Prediction of Drug Potencies of BACE1 Inhibitors: A Molecular Dynamics Simulation and MM_GB(PB)SA Scoring
Abstract
:1. Introduction
2. Methods
2.1. Molecular Dynamics Simulations
2.2. The Generalized Born/Surface Area Model
3. Results and Discussion
3.1. Data Analysis
3.2. Prediction of Binding Mode and Key Interactions of Inhibitors to BACE1
3.3. Drug Likeness
- -
- No more than five hydrogen bond donors (total H-N, H-O bonds);
- -
- No more than 10 hydrogen bond acceptors (all N+O atoms);
- -
- Molecular mass less than 500;
- -
- LogP value less than 5 (octanol-water partition coefficient);
- -
- Drug likeness improved LogP (−0.4 to 5.6), molecular weight 180 to 480, total atoms 20 to 70, including N and O,
4. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Gu, T.; Wu, W.Y.; Dong, Z.X.; Yu, S.P.; Sun, Y.; Zhong, Y.; Lu, Y.T.; Li, N.G. Development and Structural Modification of BACE1 Inhibitors. Molecules 2017, 22, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rombouts, F.J.R.; Alexander, R.; Cleiren, E.; De Groot, A.; Carpentier, M.; Dijkmans, J.; Fierens, K.; Masure, S.; Moechars, D.; Palomino-Schätzlein, M.; et al. Fragment Binding to β-Secretase 1 without Catalytic Aspartate Interactions Identified via Orthogonal Screening Approaches. ACS Omega 2017, 2, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Brindisi, M.; Tang, J. Developing $β$-secretase inhibitors for treatment of Alzheimer’s disease. J. Neurochem. 2012, 120, 71–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A.K.; Zhang, X.C.; Tang, J. Structure of the protease domain of memapsin 2 ($β$-secretase) complexed with inhibitor. Science 2000, 290, 150–153. [Google Scholar] [CrossRef]
- Malamas, M.S.; Erdei, J.; Gunawan, I.; Turner, J.; Hu, Y.; Wagner, E.; Fan, K.; Chopra, R.; Olland, A.; Bard, J.; et al. Design and synthesis of 5,5′-disubstituted aminohydantoins as potent and selective human β-secretase (BACE1) inhibitors. J. Med. Chem. 2010, 53, 1146–1158. [Google Scholar] [CrossRef]
- Steele, T.G.; Hills, I.D.; Nomland, A.A.; de León, P.; Allison, T.; McGaughey, G.; Colussi, D.; Tugusheva, K.; Haugabook, S.J.; Espeseth, A.S.; et al. Identification of a small molecule $β$-secretase inhibitor that binds without catalytic aspartate engagement. Bioorg. Med. Chem. Lett. 2009, 19, 17–20. [Google Scholar] [CrossRef]
- Ren, Z.; Tam, D.; Xu, Y.Z.; Wone, D.; Yuan, S.; Sham, H.L.; Cheung, H.; Regnstrom, K.; Chen, X.; Rudolph, D.; et al. Development of a novel β-secretase binding assay using the alphascreen platform. J. Biomol. Screen. 2013, 18, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019, 119, 9478–9508. [Google Scholar] [CrossRef]
- Lu, N.; Kofke, D.A. Accuracy of free-energy perturbation calculations in molecular simulation. II. Heuristics. J. Chem. Phys. 2001, 115, 6866–6875. [Google Scholar] [CrossRef] [Green Version]
- Veselovsky, A.V.; Ivanov, A.S. Strategy of Computer-Aided Drug Design. Curr. Drug Target -Infectious Disord. 2003, 3, 33–40. [Google Scholar] [CrossRef]
- Temiz, N.A.; Trapp, A.; Prokopyev, O.A.; Camacho, C.J. Optimization of minimum set of protein--DNA interactions: A quasi exact solution with minimum over-fitting. Bioinformatics 2010, 26, 319–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, J.; Miller, J.; Kollman, P.A.; Case, D.A. Continuum solvent studies of the stability of RNA hairpin loops and helices. J. Biomol. Struct. Dyn. 1998, 16, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; et al. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 2000, 33, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, J.; Cheatham, T.E.; Cieplak, P.; Kollman, P.A.; Case, D.A. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate- DNA helices. J. Am. Chem. Soc. 1998, 120, 9401–9409. [Google Scholar] [CrossRef]
- Vassar, R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimer’s Res. Ther. 2014, 6, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational Methods in Drug Discovery. Pharmacol. Rev. 2014, 66, 334–395. [Google Scholar] [CrossRef] [Green Version]
- Ben-Shalom, I.Y.; Lin, C.; Kurtzman, T.; Walker, R.C.; Gilson, M.K. Simulating water exchange to buried binding sites. J. Chem. Theory Comput. 2019, 15, 2684–2691. [Google Scholar] [CrossRef]
- Götz, A.W.; Williamson, M.J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R.C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012, 8, 1542–1555. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [Green Version]
- Rother, K. Introduction to PyMOL. Methods Mol. Biol. Clift. Nj 2005, 635, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Binding Constants. Available online: http://www.bindingdb.org/pdb/1o86 (accessed on 23 December 2018).
