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Abstract: Stirling’s method is considered as an alternative to Newton’s method when the latter fails
to converge to a solution of a nonlinear equation. Both methods converge quadratically under similar
convergence criteria and require the same computational effort. However, Stirling’s method has
shortcomings too. In particular, contractive conditions are assumed to show convergence. However,
these conditions limit its applicability. The novelty of our paper lies in the fact that our convergence
criteria do not require contractive conditions. Hence, we extend its applicability of Stirling’s method.
Numerical examples illustrate our new findings.
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1. Introduction

In this work we deal with finding a fixed point x∗ of the equation

x = F(x), (1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach space X with
values into itself. By I we denote the identity linear operator in L(X, X). The symbol L(X, X) stands
for the space of bounded linear operators from X into X.

Many applications from different areas, including education, reduce to dealing with Equation (1)
utilizing mathematical modelling [1–24]. However, the solution x∗ is found in closed form only in rare
cases. This problem leads to the usage of methods that are iterative in nature.

We study Stirling’s method given for all n = 0, 1, 2, . . . by

xn+1 = xn − (I − F′(F(xn)))
−1(xn − F(xn)), (2)

where x0 ∈ D. Further we will introduce an operator Γ(x) ∈ L(X, X) such that Γ(x) = (I− F′(F(x)))−1

with x ∈ D, and denote Γ0 = Γ(x0) for use in later Sections.
This method converges quadratically as Newton’s method does, and also requires the same

computational effort (see details in [1,22]). It is considered to be a useful alternative in cases where
Newton’s method fails to converge (see such examples in [22]). However, the usage of Stirling’s
method has a drawback, since the convergence criteria require contractions. We have detected some
other problems listed in Remarks 3 and 4. These drawbacks limit the applicability of Stirling’s method.
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In order to extend its applicability, we do not use contractive conditions in our semi-local as well as
the local convergence results.

The rest of the work is structured as follows. Section 2 includes the semi-local convergence
analysis. Section 3 contains the local analysis. The numerical results are given in Section 4.

2. Semi-Local Convergence Analysis

Let L0 > 0, L > 0 and γ ≥ 0. Consider a real sequence {tn} as

t0 = 0, t1 = γ, tn+2 = tn+1 +
L(tn+1 − tn)2

2(1− L0tn+1)
. (3)

Next, we study the convergence of sequence {tn} by developing relevant lemmas and theorems.

Lemma 1. Suppose that

h = L1γ <
1
2

, (4)

where
L1 =

1
8
(L + 4L0 +

√
L2 + 8L0L).

Then, sequence {tn} generated for t0 = 0 by (4) is increasing, converges to its unique least upper bound t∗,
so that

d1 ≤ t∗ ≤ d2, (5)

where

d1 =
1− exp[− L0γ

(1−L0γ)(1−δL0γ)
]

L0

d2 =
1− exp[ 2L0γ

2−L0γ + 2δ1
2−δ1

]

L0
,

δ =
L

2L0(1− L0γ)2

and
δ1 =

L
2L0

(
δ

1− δ
)2.

Proof. It is convenient to first simplify sequence {tn}. Define sequence {αn} by αn = 1 − L0tn.

Then, by (4) we can write α0 = 1, α1 = 1− L0γ, αn+1 = αn − L(αn−αn−1)
2

2L0αn
. Moreover, define sequence

{θn} by θn = 1− αn
αn−1

. Then, we can write θ1 = L0γ, θn+1 = L
2L0

( θn
1−θn

)2. We have by (4) that δθ1 < 1
and 0 < θ2 < θ1. Suppose that 0 < θk < θk−1 and δθk < 1. Then, we get in turn that

θk+1 =
L

2L0
(

θk
1− θk

)2 < δθ2
k < θk (6)

and
δθk+1 < δθk < 1. (7)

Hence, {βn} is a decreasing sequence, so αn = (1− βn)αn−1 and tn = 1−αn
L0

are also decreasing
sequences. In particular,

αn = (1− βn)αn−1 = . . . = (1− βn) . . . (1− β1)α0 = (1− βn) . . . (1− β0).



Mathematics 2020, 8, 35 3 of 10

From 0 < β1 = L0γ < 1, we get 0 < αn < 1, so tn = 1−αn
γ < 1

γ . That is sequence {tn} is increasing,

bounded from above by 1
L0

, so it converges to t∗.
Next, we show (4). We can write

α∗ = lim
n→∞

αn =
∞

∏
n=1

(1− βn),

or

log
1
α∗

=
∞

∑
n=1

log
1

1− βn
.

