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Abstract: The Lennard–Jones potential and a continuum approach can be used to successfully
model interactions between various regular shaped molecules and nanostructures. For single atomic
species molecules, the interaction can be approximated by assuming a uniform distribution of atoms
over surfaces or volumes, which gives rise to a constant atomic density either over or throughout
the molecule. However, for heterogeneous molecules, which comprise more than one type of
atoms, the situation is more complicated. Thus far, two extended modeling approaches have been
considered for heterogeneous molecules, namely a multi-surface semi-continuous model and a fully
continuous model with average smearing of atomic contribution. In this paper, we propose yet
another modeling approach using a single continuous surface, but replacing the atomic density and
attractive and repulsive constants in the Lennard–Jones potential with functions, which depend on
the heterogeneity across the molecules, and the new model is applied to study the adsorption of
coronene onto a graphene sheet. Comparison of results is made between the new model and two
other existing approaches as well as molecular dynamics simulations performed using the LAMMPS
molecular dynamics simulator. We find that the new approach is superior to the other continuum
models and provides excellent agreement with molecular dynamics simulations.
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1. Introduction

The physical adsorption of various molecules onto substrates, a process known as physisorption,
has been shown to be a viable mechanism in gas storage [1,2], pollutants capture [3,4] and binding of
biological molecules including proteins [5] and DNA [6]. Such adsorption works primarily through
the van der Waals interactions and does not involve chemical binding, as opposed to chemisorption.
Carbon allotropes are often considered as candidates for adsorbents in physisorption for molecular
capture or storage [7,8]. Apart from experimental studies, techniques used to model physisorption
include molecular dynamics simulations [9–12], Monte Carlo methods [11,13,14] and continuum
mathematical models [15–18] to name only a few. In particular, mathematical modeling of the
interactions between various molecules and carbon surfaces has been extensive [19–26]. The standard
approach for this modeling is to use the Lennard–Jones potential together with a continuum
approximation [27], which assumes a uniform distribution of atoms over the surface of the molecule
or throughout the volume of the molecule. The use of the Lennard–Jones potential is justified since
the dominant forces present within the interactions are van der Waals forces. This approach allows
the potential energy between the two interacting molecules to be expressed as a double integral over
two surfaces or throughout two volumes of the molecules [28]. This integral can usually be evaluated
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in terms of special functions, giving rise to a closed-form analytical expression, which is useful for
the rapid determination of numerical results for predictive purposes, such as determining the size of
nanotubes that are capable of encapsulating other molecular structures [27]. The surface approximation
of the molecules plays a key role in determining the accuracy of the resulting expression [27], which
makes this modeling technique difficult when considering molecules that are irregularly shaped or
have a non-uniform distribution of atoms.

The current approach to overcoming this difficulty in modeling complex molecules, such as DNA
or proteins, interacting with other molecules is to approximate their surfaces or volumes and assume
that the atoms are homogeneously distributed throughout the structure [22,24,29,30]. This allows
for the continuing use of constants for atomic density and the attractive and repulsive coefficients.
A potential problem with this approach is the homogeneous smearing of atoms which may produce
inaccurate results when the molecule being approximated is heterogeneous (i.e., comprising different
atomic species).

In this paper, we use interaction functions recently proposed by Stevens et al. [31] to replace the
Lennard–Jones constants (A and B). In addition, this paper develops a density function to replace the
constant atomic surface (or volume) density in the continuum approximation. This technique greatly
improves the accuracy for the energy calculation since it takes into account the heterogeneity of the
molecules. To demonstrate the use of this technique, we consider the interaction of a coronene molecule
with a graphene sheet. Due to the symmetry of a coronene structure (see Figure 1), we assume the
attractive and repulsive functions (A(r) and B(r)) to depend on the radial distance r of the coronene
molecules. We then compare the results of the interaction energy with three different continuum
models. Model (i) involves a homogeneous smearing of atoms with constant atomic density, attractive
and repulsive constants. Model (ii) assumes a constant atomic density but with attractive and repulsive
functions which are functions of r. Finally, Model (iii) is a model with atomic density, attractive and
repulsive as functions of r. These results are also benchmarked with molecular dynamics simulations
performed using LAMPPS.

