Recent Progress towards Chemically-Specific Coarse-Grained Simulation Models with Consistent Dynamical Properties
Abstract
:1. Introduction
2. Bottom-Up Approaches Following the Mori–Zwanzig (MZ) Formalism
2.1. Preliminaries
2.2. Friction Kernel Parameterization Using Higher-Resolution Simulations
2.3. Dissipative Particle Dynamics (DPD)
2.4. Hydrodynamic-Like Momentum-Dependent Friction
2.5. Friction Kernels with Memory
2.6. Variational Approaches
2.7. Application to Proteins
3. Time Rescaling Relationships
3.1. Polymers
3.2. Liquids
4. Free-Energy-Landscape (FEL) Perspective
4.1. Structural–Kinetic–Thermodynamic Relationships
4.2. Markov State Models (MSMs)
5. Outstanding Challenges through Representative Examples
6. Discussion and Outlook
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CG | coarse-grained |
MB-PMF | many-body potential of mean force |
MZ | Mori–Zwanzig |
AA | all-atom |
dof | degree of freedom |
GLE | generalized Langevin equation |
DPD | dissipative particle dynamics |
TCF | time correlation function |
MS-CG | multiscale coarse-graining |
LE4PD | Langevin equation for protein dynamics |
FEL | free-energy landscape |
MSM | Markov state model |
EoM | equation of motion |
References
- Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics; Claredon Press: Oxford, UK, 1986. [Google Scholar]
- Taketomi, H.; Ueda, Y.; Gō, N. Studies on protein folding, unfolding and fluctuations by computer-simulation. 1. Effect of specific amino-acid sequence represented by specific inter-unit interactions. Int. J. Pept. Protein Res. 1975, 7, 445–459. [Google Scholar] [CrossRef] [PubMed]
- Clementi, C. Coarse-grained models of protein folding: Toy models or predictive tools? Curr. Opin. Struct. Biol. 2008, 18, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Onsager, L. Theories of concentrated electrolytes. Chem. Rev. 1933, 13, 73–89. [Google Scholar] [CrossRef]
- Kirkwood, J.G. Statistical mechanics of fluid mixtures. J. Chem. Phys. 1935, 3, 300–313. [Google Scholar] [CrossRef]
- Noid, W.G. Perspective: Coarse-grained models for biomolecular systems. J. Chem. Phys. 2013, 139, 090901. [Google Scholar] [CrossRef] [PubMed]
- Peter, C.; Kremer, K. Multiscale simulation of soft matter systems—From the atomistic to the coarse-grained level and back. Soft Matter 2009, 5, 4357–4366. [Google Scholar] [CrossRef]
- Riniker, S.; Allison, J.R.; van Gunsteren, W.F. On developing coarse-grained models for biomolecular simulation: A review. Phys. Chem. Chem. Phys. 2012, 14, 12423–12430. [Google Scholar] [CrossRef]
- Mori, H. A continued-fraction representation of time-correlation functions. Prog. Theor. Phys. 1965, 34, 399–416. [Google Scholar] [CrossRef]
- Zwanzig, R. Memory effects in irreversible thermodynamics. Phys. Rev. 1961, 124, 983–992. [Google Scholar] [CrossRef]
- Hijón, C.; Español, P.; Vanden-Eijnden, E.; Delgado-Buscalioni, R. Mori–Zwanzig formalism as a practical computational tool. Faraday Discuss. 2010, 144, 301–322. [Google Scholar] [CrossRef]
- Rosenfeld, Y. A quasi-universal scaling law for atomic transport in simple fluids. J. Phys. Condens. Matter 1999, 11, 5415–5427. [Google Scholar] [CrossRef]
- Padding, J.T.; Briels, W.J. Systematic coarse-graining of the dynamics of entangled polymer melts: The road from chemistry to rheology. J. Phys. Condens. Matter 2011, 23, 233101. [Google Scholar] [CrossRef] [PubMed]
- Zwanzig, R. On identity of three generalized master equations. Physica 1964, 30, 1109–1123. [Google Scholar] [CrossRef]
- Robertson, B. Equations of motion in nonequilibrium statistical mechanics. Phys. Rev. 1966, 144, 151–161. [Google Scholar] [CrossRef]
- Kawasaki, K.; Gunton, J. Theory of nonlinear transport processes: Nonlinear shear viscosity and normal stress effects. Phys. Rev. A 1973, 8, 2048–2064. [Google Scholar] [CrossRef]
- Koide, T.; Kodama, T. Transport coefficients of non-Newtonian fluid and causal dissipative hydrodynamics. Phys. Rev. E 2008, 78, 051107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Dong, Y.; Zhao, N.; Hou, Z. Distance fluctuation of a single molecule in Lennard-Jones liquid based on generalized Langevin equation and mode coupling theory. J. Chem. Phys. 2014, 140, 154109. [Google Scholar] [CrossRef]
- Noid, W.G.; Chu, J.W.; Ayton, G.S.; Krishna, V.; Izvekov, S.; Voth, G.A.; Das, A.; Andersen, H.C. The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J. Chem. Phys. 2008, 128, 244114. [Google Scholar] [CrossRef] [Green Version]
- Kinjo, T.; Hyodo, S. Equation of motion for coarse-grained simulation based on microscopic description. Phys. Rev. E 2007, 75, 051109. [Google Scholar] [CrossRef] [Green Version]
