Modeling Interactions between Graphene and Heterogeneous Molecules
Abstract
:1. Introduction
2. Methods
2.1. Atomic Density Function
2.2. Disk and Plane Interaction
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LJ | Lennard–Jones |
MD | Molecular dynamics |
Appendix A. Evaluation of the Integral I Defined by (10)
Including a Density Function
Appendix B. Explanation to Why MODEL (i) Is Accurate at ϕ = 0
Appendix B.1. Model (i)
Appendix B.2. Atomistic Model
References
- Rzepka, M.; Lamp, P.; De la Casa-Lillo, M. Physisorption of hydrogen on microporous carbon and carbon nanotubes. J. Phys. Chem. B 1998, 102, 10894–10898. [Google Scholar] [CrossRef] [Green Version]
- Bénard, P.; Chahine, R. Storage of hydrogen by physisorption on carbon and nanostructured materials. Scr. Mater. 2007, 56, 803–808. [Google Scholar] [CrossRef]
- Ren, H.; Ben, T.; Sun, F.; Guo, M.; Jing, X.; Ma, H.; Cai, K.; Qiu, S.; Zhu, G. Synthesis of a porous aromatic framework for adsorbing organic pollutants application. J. Mater. Chem. 2011, 21, 10348–10353. [Google Scholar] [CrossRef]
- Llanos, J.; Fertitta, A.; Flores, E.; Bottani, E. SO2 physisorption on exfoliated graphite. J. Phys. Chem. B 2003, 107, 8448–8453. [Google Scholar] [CrossRef]
- Steinmüller-Nethl, D.; Kloss, F.R.; Najam-Ul-Haq, M.; Rainer, M.; Larsson, K.; Linsmeier, C.; Köhler, G.; Fehrer, C.; Lepperdinger, G.; Liu, X.; et al. Strong binding of bioactive BMP-2 to nanocrystalline diamond by physisorption. Biomaterials 2006, 27, 4547–4556. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ceulemans, A. Physisorption of adenine DNA nucleosides on zigzag and armchair single-walled carbon nanotubes: A first-principles study. Phys. Rev. B 2009, 79, 195419. [Google Scholar] [CrossRef]
- Ulbricht, H.; Moos, G.; Hertel, T. Physisorption of molecular oxygen on single-wall carbon nanotube bundles and graphite. Phys. Rev. B 2002, 66, 075404. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.G.; Patkowski, K. Toward an accurate description of methane physisorption on carbon nanotubes. J. Phys. Chem. C 2014, 118, 544–550. [Google Scholar] [CrossRef]
- Vela, S.; Huarte-Larra naga, F. A molecular dynamics simulation of methane adsorption in single walled carbon nanotube bundles. Carbon 2011, 49, 4544–4553. [Google Scholar] [CrossRef]
- Hentschke, R.; Schürmann, B.L.; Rabe, J.P. Molecular dynamics simulations of ordered alkane chains physisorbed on graphite. J. Chem. Phys. 1992, 96, 6213–6221. [Google Scholar] [CrossRef]
- Qin, Q.; Sun, T.; Wang, H.; Brault, P.; An, H.; Xie, L.; Peng, Q. Adsorption and diffusion of hydrogen in carbon honeycomb. Nanomaterials 2020, 10, 344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, B.; Gao, Z.; Wang, H.; Wang, J.; Cheng, M. Computational insights into the sorption mechanism of polycyclic aromatic hydrocarbons by carbon nanotube through density functional theory calculation and molecular dynamics simulation. Comput. Mater. Sci. 2020, 179, 109677. [Google Scholar] [CrossRef]
- Darkrim, F.; Levesque, D. Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. J. Chem. Phys. 1998, 109, 4981–4984. [Google Scholar] [CrossRef]
- Gatica, S.M.; Nekhai, A.; Scrivener, A. Adsorption and gas separation of molecules by carbon nanohorns. Molecules 2016, 21, 662. [Google Scholar] [CrossRef] [Green Version]
- Thornton, A.W. Mathematical Modelling of Gas Separation and Storage Using Advanced Materials. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, 2009. [Google Scholar]
- Adisa, O.O.; Cox, B.J.; Hill, J.M. Encapsulation of methane in nanotube bundles. Micro Nano Lett. 2010, 5, 291–295. [Google Scholar] [CrossRef]
- Adisa, O.O.; Cox, B.J.; Hill, J.M. Encapsulation of methane molecules into carbon nanotubes. Phys. B Condens. Matter 2011, 406, 88–93. [Google Scholar] [CrossRef]