(a)

(b)

Figure 1. (a) Atomistic model of interaction; and (b) homogeneous continuous and heterogeneous
continuous models.

In the following section, we describe the basic model including the Lennard–Jones potential,
the formulation of the integral including the density and interaction functions and how it applies to
the interaction of a coronene with a sheet of graphene. In the section thereafter, we detail the results
for the various approaches by comparing the results for the three models with data obtained from
molecular dynamics simulations. Some brief conclusions are presented in the final section of the paper.
Appendices A and B include some technical details that are required in the determination of formulae
for the disk and plane integral described in the methods.
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2. Methods

Using the Lennard–Jones potential, the interaction energy between two molecules can be
expressed as a double surface integral over the surfaces the interacting molecules, namely

E = η1η2

∫
S1

∫
S2

(
− A

ρ6 +
B

ρ12

)
dS2dS1, (1)

where η1 and η2 are the atomic surface densities of the two molecules, A and B are the attractive and
repulsive constants, respectively, and ρ is the typical distance between the surface elements dS1 and
dS2. Equation (1) is referred to as a continuum approach, which is based on pair-wise summation of
the interatomic interactions between both molecules [28]. In general, this approach assumes that atoms
are uniformly distributed over the surface of the molecules, and thus the atomic surface density can be
obtained from η = N/S, where N is the total number of atoms on the molecule and S is its surface
area. Similarly, the attractive and repulsive constants A and B are calculated based on the types of
interacting atoms on the molecules [27].

The continuum approach has been used to investigate the interactions between many types of
molecules, especially those with regular shaped structures. While this approach works well with
homogeneous materials which comprise same types of atoms, it requires significant improvement and
modification to give a more accurate result for heterogeneous structures comprising more than one
types of atoms.

Here, we propose an improved continuous model for a heterogeneous molecule by replacing
constants A and B in (1) with interaction functions,

E = η1η2

∫
S1

∫
S2

(
−A (r)

ρ6 +
B (r)
ρ12

)
dS2dS1. (2)

Here, r is the vector of variables that parameterize the heterogeneity of the interaction between
the molecules. In the case of a heterogeneous molecule interacting with a homogeneous molecule,
the heterogeneity is parameterized only in terms of the heterogeneous molecule. Furthermore, it is
assumed that both A (r) and B (r) have the same functional form. This allows for the use of the
standard computational technique, solving some Kn for all integer n where

Kn =
∫

S1

∫
S2

fn (r) ρ−2ndS2dS1, fn (r) =

{
A (r) , n = 3

B (r) , n = 6.
(3)

Thus, the expression in (2) can be written using (3) as E = η1η2 (−K3 + K6). For the
coronene–graphene interaction, we consider graphene as a homogeneous plane of carbon atoms.
For coronene, we model as a disk for which carbon and hydrogen atoms dominate the middle region
and its perimeter, respectively. As the coronene is radially symmetric, we assume the interaction
functions vary only along the radial direction, r.

Due to the structure of coronene as shown in Figure 1b and that the interaction of coronene
with graphene is made up of carbon–carbon and carbon–hydrogen interactions, we assume that the
interaction functions satisfy the conditions:

A (0) = AC-C, A (R) = AC-H, B (0) = BC-C, B (R) = BC-H, (4)

where the Lennard–Jones constants for carbon–carbon and carbon–hydrogen interactions are as given
in Table 1 and R is the radius of the coronene molecule, which is taken to be 4.79 Å [32]. In this paper,
we adopt the interaction functions to be in the forms of sigmoidal arctan functions as we assume that
the interaction varies similar to a step-function but with smooth transition across the radial direction
of the molecule. Specifically, we have
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fn (r) = α arctan (m (r0 − r)) + β, (5)

where α and β are determined using Equation (4). We choose a large value for m in order to mimic the
step-function profile, and the value of r0 is chosen to be located between the connection of final carbon
atom and the hydrogen atom at the perimeter. Thus, we use m = 500 and r0 ∈ (0.785, 1). The profile
of the interaction functions is shown in Figure 2a.

Table 1. Attractive and repulsive constants for carbon–carbon and carbon–hydrogen interactions.