- Izvekov, S.; Rice, B.M. Multi-scale coarse-graining of non-conservative interactions in molecular liquids. J. Chem. Phys. 2014, 140, 104104. [Google Scholar] [CrossRef]
- Deichmann, G.; van der Vegt, N.F.A. Bottom-up approach to represent dynamic properties in coarse-grained molecular simulations. J. Chem. Phys. 2018, 149, 244114. [Google Scholar] [CrossRef] [PubMed]
- Izvekov, S. Microscopic derivation of particle-based coarse-grained dynamics. J. Chem. Phys. 2013, 138, 134106. [Google Scholar] [CrossRef] [PubMed]
- Duenweg, B.; Schiller, U.D.; Ladd, A.J.C. Statistical mechanics of the fluctuating lattice Boltzmann equation. Phys. Rev. E 2007, 76, 036704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Español, P.; Warren, P.B. Perspective: Dissipative particle dynamics. J. Chem. Phys. 2017, 146, 150901. [Google Scholar] [CrossRef] [PubMed]
- Junghans, C.; Praprotnik, M.; Kremer, K. Transport properties controlled by a thermostat: An extended dissipative particle dynamics thermostat. Soft Matter 2008, 4, 156–161. [Google Scholar] [CrossRef]
- Di Pasquale, N.; Hudson, T.; Icardi, M. Systematic derivation of hybrid coarse-grained models. Phys. Rev. E 2019, 99, 013303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kauzlarić, D.; Español, P.; Greiner, A.; Succi, S. Three routes to the friction matrix and their application to the coarse-graining of atomic lattices. Macromol. Theory Simul. 2011, 20, 526–540. [Google Scholar] [CrossRef]
- Izvekov, S.; Voth, G.A. Modeling real dynamics in the coarse-grained representation of condensed phase systems. J. Chem. Phys. 2006, 125, 151101. [Google Scholar] [CrossRef]
- Markutsya, S.; Lamm, M.H. A coarse-graining approach for molecular simulation that retains the dynamics of the all-atom reference system by implementing hydrodynamic interactions. J. Chem. Phys. 2014, 141, 174107. [Google Scholar] [CrossRef] [Green Version]
- Davtyan, A.; Dama, J.F.; Voth, G.A.; Andersen, H.C. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence. J. Chem. Phys. 2015, 142, 154104. [Google Scholar] [CrossRef]
- Izvekov, S. Mori-Zwanzig theory for dissipative forces in coarse-grained dynamics in the Markov limit. Phys. Rev. E 2017, 95, 013303. [Google Scholar] [CrossRef] [PubMed]
- Izvekov, S. Microscopic derivation of particle-based coarse-grained dynamics: Exact expression for memory function. J. Chem. Phys. 2017, 146, 124109. [Google Scholar] [CrossRef] [PubMed]
- Español, P.; de la Torre, J.A.; Duque-Zumajo, D. Solution to the plateau problem in the Green-Kubo formula. Phys. Rev. E 2019, 99, 022126. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Caswell, B.; Karniadakis, G.E. Direct construction of mesoscopic models from microscopic simulations. Phys. Rev. E 2010, 81, 026704. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, Y.; Kinefuchi, I.; Mima, T.; Fukushima, A.; Tokumasu, T.; Takagi, S. Bottom-up construction of interaction models of non-Markovian dissipative particle dynamics. Phys. Rev. E 2013, 88, 043305. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Bian, X.; Caswell, B.; Karniadakis, G.E. Construction of dissipative particle dynamics models for complex fluids via the Mori-Zwanzig formulation. Soft Matter 2014, 10, 8659–8672. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Bian, X.; Li, X.; Karniadakis, G.E. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism. J. Chem. Phys. 2015, 143, 243128. [Google Scholar] [CrossRef]
- Li, Z.; Lee, H.S.; Darve, E.; Karniadakis, G.E. Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer melts. J. Chem. Phys. 2017, 146, 014104. [Google Scholar] [CrossRef] [PubMed]
- Español, P.; Serrano, M.; Zúñiga, I. Coarse-graining of a fluid and its relation with dissipative particle dynamics and smoothed particle dynamics. Int. J. Modern Phys. C 1997, 8, 899–908. [Google Scholar] [CrossRef]
- Flekkøy, E.; Coveney, P. From molecular dynamics to dissipative particle dynamics. Phys. Rev. Lett. 1999, 83, 1775–1778. [Google Scholar] [CrossRef]
- Flekkøy, E.; Coveney, P.; De Fabritiis, G. Foundations of dissipative particle dynamics. Phys. Rev. E 2000, 62, 2140–2157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayton, G.; Tepper, H.; Mirijanian, D.; Voth, G. A new perspective on the coarse-grained dynamics of fluids. J. Chem. Phys. 2004, 120, 4074–4088. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, A.; Jacobi, M.N.; Nyström, J.; Tunstrøm, K. Using force covariance to derive effective stochastic interactions in dissipative particle dynamics. Phys. Rev. E 2008, 77, 016707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson, A.; Jacobi, M.N.; Nyström, J.; Tunstrøm, K. On the microscopic foundation of dissipative particle dynamics. Europhys. Lett. 2009, 86, 44001. [Google Scholar] [CrossRef]
