. Proof of Proposition (5)
Appendix G. III/IV-Stage Lobatto IIIa Formula
Appendix G.1. A Brief Overview on the Runge–Kutta Procedure
The Three-Stage Lobatto IIIa Formula
Appendix G.2. A Brief Discussion on the Order of the Polynomial
Appendix G.3. On the Use of Simpson Quadrature Formula
Appendix G.4. and Its Derivatives
Appendix G.5. A Guess for the Solution and Initial Mesh
Appendix G.6. Four-Stage Lobatto IIIa Formula
References
- Hampton, J. The ECG Made Easy; Elsevier: London, UK; New York, NY, USA; Oxford, UK; Philadelphia, PA, USA, 2019. [Google Scholar]
- Gargiulo, G.D.; Bifulco, P.; Cesarelli, M.; McEwan, A.L.; Moeinzadeh, H.; O’Loughlin, A.; Shugman, I.M.; Tapson, J.; Thiagalingam, A. On the Einthoven Triangle: A Critical Analysis of the Single Rotating Dipole Hypothesis. Sensors 2018, 18, 2353. [Google Scholar]
- Labatin, R.D.; Munoz, E.; Piuri, V.; Sassi, R.; Scotti, F. Deep-ECG: Convolutional Neural Newtorks for ECG biometric Recognition. Pattern Recognit. Lett. 2019, 20, 168–181. [Google Scholar]
- Biglu, M.H.; Ghavami, M.; Biglu, S. Cardiovascular Diseases in the Mirror of Science. J. Cardiovasc. Thorac. Res. 2016, 8, 158–163. [Google Scholar] [PubMed] [Green Version]
- La Foresta, F.; Morabito, F.C.; Azzerboni, B.; Ipsale, M. PCA and ICA for the extraction of EEG dominant components in cerebral death assessment. Proc. Int. Jt. Conf. Neural Netw. 2005, 4, 32532–32537. [Google Scholar]
- La Foresta, F.; Mammone, N.; Morabito, F.C. Independent component and wavelet analysis for ECG extraction: The ST waveform evaluation. In Proceedings of the 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, Messina, Italy, 20–22 July 2005; pp. 86–90. [Google Scholar]
- Alqudah, A.M.; Albadarneh, A.; Abu-Qasmieh, I.; Alquran, H. Developing of Robust and High Accurate ECG Beat Classification by Combining Gaussian Mixture s and Wavelets Features. Australas. Phys. Eng. Sci. Med. 2019, 42, 149–157. [Google Scholar]
- Attia, Z.I.; DeSimone, C.V.; Dillon, J.J.; Sapir, Y.; Somers, V.K.; Dugan, J.L.; Bruce, C.J.; Ackerman, M.J.; Asirvatham, S.J.; Striemer, B.L.; et al. Novel Bloodless Potassium Determination Using a Signal-Processed Single-Lead ECG. J. Am. Heart Assoc. 2016. [Google Scholar] [CrossRef] [Green Version]
- Němcová, A.; Smíšek, R.; Maršánová, L.; Smital, L.; Vítek, M. A Comparative Analysis of Methods for Evaluation of ECG Signal Quality after Compression. BioMed Res. Int. 2018, 2018, 1–26. [Google Scholar]
- Stauffer, F.; Thielen, M.; Sauter, C.; Chardonnens, S.; Bachmann, S.; Tybrandt, K.; Peters, C.; Hierold, C.; Vörös, J. Skin Conformal Polymer Electrodes for Clinical ECG and EEG Recording. Adv. Healthc. Mater. 2018, 12, 422–441. [Google Scholar]
- Manikandan, M.S.; Dandapat, S. Wavelet Energy Based Diagnostic Distortion Measure for ECG. Biomed. Signal Process. Control 2007, 2, 80–96. [Google Scholar]
- Strodthoff, N.; Strdothoff, C. Detecting and Interpreting Myocardial Infarction Using Fully Convolutional Neural Networks. Physiol. Meas. 2019, 40, 015001. [Google Scholar]
- Selder, J.L.; Breukel, L.; Block, S.; van Rossum, A.C.; Tulevski, I.I.; Allaart, C.P. A Mobile One-Lead ECG Device Incorporated in a Symptom-Driven Remote Arrhythmia Monitoring Programm. The First 5982 Hartwacht ECGs. Neth. Hearth J. 2019, 27, 38–45. [Google Scholar]