Interaction A
(

kcal/mol×Å
6
)

B
(

kcal/mol×Å
12
)

Carbon–Carbon 560.44 112,175,566
Carbon–Hydrogen 129.67 91,727.95

In
te

ra
ct

io
n 

Ty
pe

0.296 (C) 0.593 (C) 0.785 (C) 1.000 (H)

Normalised Radius, r
(a)

Normalised Radius, r

(b)
Figure 2. (a) Profile of the interaction function over the normalised radius of the coronene molecule
where (C) and (H) denote the location of a carbon and hydrogen atoms, respectively; and (b) profile of
the density function over the normalised radius of the coronene molecule.

2.1. Atomic Density Function

The atomic densities of both surfaces are typically assumed to be uniform, meaning that η1 and η2

are constants and are not included in the integrals, as shown in (1). Here, we assume that the atomic
surface density of the coronene molecule is not a constant, i.e., replacing η1 with a function η1 (r),
thus bringing it into the integral along with the interaction functions,

Kn =
∫

S1

∫
S2

η1 (r) fn (r) ρ−2ndS2dS1. (6)

Due to the radial symmetry of the coronene molecule, we also express the atomic density as a
function of the radial distance, r. Using the atomic densities calculated in the semi-continuous ring
model developed by Tran-Duc et al. [32], a quadratic interpolating polynomial is fitted and used as the
atomic density function in our calculation. These densities are presented in Table 2 and the polynomial
is plotted in Figure 2b.

To solve the energy integral for a general case, we use

η (r) =
N

∑
k=0

λkrk, (7)
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to express the atomic density function, where N here is the degree of the interpolating polynomial.

Table 2. Atomic density values at particular radii [32].

Radius (Å) Normalised Radius r Density η (atoms/Å
2
)

1.42 0.296 0.672
2.84 0.593 0.336
3.76 0.785 0.508
4.79 1.000 0.399

2.2. Disk and Plane Interaction

Coronene comprises 24 carbon atoms and 12 hydrogen atoms, arranged in a circular honeycomb
structure with carbon atoms in the central region and the hydrogen atoms at the perimeter.
Coronene has previously been modeled as concentric rings of carbon and hydrogen atoms [32].
Here, we represent a coronene molecule by a circular disk of radius a centered on the z-axis, and tilted
by some angle φ ∈ [0, π/2]. We also assume that the centre of the disk is located at a distance δ > a sin φ

away from a sheet of graphene which is assumed to lie flat on the xy−plane.
Next, we define the integral Kn as

Kn = a2
∫ 1

0

∫ 2π

0

∫ ∞

−∞

∫ ∞

−∞

η (r) fn (r) r
ρ2n dxdydθdr, (8)

where ρ2 = (x− ar cos φ cos θ)2 + (y− ar sin θ)2 + (δ− ar sin φ cos θ)2. Evaluating (8), we find that the
integral is largely the same as a circular ring interacting with a plane, as the integral in r is independent
of the other variables. Thus, we refer the reader to the work of Tran-Duc et al. [32] for detailed
computation of most of the Kn integral. The expression for Equation (8) prior to solving the integral in
r is

Kn =
2π2a2

(n− 1) δ2n−2

∞

∑
i=0

(n− 1)i

(
n− 1

2

)
i

(i!)2

(
a sin φ

δ

)2i
· I, (9)

where

I =
∫ 1

0

(
N

∑
k=0

λkrk

)
(α arctan (m (r0 − r)) + β) r2i+1dr. (10)

Detailed derivation of Equation (10) can be found in Appendix A.

3. Results and Discussion

Here, we compare the energies obtained from the three different models: (i) the fully homogeneous
disk with constant interaction and density coefficients; (ii) the heterogeneous disk with functional
interaction and constant density coefficients; and (iii) the heterogeneous disk with functional interaction
and density coefficients, against the results from molecular dynamics (MD) simulations. The MD
simulations are performed using the Lennard–Jones potential with a cut-off distance of 14 Å and the
graphene sheet used has radius over 20 Å larger than the radius of the coronene molecule (4.8 Å),
which justifies the assumption of an infinite plane for the sheet.