- Hadley, K.R.; McCabe, C. On the Investigation of Coarse-Grained Models for Water: Balancing Computational Efficiency and the Retention of Structural Properties. J. Phys. Chem. B 2010, 114, 4590–4599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Dama, J.F.; Voth, G.A. Mesoscopic coarse-grained representations of fluids rigorously derived from atomistic models. J. Chem. Phys. 2018, 149, 044104. [Google Scholar] [CrossRef] [PubMed]
- Bock, H.; Gubbins, K.E.; Klapp, S.H.L. Coarse graining of nonbonded degrees of freedom. Phys. Rev. Lett. 2007, 98, 267801. [Google Scholar] [CrossRef] [PubMed]
- Izvekov, S.; Rice, B.M. On the importance of shear dissipative forces in coarse-grained dynamics of molecular liquids. Phys. Chem. Chem. Phys. 2015, 17, 10795–10804. [Google Scholar] [CrossRef]
- Trément, S.; Schnell, B.; Petitjean, L.; Couty, M.; Rousseau, B. Conservative and dissipative force field for simulation of coarse-grained alkane molecules: A bottom-up approach. J. Chem. Phys. 2014, 140, 134113. [Google Scholar] [CrossRef]
- Lemarchand, C.A.; Couty, M.; Rousseau, B. Coarse-grained simulations of cis- and trans-polybutadiene: A bottom-up approach. J. Chem. Phys. 2017, 146, 074904. [Google Scholar] [CrossRef]
- Deichmann, G.; Marcon, V.; van der Vegt, N.F.A. Bottom-up derivation of conservative and dissipative interactions for coarse-grained molecular liquids with the conditional reversible work method. J. Chem. Phys. 2014, 141, 224109. [Google Scholar] [CrossRef] [PubMed]
- Brini, E.; Marcon, V.; van der Vegt, N.F.A. Conditional reversible work method for molecular coarse graining applications. Phys. Chem. Chem. Phys. 2011, 13, 10468–10474. [Google Scholar] [CrossRef] [PubMed]
- Español, P.; Serrano, M.; Pagonabarraga, I.; Zúñiga, I. Energy-conserving coarse-graining of complex molecules. Soft Matter 2016, 12, 4821–4837. [Google Scholar] [CrossRef] [PubMed]
- Faure, G.; Delgado-Buscalioni, R.; Español, P. The entropy of a complex molecule. J. Chem. Phys. 2017, 146, 224106. [Google Scholar] [CrossRef] [PubMed]
- Español, P. Dissipative particle dynamics with energy conservation. Europhys. Lett. 1997, 40, 631–636. [Google Scholar] [CrossRef] [Green Version]
- Soheilifard, R.; Makarov, D.E.; Rodin, G.J. Rigorous coarse-graining for the dynamics of linear systems with applications to relaxation dynamics in proteins. J. Chem. Phys. 2011, 135, 54107. [Google Scholar] [CrossRef] [PubMed]
- Zgorski, A.; Lyman, E. Toward hydrodynamics with solvent free lipid models: STRD Martini. Biophys. J. 2016, 111, 2689–2697. [Google Scholar] [CrossRef] [PubMed]
- Malevanets, A.; Kapral, R. Mesoscopic model for solvent dynamics. J. Chem. Phys. 1999, 110, 8605–8613. [Google Scholar] [CrossRef]
- Gompper, G.; Ihle, T.; Kroll, D.M.; Winkler, R.G. Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids. In Advanced Computer Simulation Approaches for Soft Matter Sciences III; Holm, C., Kremer, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–87. [Google Scholar] [CrossRef]
- Sterpone, F.; Derreumaux, P.; Melchionna, S. Protein simulations in fluids: Coupling the OPEP coarse-grained force field with hydrodynamics. J. Chem. Theory Comput. 2015, 11, 1843–1853. [Google Scholar] [CrossRef]
- Gnutt, D.; Timr, S.; Ahlers, J.; Ko, B.; Manderfeld, E.; Heyden, M.; Sterpone, F.; Ebbinghaus, S. Stability effect of quinary interactions reversed by single point mutations. J. Am. Chem. Soc. 2019, 141, 4660–4669. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Korotkin, I.A.; Karabasov, S.A. A multi-resolution particle/fluctuating hydrodynamics model for hybrid simulations of liquids based on the two-phase flow analogy. J. Chem. Phys. 2018, 149, 084108. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Xu, J.; Yang, C.; Karniadakis, G.E. Concurrent coupling of atomistic simulation and mesoscopic hydrodynamics for flows over soft multi-functional surfaces. Soft Matter 2018, 15, 1747–1757. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Dama, J.F.; Lu, L.; Voth, G.A. Solvent free ionic solution models from multiscale coarse-graining. J. Chem. Theory Comput. 2013, 9, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Jung, G.; Hanke, M.; Schmid, F. Iterative reconstruction of memory kernels. J. Chem. Theory Comput. 2017, 13, 2481–2488. [Google Scholar] [CrossRef] [PubMed]
- Jung, G.; Hanke, M.; Schmid, F. Generalized Langevin dynamics: Construction and numerical integration of non-Markovian particle-based models. Soft Matter 2018, 14, 9368–9382. [Google Scholar] [CrossRef] [PubMed]