Using the estimate

2
t− 1
t + 1

≤ log t ≤ t2 − 1
2t

for t > 1,

we get first an upper bound for log 1
α∗ by (5) and (6) and the inequality 2n ≥ n + 1 for n = 0, 1, 2 . . .:

log
1
α∗

≤
∞

∑
n=1

βn(2− βn)

2(1− βn)
≤ 1

1− β1

∞

∑
n=0

βn+1

≤ 1
δ(1− β1)

∞

∑
n=1

(δθ1)
2n ≤ 1

δ(1− β1)

∞

∑
n=1

(δβ1)
n

=
β1

(1− β1)(1− δβ1)
,

which together with t∗ = 1−α∗
L0

imply t∗ ≤ d2. The lower bound in (4) is obtained similarly from
the estimate:

log
1
α∗
≥ 2

∞

∑
n=1

αn

2− αn
>

2α1

2− α1
+

2α2

2− α2
.

Lemma 2. Suppose that

h =
1
2

. (8)

Then, sequence {tn} is increasingly converging to 1
L0

.

Proof. We have αn = (1− L0R)n, βn = L0γ and tn = 1−(1−L0γ)n

L0
. Then, by (8), we get 0 ≤ L0γ < 1.

In what follows the set denoted by U(x, a) is a ball with center x ∈ X and of radius a > 0.
To simplify, the notation, by || || in this work, we denote the operator norm or the norm on the

Banach space. The semi-local convergence analysis is based on the conditions (C):

(C1) F : D ⊂ X → X is a Fréchet differentiable operator and there exist x0 ∈ D, c > 0, γ ≥ 0 such
that Γ0 = (I − F′(F(x0)))

−1 ∈ L(X, X) with

||I − F′(F(x0))|| ≤ c

and
||Γ0(x0 − F(x0))|| ≤ γ.

(C2) There exist a0 ∈ [0, 1), b0 > 0 such that for each x ∈ D

||F(x)− F(x0)|| ≤ a0||x− x0||
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and
||Γ0(F′(F(x))− F′(F(x0))|| ≤ b0||F(x)− F(x0)||.

(C3) Let r0 = 1
a0b0

and D0 = D ∩U(x0, r0). There exist b > 0, b1 > 0 such that for each x, y ∈ D0

||Γ0(F′(x)− F(y))|| ≤ b||x− y||

and
||F′(F(x))− F′(F(x0))|| ≤ b1||F(x)− F(x0)||.

(C4) Hypotheses of Lemmas 1 and 2 hold with

L = 2b(c +
b1

b0
+

1
2
)

and
L0 = a0b0.

(C5)
||F(x0)− x0||

1− a0
≤ t∗.

(C6) The ball Ū(x0, t∗) is constructed such that

Ū(x0, t∗) ⊆ D.

We suppose from now on that the conditions (C) hold.
Next, the semi-local convergence result is given for Stirling’s method (2).

Theorem 1. Under conditions (C), sequence {xn} generated by Stirling’s method (2) is well defined, remains
in U(x0, t∗) for each n = 0, 1, 2, . . . and converges to x∗ ∈ Ū(x0, t∗) which satisfies x∗ = F(x∗) with Q-order
of convergence 2. Moreover, the following estimates hold

||xn − x∗|| ≤ t∗ − tn,

and x∗ is the only fixed point of F in U(x0, t∗∗), with

t∗∗ =
2
b
− (2a0 + 1)t∗.

Proof. Let x ∈ Ū(x0, t∗). We get by (C2) and (C5) that

||F(x)− x0|| ≤ ||F(x)− F(x0)||+ ||F(x0)− x0|| ≤ a0||x− x0||+ ||F(x0)− x0|| ≤ a0t∗ + ||F(x0)− x0|| ≤ t∗,

so F(x) ∈ Ū(x0, t∗). Using (C2) and the Lemmas 1 and 2, we have in turn that

||Γ0(Γ(x)− Γ0)|| = ||Γ0((F′(F(x))− F′(F(x0)))|| (9)

≤ b0a0||x− x0|| = L0||x− x0|| ≤ L0t∗ < 1.