Fixing the tilt angle at φ = 0 implies that the coronene molecule lies parallel to the graphene
sheet. As seen from Figure 3, the differences in the energy profiles obtained from the three models
are obvious. Here, Model (i) agrees excellently with the MD simulation, whereas Models (ii) and (iii)
using interaction functions have discrepancies. We find that this is due to Model (i) and the atomistic
case being equal when the coronene is parallel to the graphene sheet, which is shown in Appendix B.
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Figure 3. Calculated potential energy between coronene and graphene at a tilt angle φ = 0 compared
with MD simulation.

Where Model (i) begins to fail appears to depend on the distance between the coronene and
graphene. Figure 4a shows that it fails at φ ≥ 3π/64 when δ =3.5 Å and Figure 4b shows that it fails at
φ ≥ 3π/32 when δ =5 Å. Conversely, we notice that Models (ii) and (iii) appear to maintain or increase
their accuracy at these fixed distances as φ increases.Energy, E (kcal/mol) 

 = 3.5ÅModel (i)Model (ii)Model (iii)
(a)

Energy, E (kcal/mol) 
 = 5.0ÅModel (i)Model (ii)Model (iii)

(b)
Figure 4. Energy curves at various fixed δ for varying φ: (a) δ = 3.5 Å; and (b) δ = 5 Å.
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For φ > 0, we see that Model (i) becomes very inaccurate for δ < δmin + 0.5 where δmin is the
distance at which the energy is minimized (Emin). This can be seen in Figure 5 for various values of φ.
Model (ii) produces energy curves that are clearly an improvement over the homogeneous model,
as shown in Figure 5a,b. The minimum energy distances presented in Table 3 show this to be the case
as the model is consistently within 0.1 Å of the MD simulation. This is in contrast to the error between
the simulation prediction and Model (i), which is initially small at 0.01 Å when φ = 0 but very quickly
increases to 0.29 Å by φ = π/2.
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ϕ = π/6

Model (i)
Model (ii)
Model (iii)

(a)
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) 

ϕ = π/4

Model (i)
Model (ii)
Model (iii)

(b)
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 (k
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Model (i)
Model (ii)
Model (iii)

(c)
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gy
, E

 (k
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l/m
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) 

ϕ = π/2

Model (i)
Model (ii)
Model (iii)

(d)
Figure 5. Energy profiles for coronene at fixed tilt angles: (a) φ = π/6; (b) φ = π/4; (c) φ = π/3;
and (d) φ = π/2.
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Table 3. Various minimum energies and corresponding displacements for the coronene–graphene interactions.

Model φ δmin (Å) Emin (k cal mol−1)

(i)

0 3.51 −35.63

π/6 5.25 −14.19

π/4 6.21 −9.92

π/3 6.96 −7.86

π/2 7.60 −6.61

(ii)

0 3.53 −40.43

π/6 5.07 −17.97

π/4 5.96 −12.88

π/3 6.66 −10.34

π/2 7.25 −8.76

(iii)

0 3.53 −38.52

π/6 5.04 −16.99

π/4 5.93 −11.85

π/3 6.63 −9.34

π/2 7.23 −7.81

MD Simulation

0 3.52 −35.55

π/6 5.06 −16.45

π/4 5.93 −11.96

π/3 6.68 −9.48

π/2 7.31 −7.98

The combination of the interaction functions and density function seems to correct the discrepancy
in energy estimation. This is shown prominently in Figure 5c,d as Model (iii) follows Model (ii) closely
until the distance nears δ = δmin. On calculating the Emin error, εE = |Emin,model − Emin,simulation| ,
at each tilt angle φ, we find that this error for the homogeneous Model (i) decreases from
εE = 2.26 kcal mol−1 at φ = π/6 to εE = 1.37 kcal mol−1 at φ = π/2. An improved error is obtained for
Model (ii), for which εE = 1.52 kcal mol−1 at φ = π/6 to εE = 0.78 kcal mol−1 at φ = π/2. However,
Model (iii) gives the smallest error over this range of tilt angles with εE = 0.54 kcal mol−1 at φ = π/6

to εE = 0.17 kcal mol−1 at φ = π/2. The error values in δmin and Emin for the three models indicate that
including an interaction function (Model (ii)) increases the accuracy over the purely homogeneous
model (Model (i)), which is improved upon further by incorporating a density function (Model
(iii)). Thus, unless the coronene molecule alignment is perfectly parallel to the graphene sheet,
the homogeneous model of coronene should not be adopted.