- Antechamber Tutorial. Available online: http://ambermd.org/tutorials/basic/tutorial4b/ (accessed on 23 December 2018).
- Wang, J.M.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Shanti, P.; Kwon, J.B. How to Cite Amber. Am. Ethnol. 2020, 47, 209. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef] [Green Version]
- Kräutler, V.; Van Gunsteren, W.F.; Hünenberger, P.H. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem. 2001, 22, 501–508. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; Dinola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.R.; Mcgee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Kollman, P.A. Computational study of protein specificity: The molecular basis of HIV-1 protease drug resistance. Proc. Natl. Acad. Sci. USA 2001, 98, 14937–14942. [Google Scholar] [CrossRef] [Green Version]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Narang, S.S.; Goyal, D.; Goyal, B. Inhibition of Alzheimer’s amyloid-β42 peptide aggregation by a bi-functional bis-tryptoline triazole: Key insights from molecular dynamics simulations. J. Biomol. Struct. Dyn. 2020, 38, 1598–1611. [Google Scholar] [CrossRef]
- Hermansson, A. Calculating Ligand-Protein Binding Energies from Molecular Dynamics Simulations-Thesis in Physical Chemistry. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, July 2015. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A839581&dswid=6921 (accessed on 23 December 2018).
- Roe, D.R.; Cheatham, T.E., III. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular synamics trajectory data. J. Chem. Theory Com. 2013, 9, 3084–3095. [Google Scholar] [CrossRef] [PubMed]
- Lill, M.A.; Thompson, J.J. Solvent interaction energy calculations on molecular dynamics trajectories: Increasing the efficiency using systematic frame selection. J. Chem. Inf. Model. 2011, 51, 2680–2689. [Google Scholar] [CrossRef] [Green Version]
- Galindo-Murillo, R.; Roe, D.R.; Cheatham, T.E. Convergence and reproducibility in molecular dynamics simulations of the DNA duplex d(GCACGAACGAACGAACGC). Biochim. Biophys. Acta Gen. Subj. 2015, 1850, 1041–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RCSB PDB: Search. Available online: https://www.rcsb.org/search (accessed on 23 December 2018).
- Binding MOAD. Available online: http://bindingmoad.org/ (accessed on 23 December 2018).
- Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005, 2, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Irannejad, H. Lipophilic Ligand Efficiency as a Useful Metric in Hit and Lead Optimization. J. Med. Chem. Drug Des. 2019, 2, 9–10. [Google Scholar] [CrossRef]
- Wang, C.; Nguyen, P.H.; Pham, K.; Huynh, D.; Le, T.B.N.; Wang, H.; Ren, P.; Luo, R. Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis. J. Comput. Chem. 2016, 37. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhao, H.; Li, J.; Hao, J.; Yu, H. A series of molecular modeling techniques to reveal selective mechanisms of inhibitors to β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) and β-site amyloid precursor protein cleaving enzyme 2 (BACE2). J. Biomol. Struct. Dyn. 2020, 1–14. [Google Scholar] [CrossRef]
PDB id-Inhibitor | Kd Exp [21] | IC50 [21] | ΔHGBSA kcal/mol | T∆S | ∆Gbinding Calculated kcal/mol | ΔG exp | Kd from Calculated ∆Gbind ** |
---|---|---|---|---|---|---|---|
5i3x-(1) | 8 nM, 0.8 nM | 191 nM, 9 nM | −44.5 (4) | −25.2 (5) | −19.3 (5) | −11.34 | 0.000139 nM |
5i3y-(2) | 0.4000 nM | 16 nM, 0.8 nM | −37.4 (3) | −24.96 (6) | −12.4 (7) | −13.16 | 1.39 nM |
5ie1-(3) | 140 nM | 140 nM | −30.5 (3) | −22.98 (6.2) | −7.5 (6) | −9.60 | 4.39 mM |
5i3w-(5) | 0.6 nM | −32.2 (2.6) | −24 (4) | −8.15 (4) | −12.9 | 1.39 mM | |
5i3v-(4) | 16 nM | 35 nM | −32.92 (5.2) | −22.26 (4) | −10.66 (4) | −10.92 | 24.3 nM |
3tpp-(6) | 233 nM | 15 nM, 15 nM | −35.6 (6) | −26.21 (5) | −9.4 (4) | −9.28 | 193.07 nM |
4lc7-(7) | 11800 nM, 14 nM | −24.64 (5) | −22.5 (5) | −2.15 (5) | −6.8 | 29.13 mM |
Number (Figure 2) | PDB ID | vdW | E EL | E GB | Esurf | Esolv | ΔHGBSA |
---|---|---|---|---|---|---|---|
1 | 5i3x | −67.1 (3.1) | −26.99 (6.1) | 58.3 (4.9) | −8.72 (0.24) | 49.6 (4.83) | −44.52 (4) |
2 | 5i3y | −59.13 (3.4) | −16.8 (3.4) | 45.8 (4.2) | −7.2 (0.5) | 38.6 (3.8) | −37.36 (3) |
3 | 5ie1 | −39.15 (2.96) | −36.21 (2.9) | 50.77 (1.5) | 3.76 (0.02) | 44.9 (0.7) | −30.48 (2.8) |
4 | 5i3v | −43.69 (3.4) | −21.62 (7.7) | 38 (5.6) | −5.6 (0.52) | 32.4 (5.4) | −32.92 (5.2) |
5 | 5i3w | −55.34 (2.86) | −14.12 (3.1) | 44.1 (2.6) | −6.8 (0.19) | 37.3 (2.5) | −32.15 (2.6) |
6 | 4lc7 | −34.04 (2.9) | −13.2 (13) | 26.8 (11) | −4.3 (0.3) | 22.6 (10.9) | −24.64 (5.02) |
7 | 3ttp | −10.73 (0.9) | −66.97 (1.9) | −55.9 (1) | 5.6 (0.03) | −40.26 (1.02) | −35.6 (6) |
Inhibitor | ASP32 Oxygen Å | ASP228 Oxygen Å | Gly 13 Å | Ser35 Å | Hydrophobic: Tyr71 Å | Hydrph:Val69 Å | |
---|---|---|---|---|---|---|---|
5i3X | N of pyridine ring | 2.6, 3.6 | 4.9, 5.1 | 3.0–3.9 | 4.0–4.9 | ||
NH2 | 2.9, 3.6 | 2.9, 3.0 | |||||
