Generalized Pattern Search Algorithm for Crustal Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Receiver Functions
2.2. H-κ Stacking
2.3. Generalized Pattern Search (GPS) Techniques
2.3.1. Pattern Search Methods for Linearly Constrained Minimization Problems
The Generalized Pattern Search (GPS) Algorithm
Algorithm 1. Exploratory moves for linearly constrained pattern search. |
|
Algorithm 2. The generalized pattern search (GPS) method for linearly constrained problems. |
Suppose x0 ∈ Ω and Δ0 > 0 be given. For i = 0, 1, …,
|
Algorithm 3. Updating Δi. |
Let τ ∈ Q, τ > 1, and {w0, w1, …, wL} ⊂ Z, w0 < 0, and wj ≥ 0, j = 1, …, L, where Q is the set of real numbers and Z represents a set of integers. Let θ = τw0, and λi ∈ Λ = {τw1, …, τwL}.
|
2.3.2. Generalized Pattern Search (GPS) Technique for H-κ Inversion
The Minimization Problem for GPS Implementation
3. Data and Results
3.1. The GPS Implementation
3.2. GPS Convergence Test for the H-κ Inversion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Langston, C.A. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J. Geophys. Res. 1979, 84, 4749–4762. [Google Scholar] [CrossRef] [Green Version]
- Rondenay, S. Upper Mantle Imaging with Array Recordings of Converted and Scattered Teleseismic Waves. Surv. Geophys. 2009, 30, 377–405. [Google Scholar] [CrossRef]
- Zhu, L.; Kanamori, H. Moho depth variation in southern California from teleseismic receiver functions. J. Geophys. Res. 2000, 105, 2969–2980. [Google Scholar] [CrossRef] [Green Version]
- Julia, J.; Mejia, J. Thickness and Vp/Vs ratio variation in the Iberian crust. Geophys. J. Int. 2004, 156, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Dugda, M.T.; Nyblade, A.A. New constraints on crustal structure in eastern Afar from the analysis of receiver functions and surface wave dispersion in Djibouti. In Geological Society Special Publications; Yirgu, G., Ebinger, C.J., Maguire, P.K.H., Eds.; Geological Society: London, UK, 2006; Volume 259, pp. 239–251. [Google Scholar] [CrossRef]
- Buffoni, C.; Sabbione, N.C.; Schimmel, M.; Rosa, M.L. Teleseismic receiver function analysis in Tierra del Fuego Island: An estimation of crustal thickness and Vp/Vs velocity ratio. In Geophysical Research Abstracts; EGU2012-837; EGU General Assembly 2012: Bern, Switzerland, 2012; Volume 14. [Google Scholar]
- Dugda, M.T.; Nyblade, A.A.; Julia, J.; Langston, C.A.; Ammon, C.J.; Simiyu, S. Crustal structure in Ethiopia and Kenya from receiver function analysis: Implications for Rift development in eastern Africa. J. Geophys. Res. 2005, 110, B01303. [Google Scholar] [CrossRef]
- Dugda, M.T.; Workineh, A.T.; Homaifar, A.; Kim, J.H. Receiver Function Inversion Using Genetic Algorithms. Bullet. Seismol. Soc. Am. BSSA 2012, 102, 2245–2251. [Google Scholar] [CrossRef]
- Dennis, J.E.; Torczon, V.J. Direct search methods on parallel machines. SIAM J. Optim. 1991, 1, 448–474. [Google Scholar] [CrossRef] [Green Version]
- Torczon, V. Multi-Directional Search: A Direct Search Algorithm for Parallel Machines. Ph.D. Thesis, Department of Mathematical Sciences, Rice University, Houston, TX, USA, 1989. [Google Scholar]
- Torczon, V.J. On the convergence of pattern search algorithms. SIAM J. Optim. 1997, 7, 1–25. [Google Scholar] [CrossRef]
- Lewis, R.M.; Torczon, V.J. A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds. SIAM J. Optim. 2001, 12, 1075–1089. [Google Scholar] [CrossRef] [Green Version]
- Lewis, R.M.; Torczon, V.J.; Trosset, M.W. Direct search methods: Then and now. J. Comput. Appl. Math. 2000, 124, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Lewis, R.M.; Torczon, V.J. Pattern search algorithms for linearly constrained minimization. SIAM J. Optim. 1999, 10, 917–941. [Google Scholar] [CrossRef] [Green Version]
- Lewis, R.M.; Torczon, V.J. Pattern search algorithms for bound constrained minimization. SIAM J. Optim. 1999, 9, 1082–1099. [Google Scholar] [CrossRef]
- Kolda, T.G. Robert Michael Lewis, Virginia Torczon. Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods. SIAM Rev. 2003, 45, 385–482. [Google Scholar] [CrossRef]
- Conn, A.R.; Gould, N.I.M.; Toint, P.L. A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 1991, 28, 545–572. [Google Scholar] [CrossRef] [Green Version]