By the Lemma of Banach on invertible operators [21] (Perturbation Lemma 2.3.2, p. 45) Γ(x)−1 ∈
L(X , X), and

||Γ(x)(I − F′(F(x0)))|| ≤
1

1− L0||x− x0||
. (10)

Using Stirling’s method (2):
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xk+1 − F(xk+1) = F(xk+1)− F(xk)− F(xk+1) + F(xk) (11)

= F′(yk)(xk+1 − xk)− (F(xk+1 − F(xk))

=
∫ 1

0
[F′(yk)− F′(xk + θ(xk+1 − xk))](xk+1 − xk)dθ.

Then, in view of (C2), (C3) and Equation (11), we obtain in turn that

||Γ0(xk+1 − F(xk+1))|| (12)

≤ b
∫ 1

0
||yk − xk − θ(xk+1 − xk)||||xk+1 − xk||dθ

≤ b[||yk − xk||+
1
2
||xk+1 − xk||]||xk+1 − xk||

≤ b[(||I − F′(F(x0))||+ ||F′(yk)− F′(F(x0))||) + ||xk+1 − xk||+
1
2
||xk+1 − xk||]||xk+1 − xk||

≤ b(c +
b1a0

a0b0
+

1
2
)||xk+1 − xk||2

=
L
2
||xk+1 − xk||2.

Next, we can connect the preceding estimates on sequence {xk} with {tk}. Indeed, we get by (C1)
and Equation (3) that

||x1 − x0|| = ||Γ0(x0 − F(x0))|| ≤ γ = t1 = t1 − t0.

By induction, Equations (3), (4), (10) and (12), we have in turn that

||xk+1 − xk|| = ||Γk(xk − F(xk))|| ≤ ||Γk(I − F′(F(x0)))||||Γ0(xk − F(xk))|| (13)

≤ L(tk − tk−1)
2

2(1− L0tk)
= tk+1 − tk.

Hence, {tk} defined by Equation (3) is a majorizing sequence for {xk}. By Lemmas 1 and 2,
sequence {tk} is complete as convergent to t∗. It then follows by Equation (13) that sequence {xk} is
also complete so it converges to some x∗ ∈ Ū(x0, t∗). By the estimate (see (12))

||Γ0(xk+1 − F(xk+1))|| ≤
L
2
||xk+1 − xk||2 ≤

L
2
(tk+1 − tk)

2, (14)

we deduce that x∗ = F(x∗) by letting k→ ∞. Estimate ||xn − x∗|| ≤ t∗ − tn follows from Equation (13)
and for λ = L

2(1−L0t∗) , we get that

||xk+1 − xk|| ≤
L

2(1− L0tk)
||xk − xk−1||2

≤ λ||xk − xk−1||2,
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which implies that the Q-order convergence of Stirling’s method (2) is two. Furthermore, to show the
uniqueness part, let y∗ ∈ U(x0, t∗∗) with F(y∗) = y∗. Define the operator Q by Q = −

∫ 1
0 Γ0F′(x∗ +

θ(y∗ − x∗))dθ. In view of (C2) and (C3), we obtain in turn that

||I − (Γ0 −Q)|| = ||
∫ 1

0
Γ0[F′(x∗ + θ(y∗ − x∗))− F′(F(x0))]dθ|| (15)

≤ b
∫ 1

0
||x∗ + θ(y∗ − x∗)− F(x0)||dθ

≤ b[||F(x∗)− F(x0)||+
1
2
||x∗ − x0||+

1
2
||y∗ − x0||]

≤ b[(a0 +
1
2
)t∗ +

1
2

t∗∗] < 1.

Then, by (15) (Γ0 −Q)−1 ∈ L(X, X). Finally, we obtain y∗ = x∗ using the identity

0 = Γ0(y∗ − F(y∗)− x∗ + F(x∗)) = (Γ0 −Q)(y∗ − x∗).

Remark 1.

(a) The Stirling’s method usual conditions corresponding to (C2) (first condition) are given by [22]:

(C2)’ ||F′(x)|| ≤ a for each x ∈ D and a ∈ [0, 1).

That is, operator F must be a contraction on D. Moreover, the convergence of Stirling’s method was shown
in [22] under (C2), D0 = D and a ∈ (0, 1

3 ]. However, in the present study no such assumption is made.
Hence, the applicability of Stirling’s method (2) is extended. Notice also that we can have a0 ≤ a, b0 ≤ b
and c can be chosen as b = cb1.