5i3Y | N of pyridine ring | 3.5 | 5.0, 5.2 | 3.8 | 4.1–5 | 4.2–4.3 | 3.9–4.4 |
NH2 | 2.6 | 3.0, 3.1 | |||||
3TPP | 2.7, 3.5 | 2.7, 3.9 | 3.4 Gly230: 3.1 | Gln 73: 3.2 | |||
4LC7 | Asp93: 2.7, 2.7 | Asp289: 2.8, 2.8 | Leu91: 4.3 | Tyr132: 3.6 |
Inhibitors Number (from Figure 2) | vdW | EEL Electrostatic | EGB Polar | Esurf Surface Area | Esolv Desolvation |
---|---|---|---|---|---|
1, 2, 3, 4 | 0.95 | 0.1 | 0.41 | 0.63 | 0.29 |
1, 2, 3, 4, 5 | 0.76 | 0.01 | 0.43 | 0.44 | 0.33 |
1, 2, 3, 4, 5, 6 | 0.85 | 0.075 | 0.68 | 0.29 | 0.62 |
1, 2, 3, 4, 5, 6, 7 | 0.23 | 0.05 | 0.01 | 0.1 | 0.011 |
Protein-Inhibitor Complex PDB Code [37] | ∆H Kcal/mol | Inhibitor | Binding Sites to the Protein |
---|---|---|---|
5i3x I = 68J | −44.5 | N-(1-{3-[2-(2-amino-3-{3-[(3,3-dimethylbutyl)amino]-3-oxopropyl} quinolin-6-yl)phenyl]prop-2-yn-1-yl}cyclopropyl)-4-fluorobenzamide | N-O:Asp228, Asp32, Gly13 Hydrph:Tyr71, Val69, Ile118, Leu30, Phe108 |
5i3y I = 68K | −37.4 | N-(6-{2-[2-(2-amino-3-{3-[(3,3-dimethylbutyl)amino] -3-oxopropyl}quinolin-6-yl)phenyl]ethyl}pyridin-3-yl)-4-fluorobenzamide | N-O:Asp 228, Asp32, Gly34, Gly230Hydrph:Gly13, Ser35, Tyr71, Val69, Ile118, Phe108 |
5i3v I = 68M | −32.9 | (2R)-3-[2-amino-6-(3-methylpyridin-2-yl)quinolin-3-yl] -N-(3,3-dimethylbutyl)-2-methylpropanamide | N(L)-O(rec):Asp228, Asp32, Gly34, Hydrph:Tyr71, Phe108 |
5i3w I = 68L | −32.15 | N-[(5S)-2’-amino-3-(5,6-dihydro-2H-pyran-3-yl)-5’H -spiro [1-benzopyrano [2 ,3-c]pyridine-5,4’-[1,3]oxazol]-7-yl]-5-chloropyridine-2-carboxamideC25 H20 Cl N5 O4 | Asp 32, Asp 228, Gly 230, Tyr 71 Leu 30, Gly 13 |
5ie1 6BS | −30.5 | 3-[2-amino-6-(2-methylphenyl)quinolin-3-yl]-N-(3,3-dimethylbutyl)propanamide | N-O:Asp228, Asp32, Gly34 Hydrph:Tyr71, Val69, Ile118, Leu30, Phe108 |
3tpp 5HA | −35.6 | N-[(1S,2R)-1-BENZYL-3-(CYCLOPROPYLAMINO)-2-HYDROXYPROPYL]-5-[METHYL(METHYLSULFONYL)AMINO] -N’-[(1R)-1-PHENYLETHYL]ISOPHTHALAMIDEC31 H38 N4 O5 S | Asp 32, Asp 228 Gln 73 Phe 108, Gly 34 Asn 233 Gly 230, Leu 30 Trp 115, Thr231Gly230, Gln12 Thr232 Gly 13 |
4lc7 1WP | −24.64 | (3aR,7aR)-3a-[3-(5-chloropyridin-3-yl) phenyl]-3a,4,5,6,7,7a-hexahydro-1,3-benzoxazol-2-amine | Asp93, Asp289, Tyr 132 Leu 91 |
Inhibitor | PSA/∆H | PSA/Evdw | PSA/EGB | PSA/EEL | PSA/Esurface | PSA/Esolv |
---|---|---|---|---|---|---|
1, 2, 3, 4, 5, 6, 7 | 0.23 | 0.23 | 0.32 | 0.24 | 0.014 | 0.31 |
1, 2, 3, 4, 5, 6 | 0.3 | 0.14 | 0.17 | 0.14 | 0.4 | 0.13 |
1, 2, 3, 4, 5 | 0.07 | 0.5 | 0.006 | 0.76 | 0.54 | 0.03 |
1, 2, 3, 4 | 0.5 | 0.8 | 0.02 | 0.64 | 0.69 | 0.003 |
PDB ID-inhibitor | M.Wt <500 | LogP <5 | PSA Å2 [38] | No. H-bond Acceptor Atoms <5 | No. H-bond Donor Atoms <5 | N&O <10 | Number of Rotatable Bonds | No. Rings >3 |
