Generalized Pattern Search Algorithm for Crustal Modeling
Abstract
1. Introduction
2. Materials and Methods
2.1. Receiver Functions
2.2. H-κ Stacking
2.3. Generalized Pattern Search (GPS) Techniques
2.3.1. Pattern Search Methods for Linearly Constrained Minimization Problems
The Generalized Pattern Search (GPS) Algorithm
| Algorithm 1. Exploratory moves for linearly constrained pattern search. |
|
| Algorithm 2. The generalized pattern search (GPS) method for linearly constrained problems. |
Suppose x0 ∈ Ω and Δ0 > 0 be given. For i = 0, 1, …,
|
| Algorithm 3. Updating Δi. |
Let τ ∈ Q, τ > 1, and {w0, w1, …, wL} ⊂ Z, w0 < 0, and wj ≥ 0, j = 1, …, L, where Q is the set of real numbers and Z represents a set of integers. Let θ = τw0, and λi ∈ Λ = {τw1, …, τwL}.
|
2.3.2. Generalized Pattern Search (GPS) Technique for H-κ Inversion
The Minimization Problem for GPS Implementation
3. Data and Results
3.1. The GPS Implementation
3.2. GPS Convergence Test for the H-κ Inversion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Langston, C.A. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J. Geophys. Res. 1979, 84, 4749–4762. [Google Scholar] [CrossRef]
- Rondenay, S. Upper Mantle Imaging with Array Recordings of Converted and Scattered Teleseismic Waves. Surv. Geophys. 2009, 30, 377–405. [Google Scholar] [CrossRef]
- Zhu, L.; Kanamori, H. Moho depth variation in southern California from teleseismic receiver functions. J. Geophys. Res. 2000, 105, 2969–2980. [Google Scholar] [CrossRef]
- Julia, J.; Mejia, J. Thickness and Vp/Vs ratio variation in the Iberian crust. Geophys. J. Int. 2004, 156, 59–72. [Google Scholar] [CrossRef]
- Dugda, M.T.; Nyblade, A.A. New constraints on crustal structure in eastern Afar from the analysis of receiver functions and surface wave dispersion in Djibouti. In Geological Society Special Publications; Yirgu, G., Ebinger, C.J., Maguire, P.K.H., Eds.; Geological Society: London, UK, 2006; Volume 259, pp. 239–251. [Google Scholar] [CrossRef]
- Buffoni, C.; Sabbione, N.C.; Schimmel, M.; Rosa, M.L. Teleseismic receiver function analysis in Tierra del Fuego Island: An estimation of crustal thickness and Vp/Vs velocity ratio. In Geophysical Research Abstracts; EGU2012-837; EGU General Assembly 2012: Bern, Switzerland, 2012; Volume 14. [Google Scholar]
- Dugda, M.T.; Nyblade, A.A.; Julia, J.; Langston, C.A.; Ammon, C.J.; Simiyu, S. Crustal structure in Ethiopia and Kenya from receiver function analysis: Implications for Rift development in eastern Africa. J. Geophys. Res. 2005, 110, B01303. [Google Scholar] [CrossRef]
- Dugda, M.T.; Workineh, A.T.; Homaifar, A.; Kim, J.H. Receiver Function Inversion Using Genetic Algorithms. Bullet. Seismol. Soc. Am. BSSA 2012, 102, 2245–2251. [Google Scholar] [CrossRef]
- Dennis, J.E.; Torczon, V.J. Direct search methods on parallel machines. SIAM J. Optim. 1991, 1, 448–474. [Google Scholar] [CrossRef]
- Torczon, V. Multi-Directional Search: A Direct Search Algorithm for Parallel Machines. Ph.D. Thesis, Department of Mathematical Sciences, Rice University, Houston, TX, USA, 1989. [Google Scholar]
- Torczon, V.J. On the convergence of pattern search algorithms. SIAM J. Optim. 1997, 7, 1–25. [Google Scholar] [CrossRef]
- Lewis, R.M.; Torczon, V.J. A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds. SIAM J. Optim. 2001, 12, 1075–1089. [Google Scholar] [CrossRef]
- Lewis, R.M.; Torczon, V.J.; Trosset, M.W. Direct search methods: Then and now. J. Comput. Appl. Math. 2000, 124, 191–207. [Google Scholar] [CrossRef]
- Lewis, R.M.; Torczon, V.J. Pattern search algorithms for linearly constrained minimization. SIAM J. Optim. 1999, 10, 917–941. [Google Scholar] [CrossRef]
- Lewis, R.M.; Torczon, V.J. Pattern search algorithms for bound constrained minimization. SIAM J. Optim. 1999, 9, 1082–1099. [Google Scholar] [CrossRef]
- Kolda, T.G. Robert Michael Lewis, Virginia Torczon. Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods. SIAM Rev. 2003, 45, 385–482. [Google Scholar] [CrossRef]
- Conn, A.R.; Gould, N.I.M.; Toint, P.L. A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 1991, 28, 545–572. [Google Scholar] [CrossRef]