(b) Estimate (4) is similar to the sufficient convergence Kantorovich-type criteria for the semi-local convergence
of Newton’s method given by us in [4]. However, the constants b̄0 and b̄ are the center-Lipschitz and
Lipschitz constants for operator F (see also part (e)).

(c) If set D0 is switched by D1 = D ∩U(x1, r0 − ||x0 − F(x0)||), since D1 ⊆ D and the iterates remain
in D1 the results can be improved even further. The corresponding constants to b and b1 will be at least
as small.

(d) In view of the proof of Theorem 1, scalar sequence {sn} defined by

s0 = 0, s1 = R, sn+1 = sn +
kn(sn − sn−1)

2

1− L0sn
,

is also a majorizing sequence for Stirling’s method (2), where

kn = ab(c + b1a0sn +
1
2
) < L

sn ≤ tn,

sn+1 − sn ≤ tn+1 − tn

and
s∗ = lim

n→∞
sn ≤ t∗.

(e) Newton’s method for Equation (1) is given for all n = 0, 1, 2, . . . by

yn+1 = yn − (I − F′(yn))
−1(yn − F(yn)).
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Consider, items c̄, γ̄, L̄0, L̄, L̄1, Γ̄0, b̄0, b̄, b̄1, r̄0, D̄0 and h̄, corresponding to c, γ, L0, L, L1, Γ0, b0, b, b1,
r0, D0 and h respectively as

||I − F′(x0)|| ≤ c̄,

||Γ̄0(x0 − F(x0))|| ≤ γ̄,

||Γ̄0(F′(x)− F′(x0))|| ≤ b̄0||x− x0||,

||Γ̄0(F′(x)− F′(y))|| ≤ b̄||x− y||,

L̄ = 2b̄(c̄ +
b̄1

b̄0
+

1
2
), b̄1 = b̄0,

L̄0 = ā0b̄0,

r̄0 =
1

ā0b̄0
,

D̄0 = D ∩U(x0, r̄0),

and
h̄ = L̄1, γ̄ ≤ 1

2
,

where
L̄1 =

1
8
(L̄ + 4L̄0 +

√
L̄2 + 8L̄0 L̄).

The scalar sequence t̄n is defined as

t̄0 = 0, t̄1 = γ̄, t̄n+2 = t̄n+1 +
L̄(t̄n+1 − t̄n)2

2(1− L̄0 t̄n+1)

Then, Stirling’s method sufficient convergence criteria, error bounds and information on the uniqueness of
the solution are better than Newton’s method when the "bar" constants and sets are smaller than the non
bar constants. Similar favorable comparison can be made in the local convergence case that follows.

3. Local Convergence

The conditions (H) are used in the local convergence analysis of Stirling’s method (2):

(H1) F : D ⊂ X → X is a Fréchet differentiable operator, and there exists x∗ ∈ D such that
Γ∗ = (I − F′(x∗))−1 ∈ L(X, X) and F(x∗) = x∗.

(H2) There exist µ ∈ (0, 1), ξ0 > 0 such that for each x ∈ D

||F(x)− F(x∗)|| ≤ µ||x− x∗||

and
||Γ∗(F′(F(x))− F′(F(x∗)))|| ≤ ξ0||F(x)− F(x∗)||.

(H3) Let D∗0 = D ∩U(x∗, R0), R0 = 1
ξ0µ . There exists ξ > 0 such that for each x, y ∈ D∗0

||Γ∗(F′(x)− F′(y))|| ≤ ξ||x− y||.

(H4) The ball Ū(x∗, R) is constructed such that Ū(x∗, R) ⊆ D, where

R =
1

(µ + 1
2 )ξ + µξ0

.
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Theorem 2. Suppose that conditions (H) hold. Then, sequence {xn} generated for x0 ∈ U(x∗, R)− {x∗} by
Stirling’s method (2) is well defined in U(x∗, R), remains in U(x∗, R) for each n = 0, 1, 2, . . . and converges to
x∗ ∈ Ū(x∗, R). Moreover, the following inequality holds

||xn+1 − x∗|| ≤
ξ(µ + 1

2 )||xn − x∗||2

1− µξ0||xn − x∗|| . (16)

Furthermore, if R1 = 2
ξ , x∗ is the only fixed point of F on U(x∗, R1).