- Davtyan, A.; Voth, G.A.; Andersen, H.C. Dynamic force matching: Construction of dynamic coarse-grained models with realistic short time dynamics and accurate long time dynamics. J. Chem. Phys. 2016, 145, 224107. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Bakera, N.A.; Li, X. Data-driven parameterization of the generalized Langevin equation. Proc. Natl. Acad. Sci. USA 2016, 113, 14183–14188. [Google Scholar] [CrossRef] [Green Version]
- Yoshimoto, Y.; Li, Z.; Kinefuchi, I.; Karniadakis, G.E. Construction of non-Markovian coarse-grained models employing the Mori-Zwanzig formalism and iterative Boltzmann inversion. J. Chem. Phys. 2017, 147, 244110. [Google Scholar] [CrossRef] [PubMed]
- Lyubimov, I.; Guenza, M.G. First-principle approach to rescale the dynamics of simulated coarse-grained macromolecular liquids. Phys. Rev. E 2011, 84, 031801. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.C.; Kulkarni, P.M.; Shell, M.S.; Leal, L.G. A test of systematic coarse-graining of molecular dynamics simulations: Transport properties. J. Chem. Phys. 2013, 139, 094107. [Google Scholar] [CrossRef]
- Shell, M.S. The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J. Chem. Phys. 2008, 129, 144108. [Google Scholar] [CrossRef] [PubMed]
- Español, P.; Zúñiga, I. Obtaining fully dynamic coarse-grained models from MD. Phys. Chem. Chem. Phys. 2011, 13, 10538–10545. [Google Scholar] [CrossRef] [PubMed]
- Dequidt, A.; Canchaya, J.G.S. Bayesian parametrization of coarse-grain dissipative dynamics models. J. Chem. Phys. 2015, 143, 084122. [Google Scholar] [CrossRef] [PubMed]
- Canchaya, J.G.S.; Dequidt, A.; Goujon, F.; Malfreyt, P. Development of DPD coarse-grained models: From bulk to interfacial properties. J. Chem. Phys. 2016, 145, 054107. [Google Scholar] [CrossRef] [PubMed]
- Kempfer, K.; Devemy, J.; Dequidt, A.; Couty, M.; Malfreyt, P. Development of coarse-grained models for polymers by trajectory matching. ACS Omega 2019, 4, 5955–5967. [Google Scholar] [CrossRef]
- Kalligiannaki, E.; Harmandaris, V.; Katsoulakis, M.A.; Plecháč, P. The geometry of generalized force matching and related information metrics in coarse-graining of molecular systems. J. Chem. Phys. 2015, 143, 084105. [Google Scholar] [CrossRef] [PubMed]
- Harmandaris, V.; Kalligiannaki, E.; Katsoulakis, M.; Plecháč, P. Path-space variational inference for non-equilibrium coarse-grained systems. J. Comput. Phys. 2016, 314, 355–383. [Google Scholar] [CrossRef] [Green Version]
- Katsoulakis, M.A.; Plechac, P. Information-theoretic tools for parametrized coarse-graining of non-equilibrium extended systems. J. Chem. Phys. 2013, 139, 074115. [Google Scholar] [CrossRef] [Green Version]
- Copperman, J.; Guenza, M.G. Coarse-grained Langevin equation for protein dynamics: Global anisotropy and a mode approach to local complexity. J. Phys. Chem. B 2015, 119, 9195–9211. [Google Scholar] [CrossRef]
- Caballero-Manrique, E.; Bray, J.K.; Deutschman, W.A.; Dahlquist, F.W.; Guenza, M.G. A theory of protein dynamics to predict NMR relaxation. Biophys. J. 2007, 93, 4128–4140. [Google Scholar] [CrossRef]
- Copperman, J.; Guenza, M. Predicting protein dynamics from structural ensembles. J. Chem. Phys. 2015, 143, 243131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copperman, J.; Dinpajooh, M.; Beyerle, E.R.; Guenza, M.G. Universality and specificity in protein fluctuation dynamics. Phys. Rev. Lett. 2017, 119, 158101. [Google Scholar] [CrossRef]
- Guenza, M. Cooperative dynamics in unentangled polymer fluids. Phys. Rev. Lett. 2002, 88, 025901. [Google Scholar] [CrossRef] [PubMed]
- Guenza, M. Theoretical models for bridging timescales in polymer dynamics. J. Phys. Condens. Matter 2008, 20, 033101. [Google Scholar] [CrossRef]
- Takahashi, K.Z.; Nishimura, R.; Yamato, N.; Yasuoka, K.; Masubuchi, Y. Onset of static and dynamic universality among molecular models of polymers. Sci. Rep. 2017, 7, 12379. [Google Scholar] [CrossRef] [PubMed]
- Kremer, K.; Grest, G. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057–5086. [Google Scholar] [CrossRef]
- Harmandaris, V.A.; Adhikari, N.P.; van der Vegt, N.F.A.; Kremer, K. Hierarchical modeling of polystyrene: From atomistic to coarse-grained simulations. Macromolecules 2006, 39, 6708–6719. [Google Scholar] [CrossRef]
- Harmandaris, V.A.; Adhikari, N.P.; van der Vegt, N.F.A.; Kremer, K.; Mann, B.A.; Voelkel, R.; Weiss, H.; Liew, C.C. Ethylbenzene diffusion in polystyrene: United atom atomistic/coarse grained simulations and experiments. Macromolecules 2007, 40, 7026–7035. [Google Scholar] [CrossRef]