4. Conclusions

While the models presented here do not perfectly match the MD results for the energy of the
coronene–graphene interaction, it is clear that the fully homogeneous Model (i) gives the largest error in
most configurations. Our proposed method could lead to a study to improve the homogeneous models
used for the interactions involving a much more complex molecular structures than the coronene
molecule. The introduction of simple functions to approximate the interaction strengths and the atomic
densities will likely lead to improved energy estimations, which will be the subject of future research.
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Appendix A. Evaluation of the Integral I Defined by (10)

To evaluate the integral (10), we use the interaction function f (r) = α arctan (m (r0 − r)) + β.
We need to compute

Ik = α
∫ 1

0
arctan (m (r0 − r)) rkdr + β

∫ 1

0
rkdr. (A1)

= αI1 + βI2.

The second part is easily evaluated since I2 =
∫ 1

0 rkdr = 1/(k+1). For the first part, we make the
substitution u = m (r0 − r) in order to make the argument of the arctan function easier to manage,

I1 =
1
m

∫ mr0

m(r0−1)
arctan (u)

(
r0 −

u
m

)k
du,

and now we use the binomial theorem to split up the polynomial term in u into the series,

I1 =
1
m

∫ mr0

m(r0−1)
arctan (u)

k

∑
j=0

k!
j! (k− j)!

(r0)
k−j
(
− u

m

)j
du (A2)

=
1
m

k

∑
j=0

k!rk−j
0 (−1)j

j! (k− j)!mj

∫ mr0

m(r0−1)
arctan (u) ujdu.

From [33], we have,

∫
xm arctan xdx =

xm+1 arctan x
m + 1

− 1
m + 1

∫ xm+1

1 + x2 dx (A3)∫ xm

1 + x2 =
xm−1

m− 1
−
∫ xm−2

1 + x2 dx, (A4)

and the second integral has two possible forms depending on whether m is even or odd. For m odd,
we obtain
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∫ x2n+1

1 + x2 =
n

∑
k=1

(−1)n−k x2k

2k
+ (−1)n

∫ x
1 + x2 dx

= (−1)n

(
n

∑
k=1

(−1)k x2k

2k
+

ln
(
1 + x2)

2

)
,

while, for m even, we obtain

∫ x2n

1 + x2 =
n

∑
k=1

(−1)n−k x2k−1

2k− 1
+ (−1)n

∫ 1
1 + x2 dx

= (−1)n

(
n

∑
k=1

(−1)k x2k−1

2k− 1
+ arctan (x)

)
.

To make use of these forms, we split the finite sum in Equation (A2) into two sums of odd and
even powers,

I1 =
1
m

b k
2c

∑
j=0

k!rk−2j
0 (−1)2j

(2j)! (k− 2j)!m2j

∫ mr0

m(r0−1)
arctan (u) u2jdu

+
1
m

d k
2e−1

∑
j=0

k!rk−2j−1
0 (−1)2j+1

(2j + 1)! (k− 2j− 1)!m2j+1

∫ mr0

m(r0−1)
arctan (u) u2j+1du,

so that, on applying the integral (A3) and noting that there are no singularities over the interval,
we obtain

I1 =
1
m

b k
2c

∑
j=0

k!rk−2j
0 (−1)2j

(2j)! (k− 2j)!m2j

([
u2j+1 arctan (u)

2j + 1

]mr0

m(r0−1)
− 1

2j + 1

∫ mr0

m(r0−1)

u2j+1

1 + u2 du

)

+
1
m

d k
2e−1

∑
j=0

k!rk−2j−1
0 (−1)2j+1

(2j + 1)! (k− 2j− 1)!m2j+1

([
u2j+2 arctan (u)

2j + 2

]mr0

m(r0−1)
− 1

2j + 2

∫ mr0

m(r0−1)

u2j+2

1 + u2 du

)
.