- Hooke, R.; Jeeves, T.A. Direct search solution of numerical and statistical problems. J. Assoc. Comput. Mach. (ACM) 1961, 8, 212–229. [Google Scholar] [CrossRef]
- Ligorria, J.P.; Ammon, C. Iterative deconvolution and receiver-function estimation. Bull. Seism. Soc. Am. 1999, 89, 1395–1400. [Google Scholar]
- Li, J. A generalized H-κ method with harmonic corrections on Ps and its crustal multiples in receiver functions. J. Geophys. Res. Solid Earth 2019, 124, 3782–3801. [Google Scholar] [CrossRef]
- Wang, Y.; Gary, L. Pavlis. Generalized iterative deconvolution for receiver function estimation. Geophys. J. Int. 2016, 204, 1086–1099. [Google Scholar] [CrossRef]
- Cassidy, J.F. Numerical experiments in broadband receiver function analysis. Bull. Seismol. Soc. Am. 1992, 82, 1453–1474. [Google Scholar]
- Ammon, C.J. The isolation of receiver effects from teleseismic P waveforms. Bull. Seism. Soc. Am. 1991, 81, 2504–2510. [Google Scholar]
- Conn, A.R.; Toint, P.L.; Gould, N.I.M.; Orban, D. A Primal-Dual Trust-Region Algorithm for Minimizing a Non-Convex Function Subject to General Inequality and Linear Equality Constraints; Technical Report RAL-TR-1999-054; Library and Information Services, Council for the Central Laboratory of the Research Councils: Oxfordshire, UK, 1999; p. 32. [Google Scholar]
- Mackenzie, G.D.; Thybo, H.; Maguire, P.K.H. Crustal velocity structure across the Main Ethiopian Rift: Results from two-dimensional wide-angle seismic modelling. Geophys. J. Int. 2005, 162, 994–1006. [Google Scholar] [CrossRef]
- Makris, J.; Ginzburg, A. The Afar Depression: Transition between continental rifting and sea floor spreading. Tectonophysics 1987, 141, 199–214. [Google Scholar] [CrossRef]
- Van der Meijde, M.; van der Lee, S. Domenico Giardini. Crustal structure beneath broad-band seismic stations in the Mediterranean region. Geophys. J. Int. 2003, 152, 729–739. [Google Scholar] [CrossRef]
- Bassin, C.; Laske, G.; Masters, G. The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU 2000, 81, F897. [Google Scholar]
- Zandt, G.; Ammon, C.J. Continental Crustal composition constrained by measurements of crustal Poisson’s ratio. Nature 1995, 374, 152–154. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Chen, C.-H.; Hattori, K. Earthquake Precursory Studies. J. Asian Earth Sci. 2015, 114, 279–434. [Google Scholar]
- Panayiotis, A.V.; Nicholas, V.S.; Efthimios, S.S. Phenomena preceding major earthquakes interconnected through a physical model. Ann. Geophys. 2019, 37, 315–324. [Google Scholar] [CrossRef]
- Sarlis, N.V.; Skordas, E.S.; Christopoulos, S.-R.G.; Varotsos., P.A. Natural Time Analysis: The Area under the Receiver Operating Characteristic Curve of the Order Parameter Fluctuations Minima Preceding Major Earthquakes. Entropy 2020, 22, 583. [Google Scholar] [CrossRef]



| Hopt | 30.0988 |
| κopt | 1.7750 |
| w1opt | 0.6000 |
| w2opt | 0.3010 |
| w3opt | 0.1000 |
| Fval | −0.7290 |
| Different Studies | Optimal H (km) | Optimal Vp/Vs |
|---|---|---|
| Genetic algorithm (GA) implementation (Dugda et al., 2012, this study) | 29.7 | 1.77 |
| Monte Carlo (Dugda et al., 2005) | 29.8 | 1.79 |
| GPS technique | 30.1 | 1.78 |
| Different Studies | Optimal w1 | Optimal w2 | Optimal w3 |
|---|---|---|---|
| Genetic algorithm implementation (Dugda et al., 2012, BSSA) | 0.5 | 0.4 | 0.1 |
| Monte Carlo (Dugda et al., 2005) | 0.5 | 0.4 | 0.1 |
| GPS technique | 0.6 | 0.3 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dugda, M.; Moazzami, F. Generalized Pattern Search Algorithm for Crustal Modeling. Computation 2020, 8, 105. https://doi.org/10.3390/computation8040105
Dugda M, Moazzami F. Generalized Pattern Search Algorithm for Crustal Modeling. Computation. 2020; 8(4):105. https://doi.org/10.3390/computation8040105
Chicago/Turabian StyleDugda, Mulugeta, and Farzad Moazzami. 2020. "Generalized Pattern Search Algorithm for Crustal Modeling" Computation 8, no. 4: 105. https://doi.org/10.3390/computation8040105
APA StyleDugda, M., & Moazzami, F. (2020). Generalized Pattern Search Algorithm for Crustal Modeling. Computation, 8(4), 105. https://doi.org/10.3390/computation8040105