- Harmandaris, V.A.; Reith, D.; van der Vegt, N.F.A.; Kremer, K. Comparison between coarse-graining models for polymer systems: Two mapping schemes for polystyrene. Macromol. Chem. Phys. 2007, 208, 2109–2120. [Google Scholar] [CrossRef]
- Harmandaris, V.A.; Kremer, K. Predicting polymer dynamics at multiple length and time scales. Soft Matter 2009, 5, 3920–3926. [Google Scholar] [CrossRef]
- Fritz, D.; Harmandaris, V.A.; Kremer, K.; van der Vegt, N.F.A. Coarse-grained polymer melts based on isolated atomistic chains: Simulation of polystyrene of different tacticities. Macromolecules 2009, 42, 7579–7588. [Google Scholar] [CrossRef]
- Harmandaris, V.A.; Kremer, K. Dynamics of polystyrene melts through hierarchical multiscale simulations. Macromolecules 2009, 42, 791–802. [Google Scholar] [CrossRef]
- Fritz, D.; Koschke, K.; Harmandaris, V.A.; van der Vegt, N.F.A.; Kremer, K. Multiscale modeling of soft matter: Scaling of dynamics. Phys. Chem. Chem. Phys. 2011, 13, 10412–10420. [Google Scholar] [CrossRef] [PubMed]
- Harmandaris, V.A.; Floudas, G.; Kremer, K. Temperature and pressure dependence of polystyrene dynamics through molecular dynamics simulations and experiments. Macromolecules 2011, 44, 393–402. [Google Scholar] [CrossRef]
- Harmandaris, V.A. Quantitative study of equilibrium and non-equilibrium polymer dynamics through systematic hierarchical coarse-graining simulations. Korea-Aust. Rheol. J. 2014, 26, 15–28. [Google Scholar] [CrossRef]
- Harmandaris, V.A.; Kremer, K.; Floudas, G. Dynamic heterogeneity in fully miscible blends of polystyrene with oligostyrene. Phys. Rev. Lett. 2013, 110, 165701. [Google Scholar] [CrossRef] [PubMed]
- Salerno, K.; Agrawal, A.; Perahia, D.; Grest, G. Resolving dynamic properties of polymers through coarse-grained computational studies. Phys. Rev. Lett. 2016, 116, 058302. [Google Scholar] [CrossRef]
- Ohkuma, T.; Kremer, K. Comparison of two coarse-grained models of cis-polyisoprene with and without pressure correction. Polymer 2017, 130, 88–101. [Google Scholar] [CrossRef]
- Volgin, I.V.; Larin, S.V.; Lyulin, A.V.; Lyulin, S.V. Coarse-grained molecular-dynamics simulations of nanoparticle diffusion in polymer nanocomposites. Polymer 2018, 145, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, V.; Holzworth, K.; Nantasetphong, W.; Amirkhizi, A.V.; Oswald, J.; Nemat-Nasser, S. Prediction of viscoelastic properties with coarse-grained molecular dynamics and experimental validation for a benchmark polyurea system. J. Polym. Sci. B 2016, 54, 797–810. [Google Scholar] [CrossRef]
- Song, J.; Hsu, D.D.; Shull, K.R.; Phelan, F.R.; Douglas, J.F.; Xia, W.; Keten, S. Energy renormalization method for the coarse-graining of polymer viscoelasticity. Macromolecules 2018, 51, 3818–3827. [Google Scholar] [CrossRef] [PubMed]
- Lyubimov, I.Y.; Guenza, M.G. Theoretical reconstruction of realistic dynamics of highly coarse-grained cis-1,4-polybutadiene melts. J. Chem. Phys. 2013, 138, 12A546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, M.; Turnbull, D. Molecular transport in liquids and glasses. J. Chem. Phys. 1959, 31, 1164–1169. [Google Scholar] [CrossRef]
- Adam, G.; Gibbs, J. On temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 1965, 43, 139–146. [Google Scholar] [CrossRef]
- Rosenfeld, Y. Relation between transport-coefficients and internal entropy of simple systems. Phys. Rev. A 1977, 15, 2545–2549. [Google Scholar] [CrossRef]
- Starr, F.; Sastry, S.; Douglas, J.; Glotzer, S. What do we learn from the local geometry of glass-forming liquids? Phys. Rev. Lett. 2002, 89, 125501. [Google Scholar] [CrossRef] [PubMed]
- Mittal, J.; Errington, J.R.; Truskett, T.M. Relationships between self-diffusivity, packing fraction, and excess entropy in simple bulk and confined fluids. J. Phys. Chem. B 2007, 111, 10054–10063. [Google Scholar] [CrossRef]
- Saika-Voivod, I.; Poole, P.; Sciortino, F. Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica. Nature 2001, 412, 514–517. [Google Scholar] [CrossRef] [Green Version]
- Sastry, S. The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature 2001, 409, 164–167. [Google Scholar] [CrossRef] [Green Version]
- Goel, G.; Krekelberg, W.P.; Pond, M.J.; Mittal, J.; Shen, V.K.; Errington, J.R.; Truskett, T.M. Available states and available space: Static properties that predict self-diffusivity of confined fluids. J. Stat. Mech. 2009, 2009, P04006. [Google Scholar] [CrossRef]