We then apply (A4) to deduce

I1 =
1
m

b k
2 c

∑
j=0

k!rk−2j
0 (−1)2j

(2j)! (k− 2j)!m2j

[ u2j+1 arctan (u)
2j + 1

− (−1)j

2j + 1

(
j

∑
s=1

(−1)s u2s

2k
+

ln
(
1 + u2)

2

)]mr0

m(r0−1)

 (A5)

+
1
m

d k
2 e−1

∑
j=0

k!rk−2j−1
0 (−1)2j+1

(2j + 1)! (k− 2j− 1)!m2j+1

[ u2j+2 arctan (u)
2j + 2

− (−1)j+1

2j + 2

(
j+1

∑
s=1

(−1)s u2s−1

2k− 1
+ arctan (u)

)]mr0

m(r0−1)

 .

Although this looks complicated, due to the series being finite, the expression is easily computable
by any mathematical software package, such as MAPLE™ or Mathematica™.

Including a Density Function

If the density function µ (r) is a polynomial ∑M
ν=0 λνrν, then Equation (A1) becomes
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I =
∫ 1

0

(
M

∑
ν=0

λνrν

)(
αrk arctan (m (r0 − r)) + βrk

)
dr

=
M

∑
ν=0

∫ 1

0
λναrk+ν arctan (m (r0 − r)) + βλνrk+νdr

=
M

∑
ν=0

Ik+ν,

and since this is a finite sum of the above integrals based on the degree of the polynomial approximating
the density, the solution to this is the same as in Equation (A5).

Appendix B. Explanation to Why MODEL (i) Is Accurate at φ = 0

In this appendix we show that the energy expression for Model (i) matches the energy expression
given by the atomistic model of coronene solely when the tilt angle is zero.

Appendix B.1. Model (i)

N = NC + NH is the total number of atoms in coronene with NC the number of carbon atoms and
NH the number of hydrogen. ηcoro = N

SAcoro
is the atomic density of coronene and SAcoro is the surface

area of the approximated coronene surface. Thus, the interaction energy between a coronene molecule
and a parallel graphene sheet is computed by

Ecoro-graph = ηcoroηgraph

∫
Sgraph

∫
Scoro
−Ameanρ−6 + Bmeanρ−12dScorodSgraph,

where Amean = (NC/N) ACC + (NH/N) ACH and Bmean = (NC/N) BCC + (NH/N) BCH are the averaged
interaction coefficients. At φ = 0, ρ is invariant in the x and y directions, due to the graphene sheet
being assumed infinite. Thus, we have

Ecoro-graph = ηcoroηgraphSAcoro

∫
Sgraph

{
−Amean

ρ6 +
Bmean

ρ12

}
dSgraph

= ηgraphN
∫

Sgraph

{
−Amean

ρ6 +
Bmean

ρ12

}
dSgraph

= ηgraphN
∫

Sgraph

{
−
(

NC
N

ACC +
NH
N

ACH

)
1
ρ6 +

(
NC
N

BCC +
NH
N

BCH

)
1

ρ12

}
dSgraph

= ηgraph

∫
Sgraph

{
− (NC ACC + NH ACH)

1
ρ6 + (NCBCC + NH BCH)

1
ρ12

}
dSgraph.

Appendix B.2. Atomistic Model

The interaction energy between a coronene molecule and a parallel graphene sheet is the sum of
the interaction energies between each atom and the graphene sheet,

Ecoro-graph = ηgraph

NC

∑
k=1

∫
Sgraph

{
−ACC

1
ρ6

k
+ BCC

1
ρ12

k

}
dSgraph

+ ηgraph

NH

∑
k=1

∫
Sgraph

{
−ACH

1
ρ6

k
+ BCH

1
ρ12

k

}
dSgraph,

where ρk is the distance between the kth carbon or hydrogen atom and the graphene sheet.
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As with the homogeneous case, at φ = 0, ρk = ρ ∀k. Thus,

Ecoro-graph = ηgraph

∫
Sgraph

{
−NC ACC

1
ρ6 + NCBCC

1
ρ12

}
dSgraph

+ ηgraph

∫
Sgraph

{
−NH ACH

1
ρ6 + NH BCH

1
ρ12

}
dSgraph,

= ηgraph

∫
Sgraph

{
− (NC ACC + NH ACH)

1
ρ6 + (NCBCC + NH BCH)

1
ρ12

}
dSgraph,

which is equal to the expression derived from the homogeneous approximation.
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