---|---|---|---|---|---|---|---|---|
5i3x-68J | 590.730 | 7.16 ** 8.18 ++ | 97.11 | 3 | 3 | 6 | 13 | 5 |
5i3y-68K | 617.55 | 7.18 ** 8.59 ++ | 110 | 3 | 4 | 7 | 14 | 5 |
5i3v-68M | 404.548 | 4.96 ** 5.89 ++ | 80.9 | 2 | 3 | 5 | 8 | 3 |
5i3w-68L | 488.902 | 2.77 ** 4.43 ++ | 122.56 | 1 | 3 | 9 | 4 | 6 |
5ie1-6BS | 389.533 | 5.42 ** 6.25 ++ | 68.01 | 2 | 2 | 4 | 8 | 3 |
4lc7-1WP | 328.122 | 3.88 ** 4.23 ++ | 62.11 | 1 | 0 | 4 | 2 | 4 |
3tpp-5HA | 597.730 | 3.6 ** 3.86 ++ | 140.8 | 4 | 5 | 9 | 16 | 4 |
Proteins in Figures S5 Pockets Found by SPDV Software | Hydrophobic Pocket Area Å2, Volume Å3 | Hydrophobic E = −25 × S.A (Å2) kcal/mol | PSA (Å2) | Estimated Hydrophobic Energy −25 × PSA kcal/mol |
---|---|---|---|---|
5i3x Bound CR3 | 106, 61 | |||
105, 75 | −2.63 | 97.11 | −2.42 | |
90, 72 | ||||
71, 45 | ||||
5i3y | 93, 64 | |||
Bound t CR3 | 87, 57 | −2.18 | 110 | −2.75 |
74, 48 | ||||
5ie1 | ||||
CR3, Hexane ring | 96, 71 | −2.42 | 68.1 | −1.7 |
82,55 | ||||
67, 33 | ||||
5i3v | 126, 107 | |||
Bound CR3 | 61, 37 | −1.54 | 80.9 | −2.03 |
58, 33 | ||||
55, 31 | ||||
3TPP no hyd | 115, 71 | 140.8 | ||
No hyd | 74, 47 | 0.0 | ||
No hyd | 59, 35 | |||
4lc7 | 165, 101 | |||
Hexane ring | 100, 61 | −2.52 | 62.11 | |
89, 60 | ||||
5i3w | 80,39 | |||
Close to ring | 61,35 | −1.54 | 122.56 | −3.06 |
61, 36 | ||||
56,33 |
PDB ID-Inhibitor Number (from Figure 2) | NnH | LE = −∆G/NnH kcal/mol/Heavy Atom | ∆Gbind Calculated | ΔG Exp |
---|---|---|---|---|
5i3X-(1) | 44 | 0.41 | −19.3 | −11.34 |
5i3Y-(2) | 47 | 0.27 | −12.4 (7) | −13.16 |
5iE1-(3) | 29 | 0.26 | −7.5 (6) | −9.60 |
5i3V-(4) | 30 | 0.36 | −10.66 (4) | −10.92 |
5i3W-(5) | 35 | 0.24 | −8.15 (4) | −12.9 |
3TPP-(6) | 41 | 0.23 | −9.4 (4) | −9.28 |
4LC7-(7) | 23 | 0.09 | −2.15 (5) | −6.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamed, M.Y. Prediction of Drug Potencies of BACE1 Inhibitors: A Molecular Dynamics Simulation and MM_GB(PB)SA Scoring. Computation 2020, 8, 106. https://doi.org/10.3390/computation8040106
Hamed MY. Prediction of Drug Potencies of BACE1 Inhibitors: A Molecular Dynamics Simulation and MM_GB(PB)SA Scoring. Computation. 2020; 8(4):106. https://doi.org/10.3390/computation8040106
Chicago/Turabian StyleHamed, Mazen Y. 2020. "Prediction of Drug Potencies of BACE1 Inhibitors: A Molecular Dynamics Simulation and MM_GB(PB)SA Scoring" Computation 8, no. 4: 106. https://doi.org/10.3390/computation8040106
APA StyleHamed, M. Y. (2020). Prediction of Drug Potencies of BACE1 Inhibitors: A Molecular Dynamics Simulation and MM_GB(PB)SA Scoring. Computation, 8(4), 106. https://doi.org/10.3390/computation8040106