- Krekelberg, W.P.; Pond, M.J.; Goel, G.; Shen, V.K.; Errington, J.R.; Truskett, T.M. Generalized Rosenfeld scalings for tracer diffusivities in not-so-simple fluids: Mixtures and soft particles. Phys. Rev. E 2009, 80, 061205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyre, J.C. Perspective: Excess-entropy scaling. J. Chem. Phys. 2018, 149, 210901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, J.A.; Chakravarty, C.; Ballone, P. Statistical mechanics of coarse graining: Estimating dynamical speedups from excess entropies. J. Chem. Phys. 2012, 136, 124503. [Google Scholar] [CrossRef] [PubMed]
- Likos, C. Effective interactions in soft condensed matter physics. Phys. Rep. 2001, 348, 267–439. [Google Scholar] [CrossRef]
- Shell, M.S. Systematic coarse-graining of potential energy landscapes and dynamics in liquids. J. Chem. Phys. 2012, 137, 084503. [Google Scholar] [CrossRef]
- Accary, J.; Teboul, V. Time versus temperature rescaling for coarse grain molecular dynamics simulations. J. Chem. Phys. 2012, 136, 094502. [Google Scholar] [CrossRef] [Green Version]
- Veldhorst, A.A.; Dyre, J.C.; Schrøder, T.B. Scaling of the dynamics of flexible Lennard-Jones chains. J. Chem. Phys. 2014, 141, 054904. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.; Song, J.; Hansoge, N.K.; Phelan, F.R.; Keten, S.; Douglas, J.F. Energy renormalization for coarse-graining the dynamics of a model glass-forming liquid. J. Phys. Chem. B 2018, 122, 2040–2045. [Google Scholar] [CrossRef]
- Xia, W.; Hansoge, N.K.; Xu, W.S.; Phelan, F.R., Jr.; Keten, S.; Douglas, J.F. Energy renormalization for coarse-graining polymers having different segmental structures. Sci. Adv. 2019, 5, eaav4683. [Google Scholar] [CrossRef] [Green Version]
- Stillinger, F.; Weber, T. Hidden structure in liquids. Phys. Rev. A 1982, 25, 978–989. [Google Scholar] [CrossRef]
- Stillinger, F. A topographic view of supercooled liquids and glass-formation. Science 1995, 267, 1935–1939. [Google Scholar] [CrossRef] [PubMed]
- Onuchic, J.; LutheySchulten, Z.; Wolynes, P. Theory of protein folding: The energy landscape perspective. Annu. Rev. Phys. Chem. 1997, 48, 545–600. [Google Scholar] [CrossRef] [PubMed]
- Dill, K.A.; Chan, H.S. From Levinthal to pathways to funnels. Nat. Struct. Biol. 1997, 4, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Leopold, P.E.; Montal, M.; Onuchic, J.N. Protein folding funnels: A kinetic approach to the sequence structure relationship. Proc. Natl. Acad. Sci. USA 1992, 89, 8721–8725. [Google Scholar] [CrossRef]
- Bereau, T.; Andrienko, D.; Kremer, K. Research Update: Computational materials discovery in soft matter. APL Mater. 2016, 4, 053101. [Google Scholar] [CrossRef]
- Schneider, E.V.; Böttcher, J.; Huber, R.; Maskos, K.; Neumann, L. Structure-kinetic relationship study of CDK8/CycC specific compounds. Proc. Natl. Acad. Sci. USA 2013, 110, 8081–8086. [Google Scholar] [CrossRef] [PubMed]
- Winquist, J.; Geschwindner, S.; Xue, Y.; Gustavsson, L.; Musil, D.; Deinum, J.; Danielson, U.H. Identification of structural-kinetic and structural-thermodynamic relationships for thrombin inhibitors. Biochemistry 2013, 52, 613–626. [Google Scholar] [CrossRef]
- Dickson, C.J.; Hornak, V.; Pearlstein, R.A.; Duca, J.S. Structure-kinetic relationships of passive membrane permeation from multiscale modeling. J. Am. Chem. Soc. 2017, 139, 442–452. [Google Scholar] [CrossRef]
- Menichetti, R.; Kanekal, K.H.; Kremer, K.; Bereau, T. In silico screening of drug-membrane thermodynamics reveals linear relations between bulk partitioning and the potential of mean force. J. Chem. Phys. 2017, 147, 125101. [Google Scholar] [CrossRef]
- Rudzinski, J.F.; Bereau, T. The role of conformational entropy in the determination of structural-kinetic relationships for helix-coil transitions. Computation 2018, 6, 21. [Google Scholar] [CrossRef]
- Rudzinski, J.F.; Bereau, T. Structural-kinetic-thermodynamic relationships identified from physics-based molecular simulation models. J. Chem. Phys. 2018, 148, 204111. [Google Scholar] [CrossRef] [PubMed]
- Klippenstein, S.J.; Pande, V.S.; Truhlar, D.G. Chemical kinetics and mechanisms of complex systems: A perspective on recent theoretical advances. J. Am. Chem. Soc. 2014, 136, 528–546. [Google Scholar] [CrossRef] [PubMed]
- Bowman, G.R.; Pande, V.S.; Noé, F. An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation; Springer Science and Business Media: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Klus, S.; Nuske, F.; Koltai, P.; Wu, H.; Kevrekidis, I.; Schuette, C.; Noe, F. Data-Driven Model Reduction and Transfer Operator Approximation. J. Nonlinear Sci. 2018, 28, 985–1010. [Google Scholar] [CrossRef] [Green Version]
