On the Solution of Equations by Extended Discretization
Abstract
:1. Introduction
2. Convergence of DNKM
- (H1)
- is differentiable, and there exists a simple solution of Equation (1).
- (H2)
- There exists continuous and nondecreasing function such that for allSet provided exists and is given by (4).
- (H3)
- There exist continuous and nondecreasing function such that for all
- (H4)
- Least zeros of functions given in (5) exist for all
- (H5)
- where
- (H6)
- (H7)
- (H8)
- The initial function chosen from the ball is such that the first iterate where
3. Numerical Examples
Author Contributions
Funding
Conflicts of Interest
References
- Amorós, C.; Argyros, I.K.; Magreñán, A.A.; Regmi, S.; González, R.; Sicilia, J.A. Extending the Applicability of Stirling’s Method. Mathematics 2020, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Amat, S.; Busquier, S.; Gutiérrez, J.M. On the local convergence of secant-type methods. Intern. J. Comput. Math. 2004, 81, 1153–1161. [Google Scholar] [CrossRef]
- Argyros, I.K. On an extension of the mesh-independence principle for operator equations in Banach spaces. Appl. Math. Lett. 1996, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K. Computational Theory of Iterative Methods, Series: Studies in Computational Mathematics, 15; Chui, C.K., Wuytack, L., Eds.; Elsevier Publ. Company: New York, NY, USA, 2007. [Google Scholar]
- Argyros, I.K. Convergence and Application of Newton-type Iterations, Convergence and Application of Newton-type Iterations; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Argyros, I.K.; George, S. Local convergence for a Chebyshev-type method in Banach space free of derivatives. Adv. Theory Nonlinear Anal. Its Appl. 2018, 2, 62–69. [Google Scholar]
- Argyros, I.K.; George, S. Local comparison of two sixth-order solvers using only the first derivative. Adv. Theory Nonlinear Anal. Its Appl. 2019, 3, 220–230. [Google Scholar]
- Argyros, I.K.; George, S. Mathematical Modeling for the Solution of Equations and Systems of Equations with Applications, Volume-IV; Nova Publishes: New York, NY, USA, 2020. [Google Scholar]
- Argyros, I.K.; George, S. On the complexity of extending the convergence region for Traub’s method. J. Complex. 2020, 56, 101423. [Google Scholar] [CrossRef]
- Argyros, I.K.; González, D. Extending the applicability of Newton’s method by improving a local result due to Dennis and Schnabel. Sema J. 2014, 63, 53–63. [Google Scholar] [CrossRef]
- Argyros, I.K.; Magreñán, A.A. Iterative Method and Their Dynamics with Applications; CRC Press: New York, NY, USA, 2017. [Google Scholar]
- Argyros, I.K.; Regmi, S. Ball Convergence Theorems Extending the Chen-Yamamoto Results for Nonlinear Equations. Panam. Math. J. 2019, 29, 97–104. [Google Scholar]
- Argyros, I.K.; Regmi, S. Extending the Applicability of a Theorem by Haßler for the Gauss-Newton Solve. Trans. Math. Program. Appl. 2019, 7, 57–62. [Google Scholar]
- Argyros, I.K.; Regmi, S. Majorizing Sequences for Single Step Iterative Processes and Restricted Convergence. Panam. Math. J. 2019, 28, 93–102. [Google Scholar]
- Argyros, I.K.; Regmi, S. Undergraduate Research at Cameron University on Iterative Procedures in Banach and Other Spaces; Nova Science Publisher: New York, NY, USA, 2019. [Google Scholar]
- Argyros, I.K.; Szidarovszky, F. The Theory and Application of Iterative Methods; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Bonnans, F.J. Local analysis of Newton-type method for variational inequalities and nonlinear programming. Appl. Math. Optim. 1994, 29, 161–186. [Google Scholar] [CrossRef]
- Cátinas, E. Inexact perturbed Newton methods and applications to a class of Krylov solvers. J. Optim. Theory. Appl. 2001, 108, 543–570. [Google Scholar] [CrossRef]
- Cibulka, R.; Dontchev, A.L.; Kruger, A.Y. Strong metric subregularity of mapping in variational analysis and optimization. J. Math. Anal. Appl. 2017, 457, 1247–1282. [Google Scholar] [CrossRef] [Green Version]
- Deuflhard, P.; Potra, F.A. Asymptotic mesh independence of Newton- Galerkin methods and a refined Mysovskii theorem. SIAM J. Numer. Anal. 1992, 29, 1395–1412. [Google Scholar] [CrossRef]
- Ezquerro, J.A.; González, D.; Hernández, M.A. On the local convergence of Newton’s method under generalized conditions of Kantorovich. Appl. Math. Lett. 2013, 26, 566–570. [Google Scholar] [CrossRef]
- Ezquerro, J.A.; Hernández, M.A. Gneralized differentiability conditions for Newton’s method. Ima J. Numer. Anal. 2002, 22, 187–205. [Google Scholar] [CrossRef]
- Laumen, M. Newton’s mesh independence principle for a class of optimal design problems. SIAM J. Control. Optim. 1999, 37, 1070–1088. [Google Scholar] [CrossRef]
- Magreñán, A.A. Different anomalies in a Jarratt family of iterative root finding methods. Appl. Math. Comput. 2014, 233, 29–38. [Google Scholar]
- Potra, F.A.; Pták, V. Nondiscrete Induction and Iterative Processes; Pitman Publishing Limited: London, UK, 1984. [Google Scholar]
- Preininger, J.; Scarinci, T.; Veliov, V.M. Metric regularity properties in Bang Bang type linear quadratic optimal control problems. Set Valued Var. Anal. 2019, 27, 381. [Google Scholar] [CrossRef]
- Rheinboldt, W.C. An adaptive continuation process for solving systems of nonlinear equations. In Mathematical Models and Numerical Methods; Tikhonov, A.N., Ed.; Banach Center: Warsaw, Poland, 1977; pp. 129–142. [Google Scholar]
- Traub, J.F. Iterative Methods for Solution of Equations; Englewood Cliffs: Prentice-Hall, NJ, USA, 1964. [Google Scholar]
- Allgower, E.L.; Böhmer, K.; Potra, F.A.; Rheinboldt, W.C. A mesh-independent principle for operator equations and their discretizations. SIAM J. Numer. Anal. 1986, 23, 160–169. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argyros, G.I.; Argyros, M.I.; Regmi, S.; Argyros, I.K.; George, S. On the Solution of Equations by Extended Discretization. Computation 2020, 8, 69. https://doi.org/10.3390/computation8030069
Argyros GI, Argyros MI, Regmi S, Argyros IK, George S. On the Solution of Equations by Extended Discretization. Computation. 2020; 8(3):69. https://doi.org/10.3390/computation8030069
Chicago/Turabian StyleArgyros, Gus I., Michael I. Argyros, Samundra Regmi, Ioannis K. Argyros, and Santhosh George. 2020. "On the Solution of Equations by Extended Discretization" Computation 8, no. 3: 69. https://doi.org/10.3390/computation8030069
APA StyleArgyros, G. I., Argyros, M. I., Regmi, S., Argyros, I. K., & George, S. (2020). On the Solution of Equations by Extended Discretization. Computation, 8(3), 69. https://doi.org/10.3390/computation8030069