- Hooke, R.; Jeeves, T.A. Direct search solution of numerical and statistical problems. J. Assoc. Comput. Mach. (ACM) 1961, 8, 212–229. [Google Scholar] [CrossRef]
- Ligorria, J.P.; Ammon, C. Iterative deconvolution and receiver-function estimation. Bull. Seism. Soc. Am. 1999, 89, 1395–1400. [Google Scholar]
- Li, J. A generalized H-κ method with harmonic corrections on Ps and its crustal multiples in receiver functions. J. Geophys. Res. Solid Earth 2019, 124, 3782–3801. [Google Scholar] [CrossRef]
- Wang, Y.; Gary, L. Pavlis. Generalized iterative deconvolution for receiver function estimation. Geophys. J. Int. 2016, 204, 1086–1099. [Google Scholar] [CrossRef]
- Cassidy, J.F. Numerical experiments in broadband receiver function analysis. Bull. Seismol. Soc. Am. 1992, 82, 1453–1474. [Google Scholar]
- Ammon, C.J. The isolation of receiver effects from teleseismic P waveforms. Bull. Seism. Soc. Am. 1991, 81, 2504–2510. [Google Scholar]
- Conn, A.R.; Toint, P.L.; Gould, N.I.M.; Orban, D. A Primal-Dual Trust-Region Algorithm for Minimizing a Non-Convex Function Subject to General Inequality and Linear Equality Constraints; Technical Report RAL-TR-1999-054; Library and Information Services, Council for the Central Laboratory of the Research Councils: Oxfordshire, UK, 1999; p. 32. [Google Scholar]
- Mackenzie, G.D.; Thybo, H.; Maguire, P.K.H. Crustal velocity structure across the Main Ethiopian Rift: Results from two-dimensional wide-angle seismic modelling. Geophys. J. Int. 2005, 162, 994–1006. [Google Scholar] [CrossRef]
- Makris, J.; Ginzburg, A. The Afar Depression: Transition between continental rifting and sea floor spreading. Tectonophysics 1987, 141, 199–214. [Google Scholar] [CrossRef]
- Van der Meijde, M.; van der Lee, S. Domenico Giardini. Crustal structure beneath broad-band seismic stations in the Mediterranean region. Geophys. J. Int. 2003, 152, 729–739. [Google Scholar] [CrossRef] [Green Version]
- Bassin, C.; Laske, G.; Masters, G. The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU 2000, 81, F897. [Google Scholar]
- Zandt, G.; Ammon, C.J. Continental Crustal composition constrained by measurements of crustal Poisson’s ratio. Nature 1995, 374, 152–154. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Chen, C.-H.; Hattori, K. Earthquake Precursory Studies. J. Asian Earth Sci. 2015, 114, 279–434. [Google Scholar]
- Panayiotis, A.V.; Nicholas, V.S.; Efthimios, S.S. Phenomena preceding major earthquakes interconnected through a physical model. Ann. Geophys. 2019, 37, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Sarlis, N.V.; Skordas, E.S.; Christopoulos, S.-R.G.; Varotsos., P.A. Natural Time Analysis: The Area under the Receiver Operating Characteristic Curve of the Order Parameter Fluctuations Minima Preceding Major Earthquakes. Entropy 2020, 22, 583. [Google Scholar] [CrossRef]
Hopt | 30.0988 |
κopt | 1.7750 |
w1opt | 0.6000 |
w2opt | 0.3010 |
w3opt | 0.1000 |
Fval | −0.7290 |
Different Studies | Optimal H (km) | Optimal Vp/Vs |
---|---|---|
Genetic algorithm (GA) implementation (Dugda et al., 2012, this study) | 29.7 | 1.77 |
Monte Carlo (Dugda et al., 2005) | 29.8 | 1.79 |
GPS technique | 30.1 | 1.78 |
Different Studies | Optimal w1 | Optimal w2 | Optimal w3 |
---|---|---|---|
Genetic algorithm implementation (Dugda et al., 2012, BSSA) | 0.5 | 0.4 | 0.1 |
Monte Carlo (Dugda et al., 2005) | 0.5 | 0.4 | 0.1 |
GPS technique | 0.6 | 0.3 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dugda, M.; Moazzami, F. Generalized Pattern Search Algorithm for Crustal Modeling. Computation 2020, 8, 105. https://doi.org/10.3390/computation8040105
Dugda M, Moazzami F. Generalized Pattern Search Algorithm for Crustal Modeling. Computation. 2020; 8(4):105. https://doi.org/10.3390/computation8040105
Chicago/Turabian StyleDugda, Mulugeta, and Farzad Moazzami. 2020. "Generalized Pattern Search Algorithm for Crustal Modeling" Computation 8, no. 4: 105. https://doi.org/10.3390/computation8040105
APA StyleDugda, M., & Moazzami, F. (2020). Generalized Pattern Search Algorithm for Crustal Modeling. Computation, 8(4), 105. https://doi.org/10.3390/computation8040105