- Mu, Y.; Nguyen, P.; Stock, G. Energy landscape of a small peptide revealed by dihedral angle principal component analysis. Proteins Struct. Funct. Bioinform. 2005, 58, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Naritomi, Y.; Fuchigami, S. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: The case of domain motions. J. Chem. Phys. 2011, 134, 065101. [Google Scholar] [CrossRef] [PubMed]
- Schwantes, C.R.; Pande, V.S. Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9. J. Chem. Theory Comput. 2013, 9, 2000–2009. [Google Scholar] [CrossRef] [PubMed]
- Perez-Hernandez, G.; Paul, F.; Giorgino, T.; De Fabritiis, G.; Noé, F. Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 2013, 139, 015102. [Google Scholar] [CrossRef] [PubMed]
- Schwantes, C.R.; Pande, V.S. Modeling molecular kinetics with tICA and the kernel trick. J. Chem. Theory Comput. 2015, 11, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Ferguson, A.L. Molecular enhanced sampling with autoencoders: On-the-fly collective variable discovery and accelerated free energy landscape exploration. J. Comput. Chem. 2018, 39, 2079–2102. [Google Scholar] [CrossRef] [PubMed]
- Wehmeyer, C.; Noe, F. Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics. J. Chem. Phys. 2018, 148, 241703. [Google Scholar] [CrossRef] [Green Version]
- Sittel, F.; Stock, G. Robust density-based clustering to identify metastable conformational states of proteins. J. Chem. Theory Comput. 2016, 12, 2426–2435. [Google Scholar] [CrossRef] [PubMed]
- Lemke, O.; Keller, B.G. Density-based cluster algorithms for the identification of core sets. J. Chem. Phys. 2016, 145, 164104. [Google Scholar] [CrossRef] [PubMed]
- Husic, B.E.; McKiernan, K.A.; Wayment-Steele, H.K.; Sultan, M.M.; Pande, V.S. A minimum variance clustering approach produces robust and interpretable coarse-grained models. J. Chem. Theory Comput. 2018, 14, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Noé, F. Probability distributions of molecular observables computed from Markov models. J. Chem. Phys. 2008, 28, 244103. [Google Scholar] [CrossRef] [PubMed]
- Prinz, J.H.; Wu, H.; Sarich, M.; Keller, B.; Senne, M.; Held, M.; Chodera, J.D.; Schütte, C.; Noé, F. Markov models of molecular kinetics: Generation and validation. J. Chem. Phys. 2011, 134, 174105. [Google Scholar] [CrossRef] [PubMed]
- Trendelkamp-Schroer, B.; Noé, F. Efficient Bayesian estimation of Markov model transition matrices with given stationary distribution. J. Chem. Phys. 2013, 138, 164113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noe, F.; Nueske, F. A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Model. Simul. 2013, 11, 635–655. [Google Scholar] [CrossRef]
- Nüske, F.; Keller, B.; Pérez-Hernández, G.; Mey, A.S.; Noé, F. Variational approach to molecular kinetics. J. Chem. Theory Comput. 2014, 10, 1739–1752. [Google Scholar] [CrossRef] [PubMed]
- McGibbon, R.T.; Pande, V.S. Variational cross-validation of slow dynamical modes in molecular kinetics. J. Chem. Phys. 2015, 142, 124105. [Google Scholar] [CrossRef]
- Mardt, A.; Pasquali, L.; Wu, H.; Noe, F. VAMPnets for deep learning of molecular kinetics. Nat. Commun. 2018, 9, 5. [Google Scholar] [CrossRef]
- Husic, B.E.; Pande, V.S. Markov state models: From an art to a science. J. Am. Chem. Soc. 2018, 140, 2386–2396. [Google Scholar] [CrossRef] [PubMed]
- Rudzinski, J.F.; Bereau, T. Concurrent parametrization against static and kinetic information leads to more robust coarse-grained force fields. Eur. Phys. J. Spec. Top. 2016, 225, 1373–1389. [Google Scholar] [CrossRef] [Green Version]
- Rudzinski, J.F.; Kremer, K.; Bereau, T. Communication: Consistent interpretation of molecular simulation kinetics using Markov state models biased with external information. J. Chem. Phys. 2016, 144, 051102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bereau, T.; Rudzinski, J.F. Accurate structure-based coarse-graining leads to consistent barrier-crossing dynamics. Phys. Rev. Lett. 2018, 121, 256002. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, J.; Pinamonti, G.; Clementi, C. Learning effective molecular models from experimental observables. J. Chem. Theory Comput. 2018, 14, 3849–3858. [Google Scholar] [CrossRef] [PubMed]
- Nüske, F.; Boninsegna, L.; Clementi, C. Coarse-graining molecular systems by spectral matching. J. Chem. Phys. 2019, 151, 044116. [Google Scholar] [CrossRef]
- Crommelin, D.; Vanden-Eijnden, E. Diffusion estimation from multiscale data by operator eigenpairs. Multiscale Model. Simul. 2011, 9, 1588–1623. [Google Scholar] [CrossRef]
- Jeong, D.; Kim, D.; Choi, M.Y.; Kim, H.J.; Jung, Y. Dynamic heterogeneity in room-temperature ionic liquids. In Ionic Liquids: Theory, Properties, New Approaches; Kokorin, A., Ed.; Intech Europe: Rijeka, Croatia, 2011; pp. 167–182. [Google Scholar]