- Tran-Duc, T.; Thamwattana, N.; Baowan, D. Modelling gas storage capacity for porous aromatic frameworks. J. Comput. Theor. Nanosci. 2014, 11, 234–241. [Google Scholar] [CrossRef]
- Stevens, K.; Tran-Duc, T.; Thamwattana, N.; Hill, J. Continuum Modelling for Interacting Coronene Molecules with a Carbon Nanotube. Nanomaterials 2020, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Garalleh, H.A.; Thamwattana, N.; Cox, B.J.; Hill, J.M. Encapsulation of L-Histidine amino acid inside single-walled carbon nanotubes. J. Biomater. Tissue Eng. 2016, 6, 362–369. [Google Scholar] [CrossRef]
- Thamwattana, N.; Sarapat, P.; Chan, Y. Mechanics and dynamics of lysozyme immobilisation inside nanotubes. J. Phys. Condens. Matter 2019, 31, 265901. [Google Scholar] [CrossRef]
- Thamwattana, N.; Baowan, D.; Cox, B.J. Modelling bovine serum albumin inside carbon nanotubes. RSC Adv. 2013, 3, 23482–23488. [Google Scholar] [CrossRef] [Green Version]
- Tran-Duc, T.; Thamwattana, N.; Hill, J.M. Orientation of a benzene molecule inside a carbon nanotube. J. Math. Chem. 2011, 49, 1115–1127. [Google Scholar] [CrossRef]
- Hilder, T.A.; Hill, J.M. Modelling the encapsulation of the anticancer drug cisplatin into carbon nanotubes. Nanotechnology 2007, 18, 275704. [Google Scholar] [CrossRef]
- Chan, Y.; Hill, J. Modelling interaction of atoms and ions with graphene. Micro Nano Lett. 2010, 5, 247–250. [Google Scholar] [CrossRef] [Green Version]
- Sarapat, P.; Hill, J.M.; Baowan, D. Mechanics of atoms interacting with a carbon nanotorus: Optimal configuration and oscillation behaviour. Philos. Mag. 2019, 99, 1386–1399. [Google Scholar] [CrossRef]
- Baowan, D.; Cox, B.J.; Hilder, T.A.; Hill, J.M.; Thamwattana, N. Modelling and Mechanics of Carbon-Based Nanostructured Materials, 1st ed.; William Andrew: Norwich, NY, USA, 2017. [Google Scholar]
- Girifalco, L.A. Molecular properties of fullerene in the gas and solid phases. J. Phys. Chem. 1992, 96, 858–861. [Google Scholar] [CrossRef]
- Alshehri, M.H.; Cox, B.J.; Hill, J.M. DNA adsorption on graphene. Eur. Phys. J. D 2013, 67, 226. [Google Scholar] [CrossRef]
- Rahmat, F.; Thamwattana, N.; Cox, B.J. Modelling peptide nanotubes for artificial ion channels. Nanotechnology 2011, 22, 445707. [Google Scholar] [CrossRef]
- Stevens, K.; Thamwattana, N.; Tran-Duc, T. New functional Lennard-Jones parameters for heterogeneous molecules. J. Appl. Phys. 2020, 128, 204301. [Google Scholar] [CrossRef]
- Tran-Duc, T.; Thamwattana, N.; Cox, B.J.; Hill, J.M. Adsorption of polycyclic aromatic hydrocarbons on graphite surfaces. Comput. Mater. Sci. 2010, 49, S307–S312. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
Interaction | ||
---|---|---|
Carbon–Carbon | 112,175,566 | |
Carbon–Hydrogen | 91,727.95 |
Radius (Å) | Normalised Radius r | Density () |
---|---|---|
Model | (Å) | () | |
---|---|---|---|
(i) | 0 | ||
(ii) | 0 | ||
(iii) | 0 | ||
MD Simulation | 0 | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevens, K.; Tran-Duc, T.; Thamwattana, N.; Hill, J.M. Modeling Interactions between Graphene and Heterogeneous Molecules. Computation 2020, 8, 107. https://doi.org/10.3390/computation8040107
Stevens K, Tran-Duc T, Thamwattana N, Hill JM. Modeling Interactions between Graphene and Heterogeneous Molecules. Computation. 2020; 8(4):107. https://doi.org/10.3390/computation8040107
Chicago/Turabian StyleStevens, Kyle, Thien Tran-Duc, Ngamta Thamwattana, and James M. Hill. 2020. "Modeling Interactions between Graphene and Heterogeneous Molecules" Computation 8, no. 4: 107. https://doi.org/10.3390/computation8040107
APA StyleStevens, K., Tran-Duc, T., Thamwattana, N., & Hill, J. M. (2020). Modeling Interactions between Graphene and Heterogeneous Molecules. Computation, 8(4), 107. https://doi.org/10.3390/computation8040107