- Tabassum, T.; Ahmed, M. A Simplified Cardiac Conduction Model and Twelve-Lead ECG Generation. In Proceedings of the IEEE International Conference on Computer, Electrical & Comunication Engineering (ICCECE), Kolkata, India, 17–18 January 2020; pp. 1–5. [Google Scholar]
- Hernandez-Caceres, J.L.; Gonzales-Fernandez, R.; Ontivero-Ortega, M.; Molte, G. Introducing BisQ, A Bicoherence-Based Nonlinear Index to Explore the Heart Rhythm. Math. Comput. Appl. 2020, 25, 45. [Google Scholar]
- Trayanova, N.A. Whole Heart Modeling: Applications to Cardiac Electrophysiology and Electromechanics. Circ. Res. 2012, 108, 113–128. [Google Scholar]
- Vinciguerra, V.; Ambra, E.; Maddiona, L.; Romeo, M.; Mazzillo, M.; Rundo, F.; Fallica, G.; Pompeo, F.; Chiarelli, A.M.; Zappasodi, F.; et al. PPG/ECG Multisite Combo System Based on SiPM Technology. In CNS 2018. Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2018; p. 53. [Google Scholar]
- Quiroz-Juárez, M.A.; Jiménez-Ramírez, O.; Vázquez-Medina, R.; Brena-Medina, V.F.; Aragón, J.L.; Barrio, R.A. Generation of ECG Signals from a Reaction-Diffusion Model Spatially Discretized. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Sornmo, L.; Laguna, P. Electrocardiogram (ECG) Signal Processing. In Wiley Encyclopedia of Biomedical Engineering; Wiley: New York, NY, USA, 2006. [Google Scholar]
- Rai, H.M.; Trivedi, A.; Shukla, S. ECG Signal Processing for Abnormalities Detection Using Multi-Resolution Wavelet Transform and Artificial Neural Newtork Classifier. Measurement 2013, 46, 3238–3246. [Google Scholar]
- Gacek, A. An Introduction to ECG Signal Processing and Analysis; Gacek, A., Pedrycz, W., Eds.; Springer: London, UK, 2012; pp. 21–46. [Google Scholar]
- Jaros, R.; Martinek, R.; Kahankova, R. Non-Adaptive Methods for Fetal ECG Signal Processing: A Review and Appraisal. Sensors 2018, 18, 3648. [Google Scholar]
- Sameni, R.; Clifford, G.D. A Review of Fetal ECG Signal Processing: Issues and Promising Directions. Open Spacing Electrophysiol. Ther. J. 2010, 1, 4–20. [Google Scholar]
- McSharry, P.E.; Clifford, G.D.; Tarassenk, L.; Smith, L.A. A Dynamical Model for Generating Synthetic Electrocardiogram Signals. IEEE Trans. Biomed. Eng. 2003, 50, 289–294. [Google Scholar]
- Quarteroni, A.; Sacco, R.; Saleri, F. Numerical Mathematics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Sayadi, O.; Mohammad, B.S.; Gari, D.C. Synthetic ECG generation and Bayesian filtering using a Gaussian wave-based dynamical model. Physiol. Meas. 2010, 31, 1309. [Google Scholar]
- Jackson, S.; Cogswell, M.E.; Zhao, L.; Terry, A.L.; Wang, C.Y.; Wright, J.; King, S.M.C.; Bowman, B.; Chen, T.-C.; Merritt, R.; et al. Association Between Urinary Sodium and Potassium Excretion and Blood Pressure Among Adults ioon the United States, National Health and Nutrition Examination Survey. Circulation 2018, 137, 237–246. [Google Scholar]
- Aaron, K.J.; Sanders, P.W. Role of Dietary Salt and Potassium Intake in Cardiovascular Health and Disease: A Review of the Evidence. Mayo Clin. Proc. 2014, 11, 9. [Google Scholar]
- Vicente, J.; Zusterzeel, R.; Johannesen, L.; Ochoa-Jimenez, R.; Mason, J.W.; Sanabria, C.; Kemp, S.; Sager, P.T.; Patel, V.; Matta, M.K.; et al. Assessment of Multi-Ion Channel Block in a Phase I Randomized Study Design: Results of the CiPA Phase I ECG Biomarker Validation Study. Clin. Pharmacol. Ther. 2018, 105, 111–129. [Google Scholar]
- Garcia, M.D.; Tomas, B. 12 Lead ECG: The Art of Interpretation; Pearson: London, UK, 2014. [Google Scholar]