- Karimi-Varzaneh, H.A.; Mueller-Plathe, F.; Balasubramanian, S.; Carbone, P. Studying long-time dynamics of imidazolium-based ionic liquids with a systematically coarse-grained model. Phys. Chem. Chem. Phys. 2010, 12, 4714–4724. [Google Scholar] [CrossRef]
- Pal, T.; Vogel, M. Role of dynamic heterogeneities in ionic liquids: Insights from all-atom and coarse-grained molecular dynamics simulation studies. ChemPhysChem 2017, 18, 2233–2242. [Google Scholar] [CrossRef]
- Moradzadeh, A.; Motevaselian, M.H.; Mashayak, S.Y.; Aluru, N.R. Coarse-grained force field for imidazolium-based ionic liquids. J. Chem. Theory Comput. 2018, 14, 3252–3261. [Google Scholar] [CrossRef]
- Mukherjee, B.; Peter, C.; Kremer, K. Single molecule translocation in smectics illustrates the challenge for time-mapping in simulations on multiple scales. J. Chem. Phys. 2017, 147, 114501. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, B.; Peter, C.; Kremer, K. Dual translocation pathways in smectic liquid crystals facilitated by molecular flexibility. Phys. Rev. E 2013, 88, 010502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Q.H.; Yu, A.B.; Lu, G.Q. Multiscale modeling and simulation of polymer nanocomposites. Prog. Polym. Sci. 2008, 33, 191–269. [Google Scholar] [CrossRef]
- Sun, L.; Zheng, C.; Webster, T.J. Self-assembled peptide nanomaterials for biomedical applications: Promises and pitfalls. Int. J. Nanomed. 2017, 12, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Šulc, P.; Romano, F.; Ouldridge, T.E.; Rovigatti, L.; Doye, J.P.K.; Louis, A.A. Sequence-dependent thermodynamics of a coarse-grained DNA model. J. Chem. Phys. 2012, 137, 135101. [Google Scholar] [CrossRef]
- Ouldridge, T.E.; Šulc, P.; Romano, F.; Doye, J.P.K.; Louis, A.A. DNA hybridization kinetics: Zippering, internal displacement and sequence dependence. Nucleic Acids Res. 2013, 41, 8886–8895. [Google Scholar] [CrossRef] [PubMed]
- Schreck, J.S.; Ouldridge, T.E.; Romano, F.; Šulc, P.; Shaw, L.P.; Louis, A.A.; Doye, J.P.K. DNA hairpins destabilize duplexes primarily by promoting melting rather than by inhibiting hybridization. Nucleic Acids Res. 2015, 43, 6181–6190. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, N.; Ouldridge, T.E.; Šulc, P.; Schaeffer, J.M.; Yurke, B.; Louis, A.A.; Doye, J.P.K.; Winfree, E. On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res. 2013, 41, 10641–10658. [Google Scholar] [CrossRef]
- Mosayebi, M.; Romano, F.; Ouldridge, T.E.; Louis, A.A.; Doye, J.P.K. The role of loop stacking in the dynamics of DNA hairpin formation. J. Phys. Chem. B 2014, 118, 14326–14335. [Google Scholar] [CrossRef]
- Habibi, M.; Rottler, J.; Plotkin, S.S. As simple as possible, but not simpler: Exploring the fidelity of coarse-grained protein models for simulated force spectroscopy. PLoS Comput. Biol. 2016, 12, e1005211. [Google Scholar] [CrossRef]
- Whitford, P.C.; Noel, J.K.; Gosavi, S.; Schug, A.; Sanbonmatsu, K.Y.; Onuchic, J.N. An all-atom structure-based potential for proteins: Bridging minimal models with all-atom empirical forcefields. Proteins Struct. Funct. Bioinform. 2009, 75, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Davtyan, A.; Schafer, N.P.; Zheng, W.; Clementi, C.; Wolynes, P.G.; Papoian, G.A. AWSEM-MD: Protein structure prediction using coarse-grained physical potentials and bioinformatically based local structure biasing. J. Phys. Chem. B 2012, 116, 8494–8503. [Google Scholar] [CrossRef] [PubMed]
- Guttenberg, N.; Dama, J.F.; Saunders, M.G.; Voth, G.A.; Weare, J.; Dinner, A.R. Minimizing memory as an objective for coarse-graining. J. Chem. Phys. 2013, 138, 094111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudzinski, J.F. Recent Progress towards Chemically-Specific Coarse-Grained Simulation Models with Consistent Dynamical Properties. Computation 2019, 7, 42. https://doi.org/10.3390/computation7030042
Rudzinski JF. Recent Progress towards Chemically-Specific Coarse-Grained Simulation Models with Consistent Dynamical Properties. Computation. 2019; 7(3):42. https://doi.org/10.3390/computation7030042
Chicago/Turabian StyleRudzinski, Joseph F. 2019. "Recent Progress towards Chemically-Specific Coarse-Grained Simulation Models with Consistent Dynamical Properties" Computation 7, no. 3: 42. https://doi.org/10.3390/computation7030042
APA StyleRudzinski, J. F. (2019). Recent Progress towards Chemically-Specific Coarse-Grained Simulation Models with Consistent Dynamical Properties. Computation, 7(3), 42. https://doi.org/10.3390/computation7030042