Proof. We shall show using mathematical induction that sequence {xn} is well defined, remains in
U(x∗, R) and converges to x∗ so that (16) is satisfied. We have by (H1) and (H2) for x ∈ U(x∗, R) that

||F(x)− x∗|| = ||F(x)− F(x∗)|| ≤ µ||x− x∗|| ≤ R,

so F(x) ∈ U(x∗, R). Then by (H2)

||Γ∗(I − F′(F(x)))− Γ∗|| = ||Γ∗(F′(F(x))− F′(F(x∗)))|| (17)

≤ ξ0||F(x)− F(x∗)|| ≤ ξ0µ||x− x∗|| ≤ ξ0µR < 1.

Hence, Γ(x) ∈ L(X, X) and

||Γ(x)(I − F(F(x∗)))|| ≤ 1
1− µ0ξ0||x− x∗|| . (18)

In particular, (18) holds for x = x0, which shows that x1 is well defined by Stirling’s method for
n = 0. We can write by (H1) that

x1 − x∗ = x0 − x∗ − (I − F′(F(x0)))
−1(x0 − F(x0)) (19)

= (I − F′(F(x0)))
−1[F(x0)− F(x∗)− F′(F(x0))(x0 − x∗)]

= (I − F′(F(x0)))
−1[

∫ 1

0
(F′(x∗ + θ(x0 − x∗))− F′(F(x0))(x0 − x∗)dθ].

We get in turn by (H2) and (H3)

||Γ∗
∫ 1

0
(F′(x∗ + θ(x0 − x∗))− F′(F(x0)))(x0 − x∗)dθ|| (20)

≤ ξ
∫ 1

0
||x∗ + θ(x0 − x∗)− F(x0)||||x0 − x∗||dθ

≤ ξ[||F(x∗)− F(x0)||+ θ||x0 − x∗||]dθ

≤ ξ(µ +
1
2
)||x0 − x∗||

Then, by (18)–(20), we get that also

||x1 − x∗|| ≤ ||(I − F′(F(x0)))
−1Γ∗||

≤
ξ(µ + 1

2 )||x0 − x∗||2

1− µξ0||x0 − x∗|| ≤ ||x0 − x∗|| < R,
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so (16) holds for n = 0 and x1 ∈ U(x∗, R). Switch x0 by xk in the preceding estimates, we arrive at
(16). In view of the estimate ||xk+1 − x∗|| < ||xk − x∗|| < R, we conclude that limk→∞ xk = x∗ and
xk+1 ∈ U(x∗, R). Let x0 = x∗ in (15) to show the uniqueness part.

Remark 2. The local results in the literature use (C2)’ and D∗0 = D. But (H2) is weaker than (C2)’.
Hence, we extend the applicability of Stirling’s method (2) in the local case too.

4. Numerical Example with Concluding Remarks

In the next example, we compare Stirling’s method with Newton’s method.

Example 1. Let D = X = R. Consider function F on D as

F(x) =


− 1

3 x, x ≤ 3
1
3 x2 − 7

3 x + 3, 3 ≤ x ≤ 4
1
3 (x− 7), x ≥ 4.

Clearly, the quadratic polynomial joins smoothly with the linear parts.

(I) Semilocal case (i). If we choose x0 = 3, we see that x1 = y1 = x∗ = 0. Moreover, the semi-local
convergence criteria of Theorem 1 are satisfied (with γ = 0, a0 = 1

3 and c = 4
3 ).

(II) Local convergence criteria of Theorem 2 (with µ = 1
3 , since the derivative of the quadratic

polynomial satisfies 1
3 |2x− 7| ≤ 1

3 for all x ∈ [3, 4]).
(III) In Tables 1 and 2 we present some cases in which Stirling’s method stands better than

Newton’s one.

Table 1. Iteration of Newton’s and Stirling’s method with different starting points.

Iteration Newton’s Method Stirling’s Method

0 3.4975 3.4975
1 −646.501 0.0618766
2 −1.13687× 10−13 0

Table 2. Iteration of Newton’s and Stirling’s method with different starting points.

Iteration Newton’s Method Stirling’s Method

0 3.5 3.5
1 ∞ 0.0625
2 − 0

In the current study, we have successfully demonstrated our claims on Stirling’s method by
focusing on very classic problems, but in the future we will consider studying other complex problems
such us solving symmetric ordinary differential equations with a more favorable theory.
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