- Goldberger, A.L.; Goldberger, Z.D.; Shvilkin, A. Goldberger’s Clinical Electrocardiography; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Versaci, M. Soft Computing Approach to Predict Intracranial Pressure Values. Am. J. Appl. Sci. 2014, 11, 844–850. [Google Scholar]
- Versaci, M.; Morabito, F.C. Fuzzy Time Series Approach for Disruption Prediction in Tokamak Reactors. IEEE Trans. Magn. 2003, 39, 1503–1506. [Google Scholar]
- Cacciola, M.; La Foresta, F.; Morabito, F.C.; Versaci, M. Advanced Use of Soft Computing and Eddy Current Test to Evaluate Mechanical Integrity of Metallic Plates. NdT E Int. 2007, 40, 357–362. [Google Scholar]
- Angiulli, G.; Jannelli, A.; Morabito, F.C.; Versaci, M. Reconstructing the Membrane Detection of a 1D Electrostatic-Driven MEMS Device by the Shooting Method: Convergence Analysis and Ghost Solutions Identification. Comput. Appl. Math. 2018, 37, 4484–4498. [Google Scholar]
- Schmidt, R.F.; Thews, G. Human Physiology; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Agarwal, A.M. Trigonometry; Arihant: Delhi, India, 2018. [Google Scholar]
- Barreira, L.; Valls, C. Dynamical Systems; Springer: London, UK, 2013. [Google Scholar]
- Cacciola, M.; Calcagno, S.; Morabito, F.C.; Versaci, M. Swarm Optimization for Imaging of Corrosion by Impedance Measurements in Eddy Current Tests. IEEE Trans. Magn. 2007, 43, 1853–1856. [Google Scholar]
- Cacciola, M.; Pellicanó, D.; Megali, G.; Lay-Ekuakille, A.; Versaci, M.; Morabito, F.C. Aspects About Air Pollution Prediction on Urban Environment. In Proceedings of the 4th IMEKO TC19 Symposium on Environmental Instrumentation and Measurements 2013: Protection Environment, Climate Changes and Pollution Control, Lecce, Italy, 3–4 June 2013; pp. 15–20. [Google Scholar]
- Coletti, G.; Bouchon-Meunier, B. Fuzzy Similarity Measures and Measurement Theory. In Proceedings of the 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), New Orleans, LA, USA, 23–26 June 2019; pp. 1–8. [Google Scholar]
- Moody, G.B.; Mark, R.G. The impact of the MIT-BIH Arrhythmia Database. IEEE Eng. Med. Biol. 2001, 20, 45–50. [Google Scholar]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar]
- Iserles, A. A First Course in the Numerical Analysis of Differential Equations; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
Section | Duration (s) | Amplitude (mV) | Meaning |
---|---|---|---|
P Wave | 0.07–0.12 | 0.2–0.4 | Atrial Depolarization |
QRS Complex | 0.06–0.10 | 1–2 | Depolarization of the intraventricular septum (Q) |
and ventricles (RS) | |||
T Wave | 0.18–0.20 | 0.4–0.5 | Ventricular re-polarization |
U Wave | 0.08 | - | Re-polarization of the Purkinje System |
P-R Interval | 0.1–0.20 | - | Atrioventricular conduction time |
S-T Interval | 0.30 | - | Duration of ventricular re-polarization |
Q-T Interval | 0.40 | - | Duration of electrical ventricular systole |
R-R Interval | 0.8–0.9 | - | Duration of cardiac cycle |
i | P | Q | R | S | T |
---|---|---|---|---|---|
time (s) | −0.250 | −0.025 | 0 | 0.025 | 0.250 |
(rad) | 0 | ||||
1.25 | −5.00 | 30.00 | −8.00 | 1.00 | |
0.25 | 0.1 | 0.1 | 0.1 | 0.5 |
Model Parameters | PQRST Complex Alteration | Correlated Disease |
---|---|---|
, , | - | normal sinus rhythm |
, , | rapid ventricular | atrial fibrillation |
rate normal QRS | ||
, , | isoelectric interval TP | atrial flutter |
, , | abnormal QRS | premature |
P wave not associated | ventricle contraction |
Figure 3a | Figure 3b | Figure 4a | Figure 5 | Figure 6a | Figure 7a | Figure 8a | |
---|---|---|---|---|---|---|---|
no pathologies | |||||||
0.96 | 0.99 | 0.99 | 0.97 | 0.12 | 0.09 | 0.15 | |
0.94 | 0.971 | 0.989 | 0.98 | 0.13 | 0.11 | 0.14 | |
0.97 | 0.979 | 0.987 | 0.99 | 0.136 | 0.12 | 0.13 | |
0.93 | 0.73 | 0.988 | 0.98 | 0.134 | 0.129 | 0.129 | |
atrial fibrillation | |||||||
0.14 | 0.14 | 0.135 | 0.01 | 0.93 | 0.16 | 0.09 | |
0.16 | 0.19 | 0.139 | 0.026 | 0.932 | 0.151 | 0.09 | |
0.165 | 0.196 | 0.138 | 0.15 | 0.921 | 0.146 | 0.09 | |
0.17 | 0.09 | 0.138 | 0.165 | 0.909 | 0.144 | 0.08 | |
atrial flutter | |||||||
0.18 | 0.16 | 0.14 | 0.164 | 0.14 | 0.98 | 0.07 | |
0.16 | 0.17 | 0.21 | 0.163 | 0.142 | 0.99 | 0.11 | |
0.156 | 0.188 | 0.16 | 0.162 | 0.143 | 0.985 | 0.12 | |
0.164 | 0.15 | 0.04 | 0.161 | 0.145 | 0.987 | 0.111 | |
premature ventricle contraction | |||||||
0.2 | 0.15 | 0.159 | 0.04 | 0.139 | 0.04 | 0.99 | |
0.175 | 0.14 | 0.165 | 0.04 | 0.132 | 0.039 | 0.97 | |
0.161 | 0.142 | 0.145 | 0.048 | 0.138 | 0.041 | 0.98 | |
0.171 | 0.03 | 0.161 | 0.145 | 0.137 | 0.04 | 0.98 |
Figure 9a | Figure 9b | Figure 9c | Figure 9d | |
---|---|---|---|---|
no pathologies | ||||
0.98 | 0.13 | 0.12 | 0.16 | |
0.98 | 0.144 | 0.11 | 0.14 | |
0.96 | 0.134 | 0.13 | 0.12 | |
0.97 | 0.131 | 0.14 | 0.11 | |
atrial fibrillation | ||||
0.13 | 0.96 | 0.17 | 0.12 | |
0.133 | 0.955 | 0.132 | 0.11 | |
0.135 | 0.951 | 0.144 | 0.15 | |
0.42 | 0.92 | 0.157 | 0.11 | |
atrial flutter | ||||
0.21 | 0.13 | 0.99 | 0.12 | |
0.22 | 0.11 | 0.99 | 0.11 | |
0.21 | 0.123 | 0.99 | 0.13 | |
0.21 | 0.14 | 0.97 | 0.11 | |
premature ventricle contraction | ||||
0.21 | 0.16 | 0.169 | 0.99 | |
0.118 | 0.15 | 0.166 | 0.99 | |
0.143 | 0.144 | 0.157 | 0.97 | |
0.124 | 0.09 | 0.181 | 0.968 |
Figure 10a | Figure 10b | Figure 10c | Figure 10d | |
---|---|---|---|---|
no pathologies | ||||
0.99 | 0.13 | 0.12 | 0.19 | |
0.98 | 0.14 | 0.13 | 0.17 | |
0.99 | 0.155 | 0.132 | 0.15 | |
0.98 | 0.159 | 0.131 | 0.137 | |
atrial fibrillation | ||||
0.12 | 0.97 | 0.17 | 0.11 | |
0.122 | 0.952 | 0.17 | 0.1 | |
0.139 | 0.93 | 0.162 | 0.12 | |
0.169 | 0.94 | 0.139 | 0.13 | |
atrial flutter | ||||
0.16 | 0.15 | 0.99 | 0.11 | |
0.156 | 0.15 | 0.99 | 0.21 | |
0.146 | 0.177 | 0.984 | 0.22 | |
0.154 | 0.12 | 0.97 | 0.211 | |
premature ventricle contraction | ||||
0.21 | 0.16 | 0.162 | 0.98 | |
0.18 | 0.144 | 0.155 | 0.975 | |
0.169 | 0.153 | 0.151 | 0.99 | |
0.177 | 0.11 | 0.119 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Versaci, M.; Angiulli, G.; La Foresta, F. A Modified Heart Dipole Model for the Generation of Pathological ECG Signals. Computation 2020, 8, 92. https://doi.org/10.3390/computation8040092
Versaci M, Angiulli G, La Foresta F. A Modified Heart Dipole Model for the Generation of Pathological ECG Signals. Computation. 2020; 8(4):92. https://doi.org/10.3390/computation8040092
Chicago/Turabian StyleVersaci, Mario, Giovanni Angiulli, and Fabio La Foresta. 2020. "A Modified Heart Dipole Model for the Generation of Pathological ECG Signals" Computation 8, no. 4: 92. https://doi.org/10.3390/computation8040092
APA StyleVersaci, M., Angiulli, G., & La Foresta, F. (2020). A Modified Heart Dipole Model for the Generation of Pathological ECG Signals. Computation, 8(4), 92. https://doi.org/10.3390/computation8040092